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Abstract

Polyunsaturated fatty acids (PUFA) contained in fish oil (FO) are ligands for peroxisome proliferator-activated receptors (PPAR) that may induce changes in
cardiometabolicmarkers. Variation in PPARgenesmay influence the beneficial responses linked to FO supplementation in young adults. The study aimed to analyze the
effect of FO supplementation on glucose metabolism, circulating lipids and inflammation according to PPARα L162V and PPARγ2 P12A genotypes in young Mexican
adults. 191 young, non-smoking subjects between 18 and 40 years were included in a one-arm study. Participants were supplemented with 2.7 g/day of EPA + DHA,
during six weeks. Dietary analysis, body composition measurements and indicators for glucose metabolism, circulating lipids, and markers for inflammation were
analyzedbefore and after intervention. An overall decrease in triglycerides (TG) and an increase inHS-ω3 indexwere observed in all subjects [−4.1mg/dL, (SD:±51.7),
P=.02 and 2.6%, (SD:±1.2), Pb.001 respectively]. Mean fasting insulin and glycated hemoglobin (HbA1c%) were significantly decreased in all subjects [−0.547mlU/L,
(SD:±10.29), P=.034 and−0.07%, (SD:±0.3), Pb.001 respectively], whereas there was no change in body composition, fasting glucose, adiponectin and inflammatory
markers. Subjects carrying the minor alleles of PPARα L162V and PPARγ2 P12A had higher responses in reduction of TG and fasting insulin respectively. Interestingly,
doses below 2.7 g/day (1.8 g/day) were sufficient to induce a significant reduction in fasting insulin and HbA1c% from baseline (P=.019 and Pb.001). The observed
responses in triglycerides and fasting insulin in theMexican population give further evidence of the importance of FO supplementation in young people as an early step
towards the prevention of cardiometabolic disease.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ω3 fatty acids (O3FA) are essential nutrients taking part inmultiple
metabolic processes, which explains their pleiotropic effects [1,2]. In
the context of human health, multiple studies have shown effects of
these compounds on human lipid metabolism, insulin sensitivity and
inflammatory response, among others [3–5]. The decrease of plasma
triglycerides (TG) concentrations in subjects with and without
hypertriglyceridemia after the intake of O3FA is a consistent finding
across different studies [6–9]. The reported effects of O3FA on other
circulating lipoproteins, such as HDL and LDL, is less clear. Similarly,
the effects of the intake of these FA on insulin sensitivity and
inflammation are controversial [10,-12], and comparison across
studies is difficult due to the variety of study designs and character-
istics of participants. Recent systematic reviews and meta-analyses
that assessed the effect of O3FA intake on cardiovascular disease
prevention [11–12] and their anti-inflammatory effects have revealed
controversial findings [13–15]. Numerous factors may contribute to
the observed variability of the response to the intake of O3FA, such as
gender, body mass index (BMI), age, diet, metabolic condition, and
genetic factors [9,16–18]. As well, the role of genetic variation in the
response tofish oil (FO) supplementation has been investigated across
different studies (8, 9).

The peroxisome proliferator activated receptors (PPAR) are a
family of transcription factors involved in the regulation of energy
metabolism [19,20]. These transcription factors are activated by long
chain fatty acids, including O3FA [21,22]. Genetic variation in the
coding regionwith functional effects has been reported for both genes.
A polymorphism (rs1800206) in the PPARα gene results in the
substitution of leucine to valine at codon 162. This polymorphism is
located in the DNA binding domain site, rendering a protein
differential ligand-mediated activation. Some investigations have
evaluated the effect of the interaction between this genotype and
the consumption of O3FA supplementation on phenotypes such as
lipid metabolism and gene expression [23–26]. In a study conducted
by Rudkowska et al. macrophages from carriers of the Val162 variant
showed lower expression of PPARα, ApoA1 and LPL than the Leu162
variant after exposure to O3FA [26]. Other studies have found that the
effect of this variant depends on the availability of O3FA (9). Variation
in the PPARγ2 gene, particularly the Pro12Ala (rs1801282) has been
associated with glucose metabolism and type 2 diabetes (T2D) in
numerous studies [27,28]. The combined effect of these two genotypes
has been investigated in subjectswithmetabolic syndrome [29] and in
the response to weight change in obese women [30].

Although the potential role of O3FA in the primary prevention of
chronic diseases has been extensively investigated [31–46], the effects
are controversial, and a limited number of intervention studies have
been conducted in generally healthy young adults with the purpose of
assessing an interaction between genetic variation, and supplemen-
tation with these fatty acids on lipid and glucose metabolism, and
inflammation [45,46]. Gene expression in peripheral blood mononu-
clear cells (PBMC) has been used to shed light on these on these effects
of dietary fatty acids on lipid and glucose metabolism, as well as
inflammation, in human studies [47–48].

