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Graphical Abstract 57 

Highlights  58 

 REVIVAL is a controlled, open-label multicentric study to compare the standard low 59 

doses of intravenous dexamethasone with low doses weight-adjusted of intranasal 60 

dexamethasone  61 

 Intranasal dexamethasone can reach more effectively than intravenous the respiratory 62 

tract  63 

 Intranasal dexamethasone can reach the central nervous system in therapeutic 64 

concentrations even at low doses  65 

 REVIVAL aims to add to the control of systemic inflammation, the control of 66 

neuroinflammation to reduce central failures and sequelae 67 
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Abstract 68 

COVID-19 has produced more than 176 million infected individuals and almost 3.2 million 69 

deaths worldwide. The infection results in a dysregulated systemic inflammation, multi-70 

organ dysfunction, and critical illness. Cells of the central nervous system (CNS) are also 71 

affected triggering a dysregulated neuroinflammatory response. 72 

Low doses of glucocorticoids (GCs) orally or intravenously administered has been proved to 73 

reduce mortality of moderate and severe COVID-19 patients. However, low doses 74 

administered by those routes do not reach therapeutic levels in the CNS. In contrast, if 75 

dexamethasone is administered by the intranasal route can result in therapeutic doses in the 76 

CNS even at low doses of the GC.  77 

Methods: This is an approved multicentric randomized controlled protocol to compare the 78 

effectiveness of low doses of intranasal dexamethasone versus intravenous administered in 79 

adult moderate and severe COVID-19 patients. The protocol is conducted in five health 80 

institutions in Mexico City. A total of 120 patients will be randomized in two groups 81 

(intravenous vs intranasal) at 1:1 ratio, both groups will be treated with these dexamethasone 82 

schemes for 10 days. The primary outcome of the study will be clinical improvement, defined 83 

as a statistically significant higher reduction in the NEWS-2 score in intranasally versus 84 

intravenously dexamethasone treated patients. The second outcome will be the reduction in 85 

mortality during hospitalization.   86 

Conclusions: This protocol is currently undertaken to improve the efficacy of the standard 87 

therapeutic dexamethasone regimen for moderate and severe COVID-19 patients. 88 
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Trial registration: ClinicalTrials.gov identifier: NCT04513184 Registered November 12, 89 

2020 and was approved by COFEPRIS with identifier DI/20/407/04/36. People are currently 90 

being recruited. 91 

Keywords: Dexamethasone, intranasal administration, inflammation, neuroinflammation, 92 

COVID-19 93 

  94 
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Background 95 

So far, the outbreak of COVID-19 has caused more than 176 million infected individuals and 96 

almost 3.2 million deaths worldwide (https://coronavirus.jhu.edu/map.html) with a current 97 

global case-fatality ratio of 2.1%, the most affected geographic region are the Americas with 98 

a case-fatality ratio of 2.6%.  99 

Several factors predict a poor outcome for COVID-19 patients, such as comorbidities 100 

(diabetes, hypertension, obesity) and aging with an underlying dysregulated inflammatory 101 

response1. Other relevant factors include SARS-CoV-2 neurotropism/neuroinvasiness 2-9. In 102 

fact, the viral RNA was observed in the brain of patients that deceased by severe acute 103 

respiratory syndrome due to COVID-19 infection 10-12. Likewise, it was reported evidence 104 

of astrocytic activation and neuronal damage in severe COVID-19 patients, which present 105 

elevated plasmatic levels of GFAP and NfL 13. Other authors have evaluated astrocytes 14 106 

and neurons in 2D o 3D cultures showing an extensive infection 15,16. The infection of cells 107 

of the Central Nervous System results in the expression of PAMPs and DAMPs that trigger 108 

a neuroinflammatory response. The exacerbated systemic inflammation with the 109 

consequent breakdown of the blood-brain barrier and the migration of cells and peripheral 110 

inflammatory mediators also contribute to increase to the in situ generated 111 

neuroinflammatory response. Together, this dysregulated and sustained neuroinflammation 112 

can add to peripheral damage, central (CNS) damage, which may contribute to the multi-113 

organ dysfunction and death 10,12.  114 

 115 

 116 
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Natural history of SARS-CoV-2 infection 117 

