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Reporting Health Data in Waiting Rooms with Mobile Technology: 

Patient Expectation and Confirmation 

Abstract 

Objectives: Hospitals and medical staff use digital devices such as mobile phones and tablets to 

treat patients. Prior research has examined patient-reported outcomes, and the use of medical 

devices to do diagnosis and prognosis of patients, but not whether patients like using, and intend 

to use in future, mobile devices to self-report medical data. We address this research gap by 

developing a theoretical model based on the expectancy confirmation model (ECM) and testing 

it in an empirical study of patients using mobile technology to self-report data. 
 

Design: This study adopts a non-interventional cross-sectional research design. Randomly- 

selected patients provided data via survey and physical measurements. The target population 

comprises adults visiting a healthcare laboratory to get their blood drawn. 
 

Materials and Methods: We surveyed 190 randomly-selected patients waiting for treatment in 

the clinic. They were surveyed at two points in time – before and after their blood was drawn – 

on their demographic characteristics, research variables concerning their use of mobile devices to 

provide medical information, and perceived clinical data (blood pressure, height and weight). 

The research model was tested using structural equation modeling. 
 

Results: The study found strong support for the research model, with seven of eight hypotheses 

being supported. Both self-disclosure effort and feedback expectation positively affect both 

perceived feedback quality and confirmation. Contrary to expectations, perceived feedback 

quality was not found to affect confirmation. Perceived feedback quality, along with 

confirmation, was found to positively affect satisfaction, which was found to affect intention to 

disclose medical data through mobile technology. 
 

Conclusions: The study’s findings support the proposed path from feedback expectation and self- 

disclosure effort to confirmation to satisfaction to disclosure intention. Although perceived 

feedback does not affect confirmation, it affects satisfaction. Overall, we believe the results 

provide novel insights to both scientific research community and practitioners about using 

mobile technologies for self-reporting medical data. 
 

Keywords: Healthcare, expectation confirmation model, disclosure intention, mobile devices, 

self-reporting. 
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1. Introduction 

Mobile devices have gained prominence for collecting and providing medical information. 

Modern health services frequently use tablets and smartphones for patients to report symptoms, 

communicate with doctors, or seek referrals or prescriptions (Garfield et al., 2011). However, the 

information provided by patients can be expanded further. For example, if patients self-report 

medical data, such as blood pressure and weight, it can be entered into their records, giving the 

treatment provider a priori insights about the conditions of the patients. 

Health providers understand the potential of mobile devices for strengthening ties with 

patients, and provide many health services through them (Ben-Zeev et al., 2015; Neubeck et al., 

2015). Prior studies show that patients can independently and reliably report on a variety of 

measures (Okura et al., 2004), and use mobile devices to learn about medical topics (e.g., Chou 

et al., 2012). Moreover, patients’ experience with, and expectations from, medical technologies 

affects their reuse of these technologies (Culliton et al., 2018). 

This study examines the factors affecting patients’ satisfaction with mobile technologies to 

self-report medical anthropometric (height and weight) and physical (blood pressure) data, and 

their intention to continue self-reporting. If patients are satisfied with the effects of their self- 

reported medical data, and continue to self-report them, they would save some time during their 

visit to the clinic, which becomes especially important during current COVID pandemic. We 

examine the factors affecting patients’ use of mobile devices using a theoretical model based on 

the expectation confirmation model, and test it using data from 190 patients. 

2. Research Background 

Self-reporting by patients is integral to planning and improving treatment. It is important 

that patients provide reliable information about their health and are satisfied with the process and 

its outcomes. Accordingly, a considerable body of literature examines patient-reported outcomes 
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(PROs)1, an umbrella term used to evaluate patients’ perceptions, feelings, attitudes, or clinical 

outcomes. Prior research (see Appendix A) has used various methods to study the effectiveness 

of PROs, including surveys of patients and health professionals (e.g., Tanaka et al., 2020), and 

qualitative methods such as interviews and focus groups (e.g., Wilcox et al., 2016). 