The Mexican population has one of the highest rates in the world of
overweight and obesity (71% of adults over 20 years of age) and, as a
result, a very high rate of metabolic syndrome-related phenotypes
[49,50]. In addition, a very low consumption of O3FA has been
documented in the most recent national nutrition survey in Mexico,
supporting it as a highly relevant and possibly receptive population to
test the potential benefits of O3FA [51]. Thus, we hypothesized that
supplementation with O3FA in FO will improve phenotypes related to
lipid and glucose metabolism, markers of inflammation in a generally
healthy, young adult population. These effects would be influenced by
PPARα and PPARγ2 functional variants that have been shown to have

an effect on the response to O3FA intake [19,20,22,27,29,30,46]. To the
best of our knowledge, no previous study has assessed the combined
effects of these twogenotypes on the response to supplementationwith
FO on the mentioned phenotypes, in generally healthy adults. The aim
of the study was to investigate the effect of two functional genetic
variants in PPARα and PPARγ2 on the response to O3FA supplementa-
tion on parameters of circulating lipids, glucose metabolism and
selected proteins related to inflammatory response in young Mexican
adults.

2. Materials and methods

2.1. Participants and study design

Eligible participants were between 18 and 40 years of age, with BMI between 18.5
andb30, without any medication, vitamin or lipid supplements before or during the
study. They had sedentary to moderate physical activity, according to the IPAQ
questionnaire [52]. Exclusion criteria were as follows: active smoking, any concomitant
consumption of dietary supplements and medications that could affect the study
outcomes, excessive alcohol consumption, illness two weeks prior to the study start, or
any active systemic infection, ormedical condition thatwould require treatment during
the study, medical condition related to coagulation and participation to another clinical
trial during the last 4 weeks prior to the beginning of the study.

The present was a 6-week, one-arm study, conducted at two centers (Universidad
Iberoamericana andUniversidadNacional Autonoma deMexico, UNAM) inMexico City.
Recruitment and follow up were conducted between November 2013 and May 2014
and ended at completion of the intended sample size. The intervention included the oral
supplementationwith 3 capsules of FO (GNC Preventive Nutrition® Triple Strength Fish
Oil) per day, each containing 647 mg of eicosapentaenoic acid (EPA) and 253 mg of
docosahexaenoic (DHA) (daily intake: 2.7 g/day of DHAand EPA infish oil). The subjects
were asked to consume the capsules with food, as it has been shown in previous studies
to have the maximum absorption [53].

The primary outcome of the study was changes in triglycerides levels in plasma
between baseline and 6 weeks intervention and the secondary outcomes included
changes in lipid metabolism, glucose metabolism and inflammatory response markers
in plasma between baseline and 6weeks intervention depending on PPARα and PPARγ2
genotypes.

The study consisted of three visits. Visit 1 (V1, baseline): subjects' body weight and
body composition were measured in a bioelectric impedance analyzer In Body 720,
height was measured with a wall stadiometer, and waist circumference was measured
at midway between the uppermost border of the iliac crest and the lower border of the
costal margin. Clinically trained personnel performed all measurements. A dietary
analysis was conducted using a validated food frequency questionnaire (SNUT) (long
form) [54]. A 20 mL blood sample was drawn under fasting conditions (12 h) by
venipuncture for separation of serum, plasma, red blood cells (RBC) and peripheral
mononuclear cells using a Vacutainer system (Becton-Dickinson, NJ, USA). Participants
received enough capsules supplement for 3 weeks and were asked to avoid changes in
their eating and physical activity patterns during the study. Visit 2 (V2, at 3 weeks): the
subjects filled and returned the side effects journal and the unused capsules, received
the results of the clinical and biochemical parameters analyzed in V1 and discussed
them with a nutritionist. They completed a 24-h food recall questionnaire and were
provided with FO supplements for the last three weeks. Visit 3 (V3, 6 weeks): subjects
were assessed for the same parameters as in baseline, except for the clinical history and
SNUT questionnaire. The 24-h recall, physical activity and consumption of medication
and/or supplementation questionnaires were collected in all 3 visits. All measures and
surveys were conducted by standardized personnel. A series of biochemical and
molecular parameters were determined in blood samples collected in V1 and V3.