A clinical staging system has been proposed in SARS-CoV-2 infection as follow, early 118 

infection (Stage I, mild), pulmonary involvement (Stage IIa, moderate) without hypoxia, or 119 

with hypoxia (Stage IIb), and finally Stage III (systemic hyperinflammation) 17 (Figure 1).  120 

After exposure to SARS-CoV-2, virus gains host access through the nasal cavity and 121 

respiratory airway. During early infection (Stage I), mild and non – specific symptoms may 122 

be observed (fever, malaise, and asthenia), upon this prodromic phase virus binds its target 123 

ACE2, TMPRSS2 18, 19 and more recently NRP-1 20,21. These receptors are highly present on 124 

several tissues including the olfactory neuroepithelium (less in the sensitive olfactory 125 

neurons) and lung 19-22, consequently, the infection can be established in the lungs (Stage II) 126 

and lead to viral pneumonia, cough, and fever with or without hypoxia. Here the SARS-CoV-127 

2 PAMPs will be recognized by TLR3, TLR7 and TLR8 in the endosome but also in the RIG-128 

1 like receptor in the cytosol 23. The virus can also reach the CNS through the olfactory and 129 

trigeminal nerves terminal. Once in the CNS it can infect and damage endothelial, pericytes 130 

and neural cells that expressed ACE2, NRP-1 receptors 20, 21 promoting neuroinflammation 131 

(Figure 1). CNS viral involvement is related to headache, dizziness, and ataxia, but infection 132 

also may progress to the whole brain including the brainstem 5, 6. Finally, in a minority of 133 

infected-patients disease progresses to Stage III where a hyperinflammatory syndrome (the 134 

sustained production of proinflammatory cytokines including IL-1β and TNFα) is observed, 135 

with mitochondrial and lysosomal damage, expressing elevated proinflammatory cytokines, 136 

reactive oxygen species (ROS), and the hyperactivation of P2X7 receptors. These processes 137 

induce inflammasome activation (which increased IL-6 levels) and lead to pyroptosis which 138 
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determines a persistent inflammatory cycle by disseminating viral antigens and RNA in the 139 

circulation. Thereafter, it is possible the generation of immune complex and its deposition in 140 

target organs 23-25. During this phase, sustained neuroinflammation may exacerbate the 141 

neuronal injury, therefore spreading damage and contributing towards central respiratory 142 

failure besides other signs of systemic organ involvement resulting in multi-organ 143 

dysfunction 17.  144 

A crucial strategy to treat COVID-19 patients seems to be the control of neuroinflammation 145 

and systemic inflammation. For this purpose, it is important to consider how the virus invades 146 

the human organism. The most frequent form is the intranasal route which allows a direct 147 

access to both, the respiratory and the central nervous systems through neural pathways 5; 15-
148 

18. Coronaviruses including SARS-CoV-2 can infect brainstem neurons associated with 149 

cardio-respiratory control, which induces central alterations of pulmonary function 5; 26-29. In 150 

fact, COVID-19 neurological clinical symptoms particularly nausea, vomiting, and dysgeusia 151 

appear to involve the dorsal vagal complex (DVC) and the nucleus tractus solitary (NTS) 152 

linked to the control of several autonomic functions 26. The NTS is a well-known target of 153 

neuro-immune activation 33, and its ascending projections reach the hypothalamus 154 

(hypothalamic paraventricular nucleus) involved in the HPA axis activation while other NTS 155 

projections come to the rostral ventrolateral medulla (RVM), which controls respiratory and 156 

cardiovascular functions 34.  157 

The viral infection in respiratory and central nervous system cells promotes the expression 158 

of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 159 

patterns (DAMPs) signals that in turn trigger inflammasome and oxidative stress 23,35. Later 160 
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during infection, inflammatory response may become dysregulated extending the initial 161 

damage caused by the infection.  162 

Adrenal affection in SARS-CoV-2 infection 163 

Critically ill-patients of different pathologies frequently show adrenal insufficiency which 164 

may increase morbidity and mortality 36, 37. COVID-19 might affect the hypothalamic-165 

pituitary-adrenal (HPA) axis as well. Hypothalamic and hypophysis tissues do express ACE2 166 

and can therefore be viral targets 38. The virus may directly damage the hypothalamus as well 167 

as the pituitary leading to hypothalamo-pituitary dysfunctions. In fact, since SARS outbreak 168 

in 2003, it was observed that coronavirus affects the HPA axis, and vasculitis was 169 

demonstrated by autopsy studies in several organs including adrenal glands, particularly 170 

adrenal cortical cells undergo degeneration and necrosis 39. Although the full spectrum of 171 