Prior PRO studies focus on the design, development, and usability of web-interfaces or 

mobile applications. Patients are more likely to use mobile devices to report data with visual 

rather than textual interface (Turchioe et al., 2020). Some studies examine algorithms involving 

analytics used by healthcare professionals to maximize the effectiveness of self-management and 

deliver high-quality care (Cho et al., 2019; Gogovor et al., 2017), or use machine learning 

algorithms to study medical data (Huang et al., 2019; Meng et al., 2020). Finally, some studies 

focus on technology development and use in case of patients suffering from specific diseases. A 

study of the use of health portal by patients suffering from depression and anxiety found that 

people use mobile devices more for self-assessment if it delivers personalized feedback (Cronin 

et al., 2018). Other examples include studies of the effect of the design of Internet-of-Things 

(IOT) and wireless sensor devices on data self-reporting by diabetic patients (Chatterjee et al., 

2018) and the effect of web-based virtual nursing intervention to promote self-management and 

medication adherence for kidney transplant patients (Côté et al., 2019). 

This paper contributes to the literature on PROs in two ways. First, it develops insights into 

the factors affecting patients’ satisfaction with using mobile technologies to self-report medical 

data and their intention to continue doing so. This is important because if patients are satisfied 

with the consequences of their self-reported medical data, and therefore continue to self-report 

them using mobile devices, their need to visit medical clinics would decrease. 

 
 

1 We thank an anonymous reviewer for suggesting this stream of literature. 
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Second, in contrast the broad nature of PROs, this paper’s focus is more specific – on the 

reporting of medical anthropometric (height and weight) and physical (blood pressure) data. This 

data is part of the basic physical examination for all patients, but may require clinical actions for 

the otherwise previously healthy population. These tests can be conducted by healthcare workers, 

but require the patients’ cooperation in scheduling, and then arriving at the clinic. This study 

addresses the possibility of obtaining such data from patients without their visiting the clinic. 

3. Theory Development 

3.1. Theoretical Lens 
 

To examine why patients continue or discontinue using mobile technology for self- 

reporting, this study adopts the expectation confirmation model (ECM) as the theoretical 

framework. ECM suggests that individuals form expectations about a specific product, and are 

satisfied when those expectations are met or exceeded (Bhattacherjee, 2001; Marcengo & Rapp, 

2014). However, understanding expectations of potential is a challenging task in the context of 

information technologies, especially when they support different functional areas, promise a 

broad array of benefits, or offer functionally that users may find difficult to understand (Nevo & 

Chan, 2007). This might be true in case of mobile devices when used by patients to self-report 

medical data. The patients may lack medical knowledge and prior experience with the self- 

reporting functionality of mobile devices, but believe that this may lead to expedited feedback 

and improve their medical diagnosis and care. 

ECM has five components: (1) the user’s “expectations” from the new system; (2) 

“perceived performance,” or the user’s perception about the system's performance; (3) 

“confirmation of beliefs,” or the user’s judgement of the new system, where she continually 

compares prior expectations to performance; (4) the user’s “satisfaction” with the system; and 

(5) the user’s “behavioral intention,” or intention to continue using the system (Oliver, 1980). 
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3.2. Research Hypotheses 
 

This paper’s research model includes five constructs adapted from the above ECM 

constructs: (1) feedback expectation, i.e., the patient’s expectation regarding the feedback from 

using the mobile device for self-reporting medical data; (2) perceived feedback quality, i.e., 

perceptions regarding the feedback based on the shared data; (3) confirmation, i.e., whether the 

patients’ experience from self-reporting of the medical data matches expectations; (4) 

satisfaction with self-reporting through the mobile device; and (5) disclosure intention, i.e., the 

patient’s likelihood of self-reporting through the mobile device in future. In addition, we include 

the effect of self-disclosure effort, which is based on the perceived ease of use construct from 

prior literature on technology adoption (Davis, 1989; Davis et al., 1989) and success (Sabherwal 

et al., 2006). Based on ECM, and prior studies on the feedback patients receive via digital media 

(e.g., Chou et al., 2012), we posit the following hypotheses (see Figure 1). 