The sample size was calculated to 200 participants according to the reported
frequencies of the studied alleles inMexican population and taking under consideration
the genotype effects in blood lipids following a FO supplementation in previous studies
[45,46]. This sample size would be sufficient to identify a small size effect (Cohen's d=
0.25–0.3) of the treatment in each genotype group for the primary outcome, which was
the reduction in fasting triglyceride levels from baseline. Considering a dropout rate of
20%, the recruitment aimed for 240 participants.

Compliance to treatment was assessed according to the number of returned
capsules and treatment days, and the concentration of twenty-seven fatty acids in RBC
membranes analyzed according to the HS-ω-3 index™ methodology via gas
chromatography at Omegametrix GmGH Laboratory (Germany) [55]. HS-Omega-3
index results are given as EPA + DHA expressed as a percentage of total identified FA
after response factor correction (based on correlation curves). The difference in
concentration of EPA, DHA and the HS-ω3 index between baseline and after treatment
were used as indicators of compliance.

2.2. Biochemical and molecular parameters

Glucose, glycosylated hemoglobin (HbA1c), high density lipoproteins (HDL), low
density lipoproteins (LDL), triglycerides and total cholesterol (TC) were measured in
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fasting serum using standard methods. Concentrations of insulin, adiponectin, apelin,
interleukin 6 (IL-6) and C reactive protein (CRP) were measured in plasma by DuoSet
ELISA methods as described by the manufacturer (R&D Systems, Minneapolis, USA).
Glucose and insulinwere used to estimateHOMA-IR [glucose (mg) x insulin (mU) /405].
Mononuclear cells were isolated from an EDTA whole blood sample using Ficoll Paque
PLUS (GE Healthcare), followed by two washes with PBS and stored at−80 °C for RNA
isolation. Buffy coat was separated from an EDTA tube and frozen at−80 °C for isolation
of genomic DNA using the Quick g DNA miniprep kit (Zymo Research). The quality
control and concentration of the DNA samples were analyzed in a Nanodrop (Thermo
Fisher Scientific) and using an ethidium bromide stained gel. Genotypes were
determined by allelic discrimination using TaqMan® probes in a Via7 DNA analyzer
(Applied Biosystems). The probes for the genotypes were C_1129864_10 (rs1801282)
and C_881767_20 (rs1800206). PPARα L162 L were defined as the carriers of the
homozygous genotype for the major allele (Leu162Leu) and PPARα X162V as the
carriers of the minor allele, both heterozygotes (Leu162Val) and homozygous
(Val162Val). Similarly, PPARγ2 P12P were defined as the carriers of the homozygous
genotype for the major allele (Pro12Pro) and PPARγ2 X12A as the carriers of the minor
allele, both heterozygotes (Pro12Ala) and homozygous (Ala12Ala).

RNA was isolated from mononuclear cells using Trizol reagent (Thermo Fisher
Scientific) according tomanufacturer's directions. Concentration, purity and integrity of
isolated RNA were analyzed in a Nanodrop (Thermo Fisher Scientific) and agarose gel
electrophoresis stained with ethidium bromide. A subsample was evaluated in an
Agilent 250 bioanalyzer (Agilent Palo Alto, CA, USA). All samples fulfilled the criteria for
purity and integrity with a RIN valueN8. One μg of RNA was used for the reverse
transcription reaction using the First strand cDNA Synthesis kit (Thermo Fisher
Scientific). Reactions were conducted with one μL of cDNA reaction in PCR Universal
Master Mix, using the TaqMan® PCR program. The analyzed genes were AdipoR1, Adi-
poR2 and interleukin 6 (IL-6) (catalog numbers: Hs00226105_m1, Hs01114951_m1
andHs01075666_m1, respectively) using TaqMan®assays (Thermo Fisher Scientific) in
a DNA analyzer VIA7. Three internal controls (GAPDH, 18S ribosomal subfraction and
beta-actin) were used for normalization. Expression differences in PBMCs between V1
and V3 were calculated by the 2 ΔΔCt method.

2.3. Ethics

This investigation was approved by the Ethics Committees at Instituto Nacional de
Medicina Genomica (INMEGEN), Western Institutional Review Board and Universidad
Nacional Autonoma deMexico (UNAM). Informed consent was reviewed and signed by
all participants before data collection. The present studywas registered inwww.clinical.
trials.gov as NCT02296385.