COVID-19 endocrinological manifestations within long-term is still unclear, several 172 

endocrine alterations have been reported in SARS survivors, as well as hypocortisolism, and 173 

hypothyroidism, and low levels of dehydroepiandrosterone, which suggested a transient 174 

hypothalamic-pituitary dysfunction 40. Recently, an Arabian study in 28-patients reported the 175 

adrenal response to an acute COVID-19 infection, the median morning cortisol level was 196 176 

(31-587) nmol/L, the ACTH median level of 18.5 (4-38ng/L). Interestingly, severe forms 177 

patients had lower cortisol and ACTH 41. In addition, in other autopsy studies, edema, 178 

neuronal degeneration and evidence of viral genome were found in the hypothalamus 42 Thus, 179 

in the presence of subacute thyroiditis or adrenal insufficiency, corticosteroid therapy should 180 

help in reduced high amounts of thyroid hormones, and replace adrenal function, improving 181 

the evolution of these patients, regardless the route of administration. 182 
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Rationale 183 

Dexamethasone sodium phosphate (ALIN, injectable solution. Chinoin Laboratory) is a 184 

highly soluble glucocorticoid with a neutral pH 7-8.5, which did not injury the nasal mucosa. 185 

This synthetic steroid is an anti-inflammatory and immunomodulator drug that inhibits 186 

prostaglandins and leukotrienes synthesis, platelet activation, and coagulation through 187 

regulation of transcriptional factors such as NFK-β y AP-1 43,44. In addition, it can sensitize 188 

the cells to extracellular ATP during NLRP3 induction, which enhances the release of 189 

proinflammatory molecules 45. In addition, it has been reported that DXM exerts important 190 

neuroprotective effects as rescue the neurovascular integrity during neuroinflammation 46. 191 
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 192 

       Figure 1. 193 
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Dexamethasone a potent anti-inflammatory drug 194 

Considering that complications of COVID-19 result from exacerbated and uncontrolled 195 

peripheral inflammation and neuroinflammation, derived from the so-called cytokine storms, 196 

at least three important and key points have been considered in the use of DXM for the 197 

treatment of victims of the Coronavirus: the timing, the dose, and the route of administration 198 

of the steroid. First, the drug would not be applied from the beginning of the infection, the 199 

time at which the inflammation favors the host. It should be given to promote the installation 200 

of an adaptive immune response and thus control the infection. A low dose of DXM (6 mg 201 

per patient for 10 days) applied to quickly and effectively control pulmonary inflammation 202 

with minimal negative side effects 47. In addition, the intranasal route would allow direct 203 

access of the DXM to the CNS, thereby controlling the sustained neuroinflammation 204 

provoked by damage to infected astrocytes, neurons and microglia during the progression of 205 

COVID that cause the fatal central respiratory and cardiac failure in these patients. 206 

It is well known that drugs administered intranasal usually permit higher bioavailability in 207 

CNS without the need of BBB pass or hepatic degradation, in comparison with similar 208 

intravenous doses administered in experimental models 55, 56-58. In addition, the 209 

administration of DXM by this route induces an inflammatory control by arriving directly to 210 

the respiratory system, more effectively and quickly than by using intravenous route 56-59. 211 

DXM prevents the binding of ACE2 to spike protein of SARS-CoV-2 and can bind LYS353, 212 

an active residue of RBD 60, and reduces ACE2 expression in several types of cells by 213 

suppressing type I interferon expression 61, can also downregulate neutrophils extracellular 214 

traps, possibly through Toll-like receptor regulation 62. It is known that hyper inflammation 215 
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is related to high levels of NETs which is related to ARDS in which neutrophilia predicts 216 

thrombosis and poorer outcomes 63, 64. 217 

METHODS 218 

Trial design 219 

The “REVIVAL trial” an interventional study, phase 2, multicentric randomized controlled 220 

in adult patients with confirmed COVID-19 diagnosis was designed to evaluate the efficacy 221 

of low doses of intranasal DXM compared to intravenous administration in patients of five 222 