H1: Self-disclosure effort positively affects: (a) perceived feedback quality; and (b) 

confirmation. 

H2a: Feedback expectation positively affects: (a) perceived feedback quality; and (b) 

confirmation. 

H3: Perceived feedback quality positively affects: (a) confirmation; and (b) satisfaction. 

H4: Confirmation positively affects satisfaction. 

H5: Satisfaction positively affects disclosure intention. 

 

Figure 1. The Research Model 
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4. Research Design 

We collected the data from patients visiting the laboratory of a healthcare center to get their 

blood drawn. We conducted the study in the waiting room to utilize the patients’ waiting time 

and avoid inconveniencing them. We invited every fifth patient arriving at the clinic to provide 

data using mobile technologies. If a patient declined, we invited the patient arriving next. If this 

patient agreed, we selected the fifth patient after her to participate, and so on. 

The target population comprises adults (18 years or more). In the study plan, we aimed to 

exclude patients with extreme blood pressure levels (specifically, patients with systolic and 

diastolic blood pressures outside 110-180 and 50-100 ranges, respectively) as they would require 

immediate help. However, we encountered no such cases. The survey was started by 211 

individuals. After excluding 21 incomplete responses, we used data from 190 participants. This 

sample size exceeds the 161 needed to detect effects, based on a desired statistical power of 0.8, 

anticipated effect size of 0.3, six latent variables, 19 items, and a p-value of 0.05. 

5. Data Collection 

5.1. Measuring weight, height and blood pressure. 
 

Medical instruments are widely used in the clinic and annually checked by a maintenance 

company. All the instruments used for the study were properly working. Blood pressure was 

measured using the same gauge for all patients. The patients were first asked to rest for 10-15 

minutes, and three measurements were then taken at 1-2 minutes intervals with the third 

measurement being recorded. Height and weight were measured on a digital apparatus near a 

laboratory room. All patients were guided on the measurement process to avoid inaccuracies. We 

retrieved the information about chronic diseases and medications from the medical files. 

We provided the patients an online survey via a mobile device. The survey was conducted 

 

using Qualtrics, ensuring anonymity. The survey was conducted at two points – before (when the 
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patient was asked about demographic details and how she perceived the importance of mobile 

technology for matters of health) and after (when the rest of the survey was transmitted) the 

blood test. The survey’s preface explained that the study was on using mobile technology for 

health matters, participation was only with the patient’s consent, and participation would have no 

influence on the treatment. A member of the research group (a certified nurse) transmitted the 

survey and the measurements. In addition, the branch's staff received explanations about the 

study and its goals, so that they could provide feedback on the patient-provided measurements. 

5.2. Ethical Aspects of Data Collection 
 

The following ethical aspects were considered in collecting data: (1) In order to safeguard 

the patients’ privacy, the data was collected by only one author (a certified nurse). (2) The 

clinic’s management provided a written authorization to collect the data. (3) All the data were 

anonymously saved under a code and it was impossible to go back to the patient’s details after 

the survey was submitted. (4) Prior approval was obtained from the healthcare facility’s Helsinki 

Committee, which waived the need for a written informed consent from the patients. 

6. Measures 

We used scales from prior literature, and adapted them to the study context to measure all 

six constructs (see Appendix B) based on inputs from the lab team regarding the feedback they 

provide to patients. All items were measured on a 7-point Likert scale, ranging from 1 = “do not 

agree at all” to 7 = “agree very much” for all constructs except satisfaction, as mentioned below. 