2.4. Statistical analysis

Three (3) analysis populations were defined for the study: (i) Full analysis dataset
(FAS) which included all enrolled subjects, except those that did not meet any major
inclusion criteria, did not take any dose of the supplement, or did not have baseline data
for primary endpoint (genotype or TG assessment), (ii) Per protocol (PP) dataset which
included all subjects from the FAS, except those with any major deviation (Visit 3, V3,
performedmore than 8 days later than 6weeks, V3 performedmore than 8 days earlier
than 6 weeks, low supplement compliance defined as number of returned capsules
greater than 20% (26 capsules) and consumption of any dietary supplements or any
other medication that would affect the study outcomes) and (iii) Safety dataset which
included all treated subjects was used for adverse events and concomitant medications
analysis. The statistical analysis was performed in both FAS and PP datasets using Stata
software. Results from the FAS dataset with the same direction as the results in PP
dataset are presented here. The outcomeswere assumed to be normally distributed and
the studentized residuals of the model correcting for baseline value and the two
independent genotypes PPARα (PPARα L162 L or PPARα X162V) and PPARγ2 (PPARγ2
P12P or PPARγ2 X12A) were assessed for normality (residual included in [−2;2]
interval and symmetric histogram) and for homogeneity of variance (if Spearman
correlation coefficient p-valueN0.05, residuals independent from predicted value). If
one of the two conditions was not fulfilled, a log-transformation was applied and the
studentized residuals of the model log (Visit 3/Visit 1, V3/V1) correcting for log
(baseline) value and the two independent genotypes PPARα and PPARγ2were analyzed
the sameway. If normality or homogeneity of variancewas not found, a non-parametric
approachwas used (Wilcoxon rank sum test). The change in TG levels between the final
visit and the baseline, the primary outcome of the study, was compared using an
ANCOVA model adjusting for baseline and including the two independent genotypes
PPARα (PPARα L162 L or PPARα X162V) and PPARγ2 (PPARγ2 P12P or PPARγ2 X12A)
in order to identify the responders within each gene. A second ANCOVA model was
implemented, adjusting on baseline and including a single genotype combination in 4
classes (PPARα L162 L/ PPARγ2 X12A, PPARα L162 L/ PPARγ2 P12P, PPARα X162V/
PPARγ2 X12A, PPARα X162V/PPARγ2 P12P). Interactions between genotype and BMI
(normal weight: [18.5–24.9], overweight [25.0–29.9]) and between genotype and
gender were investigated. The supplement effects on lipidmetabolism (fasting levels of
TC, HDL, LDL and fatty acid composition of the erythrocytes), glucose metabolism and
insulin resistance (fasting HbA1c, glucose, insulin and adiponectin) and on inflamma-
tory response (fasting level of markers such as CRP and IL-6) were analyzed as the
primary outcome.

The identification of the covariance between the fatty acid profiles and changes in
TG concentration (Δ) was done by using partial least squares regression (PLSR) [56].
Models were built by regression of the differential fatty acid profiles, obtained by
subtraction (V3-V1), onto the ΔTG from same time-points. Dimensionality of the
models (number of latent variables) was obtained by internal cross-validation by using
random segments. Reliability of the model was assessed by evaluation of the model by
CV-ANOVA [57]. Model's regression coefficients and X-loading weights of the selected
models were used to identify those fatty acids more relevant to explain changes in TG.
Distribution of the values of TG increase recommended constraining the models to the
0–200 mg/L range. As a confirmation on the selection, highlighted compounds were
confirmed by univariate regression and correlation coefficients. To better understand
the influence of compliance in the study, a second round of the analyses was performed
on groups stratified according to high and average compliance rates.

Hardy–Weinberg equilibrium for the genotype frequencies was assessed using a
χ2 test.

3. Results

3.1. Subject characteristics

A group of 253 subjects were assessed for eligibility of which 226
met the major inclusion criteria and were subjected to treatment.
From these, 196 participants completed the study and these were
considered in the FAS dataset. Thirty participants dropped out before
V3 due to adverse effects; were lost to follow up; or they withdrew
from the study for unknown reasons (Fig. 1). The most frequent side
effectswere gastrointestinal (reported by 52% of the FAS participants).
No serious adverse effects were reported. Five subjects violated the
exclusion criteria as they consumed medications that could interfere
with the study outcomes and were removed from the final analysis.
The distribution by gender in FAS was as follows: 121 (63.4%) female
and 70 (36.6%)male. Overall, themean (±SD) for agewas 26.6 (±6.3)
years. Mean values of anthropometric data, body composition, and
vital signs at baseline were within normal range (Table 1). Data on
estimated macronutrient intake as assessed by the SNUT question-
naire, showed compared to recommendations, a higher intake of lipids
(N30% of energy intake), a slightly lower intake of carbohydrates (45%
of energy intake), while protein intake was within the recommenda-
tion (15% of energy intake). Specifically, the mean total energy intake
was mean, ±SD: 1970.6 (±884.1), and the mean%, ±SD of
carbohydrates, proteins and lipids in the diet was 47% (±7.3), 15.6
(±3.7) and 37.7 (±6.6). Descriptive values of the analyzed biochem-
ical variables are shown in Table 2. Although the mean values of the
phenotypes are within normal range, some risk factors for cardiovas-
cular disease were identified in the population. At baseline, 33% of the
participants were overweight (BMIN25) and 15.8% of the women and
7.7% of themen had large waist circumference (N80 cm for female and
N90 cm for male). In addition, 28.6% of women and 19.8% of men had
low HDL concentrations (b50 mg/dl for females and b40 mg/dl for
male), 13% of participants had TG concentrations N150 mg/dl and a
low mean (±SD) baseline HS-ω3 index of 4.8% (±1.2).