COVID-19 referral centers in Mexico City. This protocol is supported in part by the 223 

Institutional grant "Programa de Investigación para el Desarrollo y la Optimización de 224 

Vacunas, Inmunomoduladores y Métodos Diagnósticos del Instituto de Investigaciones 225 

Biomédicas", UNAM (DGAPA-UNAM, PAPIIT IN201020), as well as by another specific 226 

grant provided by the Mexican Ministry of Foreing Affairs (Secretaria de Relaciones 227 

Exteriores) and Mexican Agency for International Development Cooperation (AMEXCID) 228 

with identifier: 318.01 fund MEX-CHI. This trial is being coordinated at the Department of 229 

Immunology of the Biomedical Research Institute, UNAM. 230 

Settings 231 

This clinical trial is being conducted at the following Institutions “Hospital General de 232 

México Dr. Eduardo Liceaga”, “Instituto Nacional de Neurología y Neurocirugía Manuel 233 

Velasco Suárez”, “Instituto Nacional de Cardiología Ignacio Chavez”, “COVID-19 unit at 234 

Citibanamex” and “Hospital Central Militar” all of them in Mexico City. 235 

 236 
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Eligibility criteria  237 

Inclusion criteria includes patients of both sexes, (non-pregnant female) 18 years of age and 238 

under 90 years, with presumptive SARS-CoV-2 infection with more than 5 days of clinical 239 

evolution and with moderate to severe symptoms requiring oxygen support or high flux 240 

mechanical ventilation (NEWS-2 ≥ 5), abnormal CT- chest scan CO-RADS >3. Patients 241 

diagnosed with atypical pneumonia, confirmed by chest images and oxygen saturation 242 

(SpO2) less than 93% in ambient air or when a ratio of the partial pressure of oxygen (PaO2) 243 

and the fraction of inspired oxygen (FiO2) (PaO2: FiO2) was 300 mm Hg or less, and a 244 

confirmatory RT- PCR SARS-CoV-2 positive test. These patients will be allocated into the 245 

experimental group or the control group in a ratio 1:1 (two arms) (Fig. 2) according to the 246 

randomization. 247 

Exclusion criteria includes patients with RT-PCR SARS-CoV-2 negative test, those 248 

receiving previously GCs at high doses, by oral or intravenous administration, or severely 249 

immunosuppressed as in AIDS, pregnancy; autoimmune disease patients as well as those 250 

who have received outpatient treatment with steroids for more than 72 hours prior to hospital 251 

admission, older than 90 years, or with DXM allergy, risk for glaucoma or recurrent 252 

respiratory diseases.  253 

Elimination criteria will be considered in case of voluntary withdrawing or lacking informed 254 

consent, or imminent risk of death within 48 hrs. 255 

The pharmacovigilance staff of each hospital will perform a continuous monitoring each 72 256 

hours during the period of study (including all adverse events).  257 

 258 
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Interventions 259 

Groups and comparators 260 

The study will be carried out in two groups, group A (experimental) that will receive 261 

intranasal DXM, and group B (Control) that will receive intravenous DXM (Fig.2), based on 262 

the previously reported data, where the intranasal administration can reach the brain and 263 

bloodstream more quickly and efficiently 56-59. Group A will receive daily intranasally DXM 264 

at a dose of 0.12 mg / kg for the first three days, that will be followed by seven days at a dose 265 

of 0.06mg / kg. Group B will receive daily 6mg intravenous DXM. In both groups, a close 266 

follow-up will be done by the pharmacovigilance staff every 72 hours, they will assess 267 

whether it is appropriate for the patients to continue within the protocol. 268 

Procedures 269 

A double follow-up form (written and online) will be filled for each patient, and completed 270 

at the end of treatment or fatal outcome after randomization, whatever occurs first. Besides 271 

a daily clinical evaluation, blood and saliva samples will be collected every third day during 272 

the whole treatment period, to perform ancillary tests as SARS-CoV-2 viral load, functional 273 

immunological assessment (lymphocyte cytometry, cytokines / chemokines profile), as well 274 

as cortisol levels, among other analysis. All human samples will be stored at -70ºC until use. 275 