In the last few decades, numerous people have moved from Russia to Israel, where the study 

was conducted. So, some patients prefer Hebrew and others prefer Russian. The survey was 

validated in English, then translated to Hebrew and Russian, and then back to English. During a 

pilot study, six bilingual participants (who spoke English and either Hebrew or Russian) read the 

various versions and did not find any differences. 
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Before the participants entered the lab to draw blood, we measured feedback expectation 

using a good-bad scale (Ajzen & Fishbein, 1977). After the blood test, we measured: self- 

disclosure effort by asking three questions about patients’ perceptions of the process of reporting 

their data via the mobile (Davis, 1989); perceived feedback quality using four questions about 

the feedback received via the mobile phone (Davis et al., 1989); and confirmation using three 

items (Bhattacherjee, 2001). We also measured both dependent variables – satisfaction and 

disclosure intention – after the blood test: satisfaction using a four-item scale (Spreng et al., 

1996), and disclosure intention using three items (Mathieson, 1991). 

We also collected data on control variables, including gender, education level, year of birth, 

country of origin, and clinical indicators such as height, weight, blood pressure and chronic 

diseases. The patients provided information on clinical indicators through the survey. A certified 

nurse (also an author) later did the measurements, completed the medical data from the patients' 

medical files, and retrieved information about their chronic diseases (i.e., diabetics/high blood 

pressure/myocardial infarction/stroke/lung diseases/malignancy) and routine drug usage. 

7. Analysis 

All the data were analyzed using Stata 15.1. We checked the normal distribution of the 

continuous variables using the Shapiro-Wilk test. Relationships among demographic, biological, 

and research variables were examined using either t-tests for two independent samples, or Mann- 

Whitney if the distribution was not normal. 

We tested the research model using structural equation modeling (SEM), which allows for 

simultaneously testing relationships among multiple independent and multiple dependent 

variables, while including the individual items measuring each variable. More specifically, we 

used the Stata command sem to test the research model. 



8  

8. Results 

8.1. Demographic Characteristics of the Sample 
 

As seen in Table 1, most study participants were women (55%), and distributed almost equally 

among baccalaureate or over (35%), high school to baccalaureate (33%), and elementary to high 

school (31%). The first language of a majority of participants was Hebrew (59.89%). The mean 

reported height (169.45 cm.) differs somewhat from the measured height (169.41), while the 

mean reported weight (69.08 kg) differs somewhat from the measured weight (69.35). The 

reported mean values (of systolic blood pressure (126.64) and diastolic blood pressure (81.08) 

differ from the corresponding measured values (129.65 and 82.39, respectively). The 

participants’ mean age and mean body mass index were 46.5 years and 24.15, respectively. 

Figure 2. The Results 
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8.2. Results for the Research Model 
 

Table 2 provides the reliabilities, means, and standard deviations of the constructs, and their 

inter-correlations. On testing the theoretical model, the path for H3a (i.e., from perceived 

feedback quality to confirmation) was non-significant (0.12, p = 0.61), and was therefore 

excluded. This led to a model with satisfactory goodness of fit indices, with all the paths being 

significant in the refined model and no modification index over ten. Figure 2 depicts the results. 

Thus, all the hypotheses except H3a are supported (Table 3). Results show that self-disclosure 

effort positively affects perceived feedback quality (H1a) and confirmation (H1b). Feedback 

expectation positively affects perceived feedback quality (H2a) and confirmation (H2b). 

Perceived feedback quality positively affects satisfaction (H3b). Confirmation positively affects 

satisfaction (H4), and satisfaction positively affects disclosure intention (H5), respectively. 

9. Discussion 

This study has investigated factors affecting patients’ satisfaction with using mobile 

technologies to self-report medical data and their intention to continue doing so. The results 

largely support the theoretical model based on ECM. Both self-disclosure effort and feedback 

expectation positively affect both perceived feedback quality and confirmation. Surprisingly, 

perceived feedback quality does not affect confirmation. One possible explanation for this non- 

significant effect may be that the patients receive feedback after providing self-reports, and is not 

based only on the self-reports. Instead, the lab staff also provides other feedback to patients 

having irregular conditions, such as maintaining healthy diets, regular exercising, taking 

medication, visit to the doctor, etc. As a result, the perceived feedback quality may be less salient 

to them when considering confirmation. However, perceived feedback quality – along with 

confirmation – positively affects satisfaction, which positively affects intention to disclose 

medical data through mobile technology. 
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The study contributes to theory and practice. Theoretically, the study shows how ECM can 

provide insights into the self-reporting of medical data through mobile technology. It thus 

extends the literature on PROs and the use of mobile technologies in healthcare context (e.g., 