3.2. Supplement intake and compliance

A 100% consumption of the treatment was equivalent to 126
capsules or 42 days of treatment. Most participants finished the study
and returned the remaining capsules (87%); themean intake (±SD) of
the capsules was 72.8% (±13.5) or 42.6 (±3) days of treatment with
4.8 (±5.5) days of interruption. As ameasure of compliance, fatty acid
analyses in RBC showed significant differences after the intervention
in all the analyzed components. The FAS dataset consisted of N=191
and the PP dataset of N=61 subjects. HS-ω3 index significantly
increased in both FAS and PP datasets (57.1%, Pb.001 and 68.3%,
Pb.001, respectively). The observed shifts in O3FAwere significant and
with the same direction in both datasets (Supplemental Fig. 1).
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3.3. PPARs genotype frequency and distribution

The frequency of the analyzed genetic variants among the sample
was 11% for the minor allele of PPARα L162V, and 19.9% for the minor
allele of PPARγ2 P12A. The distribution of the combined genotypes was
as follows: PPARα L162 L/PPARγ2 X12A (n=33), PPARα L162 L/PPAR-γ2
P12P (n=137), PPARα X162V/PPARγ2 X12A (n=5) and PPARα X162V/
PPARγ2 P12P (n=16) (Supplemental Table 1). The genotype frequen-
cieswere all inHardy–Weinberg equilibrium (PN.05) and they followed
the expected estimated genotype distribution in the Mexican
population.

3.4. Effects of O3FA on anthropometric characteristics, vital signs, body
composition and erythrocyte membrane-associated FA concentration

Body weight, BMI, waist circumference, heart rate and blood
pressure did not change significantly following 6 weeks of interven-
tion (Table 1). Body fat and fat mass decreased and fat-free mass
increased from baseline but not significantly (Table 1). No effects of
the genotypes were observed for any of the anthropometric
measurements and vital signs.

As expected, a significant shift in relative (%) composition of fatty
acid in erythrocyte membranes was observed after supplementation,
including an increase in ω3 polyunsaturated fatty acids (PUFA) and a

decrease inω6PUFA(Supplemental Fig. 1). Certain saturated fatty acids,
such as stearic acid (C18:0) significantly increased following 6 weeks
intervention (1.1%, Pb.001, Supplemental Fig. 1). Compared to men,
female participants had higher baseline concentration of DHA, alpha-
linolenic acid (ALA), total O3 PUFA, HS-ω3 index, and ω3/ω6 ratio
(Pb.014); and after intervention, women raised their concentration in
ω3PUFA (P=.001), and lowered thoseofω6 PUFA (P=.003),more than
men (Supplemental Fig. 2). No significant effects of genotypes were
detected for erythrocyte membranes FA concentration.

3.5. Effects of O3FA on blood lipids

After the intervention and independently of the genotype, an overall
decrease of−5.3% in TG concentrations after adjusting for baseline
(mean change, ±SD: −4.1 mg/dL, ±51.7, P=.02) was observed.
Interestingly, differences between genotypes were noted (Table 2):
PPARα X162V carriers achieved a greater - though not significantly
different - reduction in TG from baseline compared to PPARα L162 L
carriers [−19.5%, (mean change, ±SD:−19.5 mg/dL, ±40.0) vs−3.9%,
(mean change, ±SD:−2.2 mg/dL, ±52.7), PN.05] (Table 3). For PPARγ2
X12A carriers, a greater reduction was reported compared to PPARγ2
P12P carriers [−10.6%, (mean change, ±SD:−14.2mg/dL, ±41.7) vs

Assessed for eligibility 

(N = 253)

Included in the study (N = 226)

Completed the study (N = 196)

Dropped out (N = 30)

12 presented adverse effects

7 lost to follow up

6 other reasons

3 withdrew with an explanation

2 withdrew without explanation

Analyzed for all outcomes 

(N = 191)

Excluded (N = 5)

Consumed medications that could 

affect the study outcomes

Fig. 1. Study outline.