All patient’s personal data and medical information will be treated in a strictly confidential 276 

way. Only the lead investigator and the hospital coordinator investigators will have access. 277 

 278 

 279 
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Participants  280 

The sample includes 120 adult patients between 18 and 90 year-olds, both sexes with 281 

moderate and severe forms of COVID-19. 282 

Sample size and Randomization 283 

The sample size was calculated with EPIDAT version 3.1.2 software, with the option 284 

“Sample size and surveillance curves” with an estimation of 50% increase in the proportion 285 

of patients free of mechanical ventilation [intranasal DXM 70% vs intravenous DXM 45%]. 286 

This value was estimated based on the data of the COVID-19 patients registered in Mexican 287 

hospitals with a confidence of 95%, power of 80% and proportion of losses of 10%, with 288 

these characteristics is obtained 60 per group. The randomization will be making with Sealed 289 

Envelope software. This software is a freeware [Online] available from: 290 

https://www.sealedenvelope.com/simple-randomiser/v1/lists [Accessed 5 May 2020]. This 291 

study is a multicenter randomized controlled trial. (Fig. 2)  292 

Confidentially 293 

Each patient who agrees to participate in the protocol will be assigned an identification 294 

number, which will be used to check out throughout the procedure. This code identifies the 295 

hospital of origin and the patient identification number. All the information collected during 296 

the procedure will be confidential and used for the research purpose only and follow up for 297 

any adverse effect. 298 

 299 

 300 
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Outcomes 301 

The expected primary outcome is clinical improvement, defined as a two-point improvement 302 

of ordinal scale regarding the initial NEWS-2 score. The secondary expected outcome 303 

includes a reduction in mortality that will be follow-up during treatment (after 304 

randomization), as well as a reduction of the time required for mechanical ventilation and the 305 

length time of patient’s stay in hospital. Viral load, several other physiological parameters 306 

and the immune-inflammatory profile will also be evaluated before and after treatment (see 307 

above).  308 

Data collection and management 309 

The patient receives an informed consent letter, where the characteristics of the procedure 310 

are detailed, if he accepts, the letter will be signed and the patient will be randomized; saliva 311 

and nasopharyngeal sample will be taken to know the viral load and treatment will begin as 312 

indicated in figure 2; a clinical history will be made based on the initial results and physical 313 

inspection of the patient. 314 

The samples taken will be sent for specialized analysis following standardized operating 315 

procedures (SOP's) for the analysis. 316 

Plans to promote participant retention and complete follow-up 317 

All participants in the research protocol will receive specialized medical care, by monitoring 318 

continuously clinical, neurological, and neuropsychological studies. These evaluations will 319 

be carried out to monitor the evolution of the disease at 1, 3, 6, and 12 months after COVID-320 

19. Those participants presenting some functional decline post COVID will be received 321 
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medical treatment and neurorehabilitation. 322 

Likewise, for patients who present an adverse effect or health problem during its participation 323 

in the dexamethasone treatment study or derivate to it upon hospitalization, the General 324 

Hospital of Mexico Dr. Eduardo Liceaga will take care of the necessary treatment and/or care 325 

until their resolution. In addition, patients will be monitored every 3 months for 1 year after 326 

the study 327 

Management 328 

The information collected during the procedure will be documented physically and digitally 329 

in an exact and precise way. Each complete patient report will be used by researchers in 330 

conjunction with the molecular and immunological tests to analyze the outcomes. The 331 

information collected will be treated as confidential, and only the global results will be 332 

published without showing the names of the patients, in case the data is required, the 333 

information can be request to the researchers with valid reasons. 334 

Analysis of outcomes 335 

A database will be built, and a descriptive statistic will be performed. The data distribution 336 

will be analyzed and compared with DXM route of administration with a multivariable 337 

analysis: nested ANOVA with repeated measures and Markov test. The analysis will be done 338 

with a R software (4.0.0, Arbor Day). A statistical difference with P <0.05 will be considered 339 

significant. 340 
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    Figure 2.  342 