Reychav et al., 2019). Drawing upon the ease of use concept from technology adoption literature 

(Davis, 1989; Sabherwal et al., 2006), the paper has added the self-disclosure effort construct to 

the five traditional constructs from ECM. The importance of effort is shown by the empirical 

support for its effect on both perceived feedback quality and confirmation, which affects 

satisfaction, and through it future disclosure intention. Thus, the study shows the value of 

considering effort in addition to performance expectations when viewing the determinants of 

confirmation, thereby contributing to the ECM literature. The study also contributes to the 

broader technology adoption literature by showing the effects of effort, performance 

expectations, and confirmation on satisfaction and continued use intention. 

From a practical viewpoint, this study suggests that self-reports of patients can be used for 

follow-up purposes and to formulate treatment plans. In addition, the study suggests that the 

more the patients see benefits in self-reporting within the framework of their treatment plan, the 

higher the chance that they would feel a higher satisfaction and would be committed to continue 

reporting. Devising a reliable treatment plan requires a variety of clinical indicators about the 

patient, such as blood pressure, height, and weight. In today’s digital age, the patients themselves 

can provide clinical personal data by using technological tools. However, since treatment is an 

ongoing process, it is important to encourage the patients to continue self-reporting clinical data 

as a part of building their treatment plan and following up on it. This study has, using ECM, 

provided insights into ways in which this can be done. More specifically, the results point to two 

key factors: (a) setting reasonable feedback expectations for the patients (so that those 
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expectations are subsequently met in an effective fashion); and (b) reducing the effort patients 

need to self-disclose their medical data through mobile devices. 

The study’s results should be viewed in the light of its limitations. First, it was conducted at 

one healthcare facility. Second, we collected survey data from patients at two points in time, but 

used a single method to measure all constructs. Finally, we sampled participants based on every 

fifth patient arriving at the healthcare facility. A more randomized selection, e.g., randomly 

varying the patient selection frequency, would have enhanced the sample’s randomness. 

10. Conclusion 

The study supports the theory-based expectations that in self-reporting medical data via a 

mobile device, if the patients’ expectations regarding the feedback they receive and the device’s 

ease of use (i.e., the effort needed to self-report) are met, they would be more satisfied and would 

be likely to continue self-reporting. Reporting clinical indicators via mobile devices also has a 

social aspect, so if an individual is satisfied with using mobile devices to self-report medical 

data, she might influence others in her network to do so as well. 

11. Summary Table 
 

Prior Studies Our Contribution 

• A considerable body of literature on 

patient-reported outcomes (PROs), 

an umbrella term used to evaluate 

patients’ perceptions, feelings, 

attitudes, or clinical outcomes. 

• Research has provided insights on 

the use of mobile devices by patients 

and medical professionals in 

learning (Choe et al., 2014; Okura et 

al., 2004). 

• Research has stressed the importance 

of self-reporting of data by patients 

on various indicators (Culliton et al., 

2018; Reychav et al., 2019). 

• This study contributes to literature on PROs by 

developing insights into the factors affecting 

patients’ satisfaction with using mobile 

technologies to self-report medical data and 

their intention to continue doing so. 

• The study applies the ECM model to healthcare, 

and shows the value of considering effort in 

addition to performance expectations when 

viewing the determinants of confirmation, 

thereby contributing to the ECM literature. 