Table 1
Mean and (SD) of the anthropometric and clinical characteristics of the participants at
baseline and 6 weeks after intervention with 2.7 g/day fish oil

Baseline N=191 6 weeks N=191 Change from baseline

Age (years) 26.6 (6.3)
Gender (F:M) 121:70
Weight (kg) 64.4 (10.2) 64.4 (10.0) 0.07 (1.1)
Height (cm) 164.4 (8.4)
BMI 23.7 (2.6) 23.8 (2.6) 0.06 (0.4)
WC (cm) 78.3 (8.1) 78.3 (8.1) -0.07 (2.9)
% Body fat 28.5 (7.3) 28.1 (7.5) -0.4 (1.5)
Fat mass (kg) 18.3 (5.4) 18.1 (5.6) -0.2 (1.1)
FFM (kg) 46.1 (9.1) 46.4 (9.1) 0.3 (1.1)
Heart Rate (beats/min) 65.8 (9.3) 68.0 (11.3) 2.2 (9.5)
SBP (mmHg) 111.1 (10.4) 111.0 (11.1) -0.1 (9.1)
DBP (mmHg) 67.5 (7.8) 66.6 (8.4) -0.9 (9.2)

No significant differences were found.(F: female, M: male, FFM: fat-free mass, SBP:
systolic blood pressure, DBP: diastolic blood pressure).

Table 2
Mean and (SD) of the biochemical assessment in participants at baseline and 6 weeks
after intervention with 2,7 g/day dose fish oil

N=191 Baseline 6 weeks Change
from
baseline

%change
from
baseline

Triglycerides (mg/dL) 97.9 (53.5) 93.8 (57.9) -4.1 (51.7) -5.31

Total cholesterol (mg/dL) 173.0 (31.9) 173.5 (29.4) 0.4 (22.9) 0.5
LDL (mg/dL) 104.5 (26.7) 106.3 (25.6) 1.8 (20.8) 1.9
HDL (mg/dL) 48.8 (1.9) 48.5 (11.7) -0.3 (8.2) -0.6
Glucose (mg/dL) 84.7 (6.9) 85.6 (6.9) 0.9 (6.5) 1.2
Insulin (mIU/L) 7.7 (11.3) 7.2 (7.2) -0.5 (10.3) -6.11

HbA1c % 5.1 (0.3) 5.1 (0.3) -0.07 (0.3) -1.42

Adiponectin (μg/mL) 4.1 (4.0) 4.7 (6.5) 0.6 (6.2) 7.9
Apelin (pg/mL) 388.6 (120.3) 424.4 (608.3) 36.8 (604.6) 11.9
CRP (pg/mL) 0.8 (0.9) 0.8 (0.9) 0.04 (0.8) 2.2
IL-6 (pg/ml) 39.2 (109.2) 39.5 (117.6) 0.3 (19.8) -9.0

1 P valueb0.05.
2 P valueb0.001 (LDL: low density lipoprotein, HDL: high density lipoprotein, HbA1c:

glycated hemoglobin, CRP: C-reactive protein, IL-6: interleukin 6).
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−3.9%, (mean change, ±SD: −1.5 mg/dL, ±53.7), PN.05] (Table 3).
Neither gender nor BMI significantly influenced the FO response to
the TG reduction (PN.05). DHA and EPA effects were explored both
(independently and combined) in relation to the TG reduction. After
6 weeks of intervention, EPA and TG levels significantly inversely
correlated (P=.025) after adjusted for baseline levels, indicating that
the higher the EPA levels in erythrocyte cell membranes, the lower
the blood TG levels (Supplemental Fig. 3). The greatest reduction [−
26.5%, (mean change, ±SD: −42.1 mg/dL, ±45.7] was observed in
the PPARα X162V/PPARγ2 X12A group, which has the combination of
the minor alleles (Table 3). The combined effect of all RBC fatty acid
levels on TG was also assessed by multivariate analysis: a number of
fatty acids were found to be weakly associated with the TG
concentration changes from baseline (data not shown).

We did not observe any significant changes from baseline after
intervention in fasting total cholesterol, LDL and HDL concentrations in
the overall population (Table 2). However, different effects by genotype
were observed, including a significant increase in total cholesterol (P=
.032) and LDL-c (P=.021) between PPARγ2 X12A and PPARγ2 P12P in
subjects with BMIN25 (Supplemental Fig. 4). Men had significantly
lower levels of HDL (mean, ±SD), at both baseline and after the
intervention, compared to women (baseline, mean change, ±SD: 44.8,
±8.8 vs 51.1,±12.9, Pb.001 and after 6weeks,mean change,±SD: 45.7,
±8.7 vs 50.1, ±12.9, P=.02). Following intervention, the HDL
concentrations raised more in men than in women (P=.007).