 343 
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5. Conclusions 344 

Intranasal DXM at low doses could be a more effective therapeutic option to control 345 

inflammation and neuroinflammation during ARDS in severe and critical forms of SARS-346 

CoV-2 infection. In addition, it could aid the HPA axis upon this severe stress condition. 347 

DXM in low doses applied by systemic route although beneficial for COVID-19 patients, 348 

cannot reach effective therapeutic concentration in the CNS to control neuroinflammation. 349 

In contrast, intranasal administration of DXM is highly effective to control 350 

neuroinflammation as demonstrated in experimental models of several inflammatory 351 

conditions 44-47. Therefore, in the REVIVAL trial clinical protocol, we propose boosting the 352 

effect of DXM treatment at low doses in COVID-19 through an intranasal route of 353 

administration to reach CNS at therapeutic doses that may effectively reduce the morbidity 354 

and mortality in severe or critical COVID-19 patients, even more than that reported data in 355 

the RECOVERY trial. 356 

A randomized study in hospitalized COVID-19 patients (moderate and severe forms), the 357 

intranasal DXM at low doses (clinicaltrials.gov id: NCT04513184) is being tested. The 358 

clinical evolution and respiratory parameters of the patients receiving intranasal DXM 359 

(experimental treatment) is compared with recommended treatment of 6 mg of intravenously 360 

DXM (https://www.covid19treatmentguidelines.nih.gov/). Considering the prevalence of 361 

metabolic syndrome and obesity in Mexico, a therapeutic scheme weight-adjusted at low 362 

dose is being applied i.e., three-day schedule of 0.12 mg/kg and 7 days at 0.06 mg/kg. If the 363 

current approach results less prone to adverse effects but enough to reach CNS and control 364 

neuroinflammation as we hypothesized, there will be direct interest to extent this protocol to 365 
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several COVID hospitals of the National Healthy System in Mexico. In addition, it will be 366 

mandatory to increase the initial sample size (preliminary results) to publish it and share it 367 

with the International scientific community. 368 
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Figure Legends 432 

Figure 1. Inflammatory phenomenon associated with SARS-CoV-2 infection and its 433 

neurological and respiratory manifestations. The SARS-CoV-2 virus enters mainly by air and 434 

reaches the lungs through direct ventilation and the CNS through the olfactory and trigeminal 435 

nerve, the entry of the virus is facilitated by NRP-1, ACE2 receptors and the protein S 436 

activation by TMPRSS2. In the CNS, the virus infects neurons, glial cells, and endothelial 437 

cells, increasing the permeability of the BBB, and may cause cerebral edema and intracranial 438 

hypertension, as well as neuroinflammation. If the viral infection continues, the damage 439 

spreads throughout the body causing heart and systemic failure. This damage is associated 440 

with an increase in neuroinflammation, directed by microglia and oligodendrocytes, causing 441 

damage to the brain stem, and causing a dysfunctional state of the heart and lung. Likewise, 442 

in the lung, due to exacerbated inflammation and intravascular coagulation, respiratory arrest 443 

is induced that can lead to the patient death. The inflammation is conducted by the cellular 444 

activation trough TLR3, 7 and 8 for components from the virus (PAMPS) and subsequent 445 

production of pro-inflammatory cytokines (TNFα and IL 1β) and generation of ROS; those 446 

ROS can be able to modify the P2X7 receptor in the brain and activate the inflammasome by 447 

the decrease of K+. The activation of inflammasome increases the production of IL-6 and 448 

pyroptosis. 449 

Figure 2. Outline of the REVIVAL trial clinical protocol. Initially, patients will be informed 450 

about the clinical trial, if they accept and sign the consent, they will be randomized using the 451 

Sealed envelope® software. Group A receive DXM intranasally obtaining serum and a swab 452 

on days 0, 3, 6 and 10 post treatment. On the other hand, group B receive intravenous DXM, 453 

obtaining the same samples on the same days 0,3,6 and 10.  Throughout the study, the patients 454 
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are monitored. Once the results are obtained, these are analyzed to define if exist a 455 

statistically difference between groups.  456 
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