• The study’s findings indicate that self- 

disclosure effort and feedback expectation 

positively affect confirmation, but perceived 

feedback quality does not. 
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Table 1. Demographic Attributes of Study Participants 

 
Variable Mean (SD) Range N (%) 

Gender    
Female   104 (55) 

Male   86 (44.79) 

Education    
Academic   68 (35.41) 

Tertiary   62 (33.33) 

Primary and secondary   60 (31.25) 

Age 46.48 (16.71) 18 – 90 190 

Native language    
Hebrew   114 (59.89) 

Non-Hebrew   76 (40.10) 

Height (cm.)    
Measured 169.41 (8.39) 146 – 191 190 

Has a chronic illness    
Yes   116 (60.41) 

No   74 (39.58) 

Weight (kg.)    
Measured 69.35 (11.83) 47.8 – 99.5 186 

Systolic blood pressure    
Measured 129.65 (12.36) 110 – 168 190 

Diastolic blood pressure    
Measured 82.59 (5.93) 61 – 97 190 

BMI 24.15 (4.01) 17.62 – 39.86 186 

 
 

Table 2. Reliabilities, Descriptive Statistics, and Correlations 

 
Variable Reliabilitya

 Mean (SD) Min (Max) 1 2 3 4 5 

1. Feedback Expectation .72 1.83 (0.61) 1.00 (4.33)      
2. Self-disclosure Effort .66 2.52 (1.34) 1.00 (7.00) .04     

3. Perceived Feedback Quality .56 1.65 (0.52) 1.00 (4.00) .26** .00    

4. Confirmation .82 2.81 (0.78) 1.00 (5.00) .46** .07 .39**   

5. Disclosure Intention .75 2.16 (0.77) 1.00 (6.00) .38** .16** .34** .58**  

6. Satisfaction .69 1.92 (0.59) 1.00 (4.67) .38** .10 .40** .55** .65** 

**p < .01 

 
 

a Reliability is assessed using standardized Cronbach alphas. 
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Table 3. Summary of Hypotheses Results 

 
Hypothesis Supported 

H1a: Self-disclosure effort positively affects perceived feedback quality. Yes 

H1b: Self-disclosure effort positively affects confirmation. Yes 

H2a: Feedback expectation positively affects perceived feedback quality. Yes 

H2b: Feedback expectation positively affects confirmation. Yes 

H3a: Perceived feedback quality positively affects confirmation.a
 No 

H3b: Perceived feedback quality positively affects satisfaction. Yes 

H4: Confirmation positively affects satisfaction. Yes 

H5: Satisfaction positively affects disclosure intention. Yes 

 

 
 

a This path was included in the theoretical model, and in the original structural equation model. But it was non- 

significant, and therefore excluded from the final structural equation model. The fit indices and standardized beta 

coefficients in Figure 2 are for the final model, i.e., after removing this path. 
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Appendix A: Literature Review on Patient-Reported Outcomes (PROs) 

 
Source Study 

Athilingam et al. 

(2016) 

The study demonstrates the use of mobile platform having embedded interactive heart failure 

education by patients. The study made use of Mayer's Cognitive Theory of Multimedia 

Learning, Sweller's Cognitive Load, Instructional Design Approach, and Problem-Based 

Learning, was utilized to develop and test the mobile app. 

Caballero-Ruiz et 

al. (2017) 
The study presents Sinedie, a clinical decision support system designed to manage the treatment 

of patients with gestational diabetes. The study was conducted in Spain to remotely evaluate 

patients allowing them to upload their glycaemia data at home directly from their glucose meter, 

as well as report other monitoring variables like ketonuria and compliance to dietary treatment. 

Chatterjee et al. 

(2018) 

Using persuasion theory, the study discuss the design and implementation of an Internet-of- 

Things (IoT) and wireless sensor system which patients use in their own homes to capture daily 

activity, an important component in diabetes management. 

Cho et al. (2019) The study was conducted to understand patients' experiences using a real-time medication 

monitoring pill bottle linked to an HIV self-management app. This study demonstrated that 

tracking medication adherence and receiving push-notification medication reminders through 

the electronic pill bottle connected to the app encourages and supports persons living with HIV 

in adhering to their medication regimens. 

Côté et al. (2019) Kidney transplant patients were provided web-based virtual nursing intervention to promote 

self-management and medication adherence. Patient experience shows the intervention is 

acceptable and can help better manage medication intake. 