3.6. Effects of O3FA on glucose metabolism markers

After intervention and independently of genotype, fasting insulin was
reduced by 6.1% (mean change, ±SD: −0.5mlU/L, ±10.3, P=.034) and
HbA1c by1.4% (mean change,±SD:−0.07%,±0.3,Pb.001) (Table 2); this
last decrease was even larger in subjects with a baseline HbA1c greater
than 5.6% (Pb.001). No significant changes were seen for fasting glucose
and adiponectin (PN.05). HOMA-IR was borderline significantly reduced
in all subjects (mean change, ±SD:−0.1,±2.2, P=.05). The decrease in
fasting insulin was significantly greater in PPARγ2 X12A carriers
compared to PPARγ2 P12P individuals [−19.8%, (mean change, ±SD:
−2.3mlU/L, ±8.4) vs−2.5%, (mean change, ±SD: −0.1mlU/L, ±10.7),
P=.032] (Fig. 3). Also, after intervention PPARγ2 X12A subjects
showed a trend in increasing in their fasting adiponectin compared
to the PPARγ2 P12P groups (10% higher,mean change,±SD:+1.6 μg/mL,
±8.1, P=.06). The increase in adiponectin levels was not associated with

the observed decline in insulin levels (Table 2). Changes in fasting
adiponectin were not correlated with expression levels of AdipoR1 and
AdipoR2genes (datanot shown).Meanapelin levels remainedunchanged
from baseline in the entire population. Interestingly, only the PPARα
L162V genotype groups had a borderline significant difference in apelin
change with PPARα X162V achieving a significant reduction in apelin
levels compared to PPARα L162 L (P=.05) (Supplemental Fig. 5). BMI,
gender and fatty acid levelswerenot associatedwithanyof the changes in
glucose metabolism markers (PN.05).

3.7. Effects of O3FA on inflammatory markers

No significant changes were seen for circulating CRP and IL-6 from
baseline in the entire dataset andbetween the genotype groups (Table 2).

3.8. Results with lower doses of O3FA

The main study outcomes were analyzed separately in the
subgroup of subjects (N=116) with lower compliance to the
intervention (b80% intake of FO capsules). The mean intake of O3FA
fromsupplementation for these subjectswas estimated to be about 1.8
g/day. Reduction in fasting TG and other blood lipids were not
achieved in this subset (P=.1), indicating that a higher dose of FO is
necessary to achieve the expected changes. However, and very
interestingly, both mean fasting insulin and HbA1c were significantly
reduced following the intervention (P=.019 and Pb.001 respectively),
suggesting that a dose of 1.8 g per day of O3FA (−33% than originally
intended) can have an effect on glucose metabolism in these subjects
(Fig. 2a and b respectively). Genotype effects were examined
separately in this population but there was no significant difference
in the reduction of fasting triglycerides and insulin from baseline
between the different genotype groups. Therewas, however, a greater
reduction in fasting insulin in PPARγ2 X12A carriers compared to
PPARγ2 P12P [−17.98% (±33.30) vs 20.61% (±147.39)] (Supplemen-
tal Fig. 6) and a reduction of triglycerides in PPARα X162V carriers
compared to PPARα L162 L [−2.82% (±32.01) vs 7.33% (±81.03)]
(Supplemental Fig. 7).

Table 3
TG levels (mg/dL) expressed in mean (±SD) in each visit and their changes by PPARα
L162V and PPARγ2 P12A genotype groups

Triglycerides (mg/Dl) Baseline Week 6 Change
from
baseline

%change
from
baseline

PPARα L162 L
N=170

97.3 (53.9) 95.1 (60.1) -2.2 (52.7) -3.9

PPARα X162V
N=21

102.9 (51.1) 83.4 (34.5) -19.5 (40.0) -16.2

PPARγ2 P12P
N=153

96.7 (50.1) 95.2 (61.3) -1.5 (53.7) -3.9

PPARγ2 X12A
N=38

102.8 (66.1) 88.6 (41.8) -14.2 (41.7) -10.6

PPARα L162 L/ PPARγ2 P12P
N=137

97.7 (51.2) 97.4 (63.5) -0.3 (55.3) -2.9

PPARα X162V/ PPARγ2 P12P
N=16

87.9 (40.4) 75.5 (32.6) -12.4 (36.8) -12.6

PPARα L162 L/ PPARγ2 X12A
N=33

95.5 (65.1) 85.5 (42.8) -9.9 (40.1) -7.9

PPARα X162V/ PPARγ2 X12A
N=5

150.8 (55.9) 108.7 (29.9) -42.1 (45.7) -26.5

No significant differences were found. (PPARα/γ2 : peroxisome proliferator-activated
receptor).