Cronin et al. 

(2018) 
This study explored aspects of how patient-provided health information could be obtained 

through an electronic portal and presented to inform and engage patients while also providing 

information for healthcare providers. The survey was administered to self-reported healthy 

volunteers (no medical conditions) and individuals with a self-reported diagnosis of anxiety 

and/or depression. Results indicated a strong desire among healthy people, patients with chronic 

diseases, and healthcare providers for a self-assessment portal that can collect patient-reported 

outcome metrics and deliver personalized feedback. 

Ghandour & 

Ghandour (2019) 
The aim of the study was to report and analyse the experiences of different user groups using 

PCHR for Multidisciplinary Care Team (MDCT) including the advantages, disadvantages, 

barriers and obstacles, and the current state of personally controlled health records (PCHR). The 

key findings of this research showed that those who can benefit the most from PCHRs are the 

least able to use it. It suits those who have basic knowledge about computers and the internet 

and those who can afford to use them. PCHR is also best suited for individuals who are 

motivated about their health despite their health condition. 

Gogovor et al. 

(2017) 
The study was conducted on individuals with chronic pain in Canada. The study aims to 

understand the technology features for the development of an internet-based self-management 

program. Internet-based programs contain automated, communication and decision support 

features that can address information and care gaps reported by patients and clinicians. The 

results of this study indicate that interactivity, personalization, and tailored messages, combined 

with therapist contact will maximize the effectiveness of an Internet-based chronic pain program 

in enhancing self-management. 

Greysen et al. 

(2018) 

The study was conducted to efficacy of patient engagement with their patient portals during 

hospitalization and after discharge. All participants were supplied with a tablet during their 

inpatient stay and assistance with portal registration and initial login as needed. Additionally, 

intervention group patients received a focused bedside education to demonstrate key functions 

of the portal and explain the importance of these functions to their upcoming transition to post- 

discharge care. However, results indicated statistically non-significant, trend towards higher 

inpatient engagement and post-discharge use of key portal functions among patients. 

Hamm et al. 

(2019) 

The aim of the study was to present guidetomeasure-3D, a web-enabled 3D mobile application 

that enables older-adult patients to carry out self-assessment measurement tasks, and to carry 

out a mixed-methods evaluation of its performance, and associated user perceptions of the 

application, compared with a 2D paper-based equivalent. The study revealed that older adults 

using guidetomeasure-3D achieved improved levels of accuracy and efficiency along with 
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Source Study 

 improved satisfaction and increased levels of confidence compared with the 2D paper-based 

equivalent. 

Huang et al. 

(2019) 

The study did emotion analysis and sentiment analysis on the patient reported data in remote 

patient monitoring (RPM) setting. 

Iribarren et al. 

(2020) 

The study was conducted on tuberculosis (TB) patients in Argentina to explore the factors 

governing the use of mobile application. Based on the findings from seven participants, it was 

concluded that access to answers to frequently asked questions, tracking of progress, and 

graphical user interface for easier and shorter data entry times and usability were the key factors 

governing the use of mobile application. 

Kakkanatt et al. 

(2018) 

This study aims to develop data curation process that supports healthcare analytics. The process 

consists of the following steps: collection, understanding, validation, cleaning, integration, 

enrichment, and storage. It has been successfully applied to the processing of a variety of data 

types including clinical data from electronic health records and observational studies, genomic 

data, microbiome data, self-reported data from surveys, and self-tracked data from wearables 

from more than 600 subjects. 

Lee & Kim 

(2019) 

The study was conducted to compare the use of two types of mobile apps among women with 

dysmenorrhea and premenstrual syndrome — one app was designed considering patients’ needs 

and the other was selected based on number of users worldwide. Results indicate that when a 

menstrual app. reflected users' needs, they recorded their symptoms more often and reported 

higher app quality, satisfaction, and intention to recommend. 

Lilholt et al. 

(2016) 

The study examined the association between chronic obstructive pulmonary disease (COPD) 

patients' use of Telekit and their functional health literacy and the association between their use 

of Telekit and their specific technological communication skills. 

Macis et al. 

(2020) 

The study tested the developed HEREiAM platform for telemonitoring in terms of usability, 

ease of use, usefulness, and quality of the proposed system on elderly living alone by 

administering validated questionnaires to them. 

Mayberry et al. 

(2019) 

The study explored the use of text messaging for self-management among type 2 diabetic 

patients. Results indicate that texts increased awareness, created dialogue, and improved health 

behaviors 

Meng et al. 

(2020) 

The study made use of machine learning algorithms to suggest that patient-reported outcomes 

can be monitored in real time using activity trackers. 

Nissen & 

Lindhardt (2017) 

The study was conducted on chronic obstructive pulmonary disease (COPD) patients. The 

purpose was to investigate the patient perspective on receiving tele-medicine with weekly 

submission of readings and regular video consultations (Net-COPD) as an alternative to visits in 

the respiratory outpatient clinic and investigating the role of telemedicine in management of 

severe COPD. Participation in telemedicine increased the patient empowerment primarily by the 

sharing of data with a permanent staff of nurses. 

Peleg et al. 

(2017) 

The study demonstrates the MobiGuide, patient-centered mobile decision-support system for 

patients and for their care providers. The study discusses the architecture of the system. 

Polubriaginof et 

al. (2019) 

The study studied the discrepancy between patients’ self-reported data on race and ethnicity and 

data from electronic health records. 

Rodríguez et al. 

(2017) 

The purpose of the study is to evaluate whether mobile or wearable devices are appropriate to 

self-report pain levels. The study found that users preferred the wearable device over the mobile 

application and that a wearable to self-report pain should be designed specifically for this 

purpose. 

Turchioe et al. 

(2020) 

The study was conducted to compare patients’ understanding of self-reported outcomes across 

mediums — text-only, non-graph, and graph visualizations to self-monitor their health status. 

Turvey et al. 

(2020) 

The study was conducted to explore the association between patients’ race and gender, and 

patient consent policy preference for health information exchange. 

Vest et al. (2019) This study sought to determine the association between adoption of enterprise HIE vs a single 

vendor environment for health information exchange. Results indicate that patients benefit more 

from a single vendor environment approach than attempting to foster exchange across multiple 

electronic health record (HER) vendors. 



 

Appendix B: Survey 

Itemsa
 

 
Construct Items 

Self-disclosure Effort It was technically challenging to report my health conditions with mobile 

phone.* 

It was time-consuming to report my health conditions with mobile phone. 

Reporting my health condition with mobile phone imposed a burden on me. 

Perceived Feedback Quality The laboratory/physiotherapist considers my self-report in making healthcare 

recommendation. 

I appreciate the quick attention of laboratory/physiotherapist to my self- 

report. 

The laboratory/physiotherapist's recommendation caters to my self-reported 

conditions.* 

Feedback Expectation I expect that the laboratory/physiotherapist will take my self-report into 

account while making healthcare decisions 

I look forward to the prompt feedback from the laboratory/physiotherapist on 

my self-report. 

I hope that the recommendation from the laboratory/physiotherapist will 

address my self-reported conditions. 

Confirmation The experiences from self-reporting are better than what I expected. 

The benefits from self-reporting are worth the troubles. 

Most of my expectations regarding self-reporting are positively confirmed. 

Satisfaction How do you feel about your overall experiences from self-reporting? 

(Extremely satisfied - Very dissatisfied)* 

How do you feel about your overall experiences from self-reporting? (Very 

pleased - Absolutely displeased) 

How do you feel about your overall experiences from self-reporting? (Very 

contented - Totally frustrated) 

How do you feel about your overall experiences from self-reporting? 

(Absolutely delighted - Very terrible) 

Disclosure Intention I feel encouraged by the results of self-reporting 

I will continue reporting my health conditions in the future. 

I have hesitancy toward further self-reporting.* 

 
 

a The items marked with an asterisk were dropped while refining the measures after data collection. 
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