Fig. 2. Mean (SE) insulin (μU/L) and HbA1c (%) in baseline (visit 1) and after 6 weeks of
intervention (visit 3) for all subjects (N=191, continuous line) and low compliance
subjects (N=116, dashed line).
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3.9. Effects on gene expression in PBMC

In the present study, no difference between baseline and after six
weeks of treatment was observed in the RNA abundance of AdipoR1,
AdipoR2 and IL-6 in PBMC, neither in the whole sample set, nor
according to genotype groups under fasting conditions (data not
shown). These observations are concordant with the non-significant
differences observed in circulating IL-6 and adiponectin.

4. Discussion

In our study, as expected, the concentration of O3FA increased in
erythrocyte membranes after a six-week FO supplementation. This
change is consistentwith other studieswith similar dose [7,31,32] and
time [7]. Baseline mean values ±SD of HS-ω3 index in the present
study (4.8% ±1.2) were below the recommended range (8–11%)
[55,58]. Our findings are concordant with previous investigations that
reported low intakeof these fatty acids [51] and lowcontent of O3FA in
RBC [59] in the Mexican population. After intervention, the HS-ω3
index significantly increased to almost recommended range (7.5% ±
1.3), regardless of the PPAR genotype. Relative values ofω6 PUFA, such
as arachidonic acid (C20:4 ω6), were significantly decreased after
intervention, regardless of PPAR genotype. The increase in O3FA in cell
membranes seems to influence the synthesis of lipid mediators and
preclude the conversion of arachidonic acid in prostaglandins,
thromboxanes and leukotrienes and produce instead less potent
mediators [5,38]. The parallel reduction of arachidonic acid and
increase of EPA in cell membranes (mononuclear cells) has been
previously described after consumption of FO, and it is dose-
dependent [33].

Undoubtedly, the most consistent effect of FO intake is its
beneficial effect of lowering TG, especially in hypertriglyceridemic
patients [4–7,21]. Multiple reports support this finding in a variety of
human studies (e.g. healthy, hypertriglyceridemic, obese, diabetic
subjects) with diverse intervention characteristics (time and dose).
Studies conducted in healthy subjects have found an overall decrease
of circulating TG by 16 to 45% [7,37,43,60]. This effect is believed to be
mediated by multiple mechanisms, including the decrease of non-
esterified fatty acids (NEFA), the reduction in the expression and
activity of transcription factors such as HNF4α [60] and SREBP1c in
liver, which reduces the expression of lipogenic enzymes [60]. A
concomitant activation of PPARα may contribute to this effect by the
increase in fatty acid oxidation [9,19,21,24]. The changes in the
expression of the above mentioned transcription factors may be
mediated by the increase in AMPK activity [61]. Although the
suppressive effect of O3FA on TG is supported by multiple investiga-
tions, it is important to point out the wide variation observed in the

response to FO intake [62,63]. Studies have reported up to 29% of non-
responders to treatmentwithO3FA [7]. There is considerable evidence
that this response may be influenced by numerous gene variants [7–
9,64,65–69]. The primary outcome of the present study was the
change dependent on the genetic variants PPARα L162V and PPARγ2
P12A in fasting plasma TG concentration between baseline and 6
weeks of intervention. Previous studies have shown that the L162V
polymorphism in PPARα is associated with differences in gene
expression and response to the consumption of high levels of PUFA.
Association studies have demonstrated that the PPARα 162 V variant is
associated to TG concentrations [66,67]. The L162V polymorphism has
been shown to affect transactivation efficiency in vitro after activation
by fibrates. A human study using 5 g of FO during 6 weeks found that
carriers of both PPARα alleles showed a highly similar decrease in TG
between the L162V allele groups, although TG concentrations were
slightly different at baseline [68]. Other studies showed that variation
in the PPARγ2 gene influences the physiological responses following
intake of O3FA. A study conducted by Lindi et al. [8] showed that the
PPARγ2 P12A polymorphism influenced the variability in the change
of TG, after supplementationwithO3FA. Rudkowska et al. showed that
the PPARa L162V may exert its effects on TG via altering the
transcription rate of lipoprotein lipase [68]. Some of these studies
may have had insufficient statistical power to demonstrate a
significantly different effect between genotype groups, or the baseline
blood lipids and O3FA levels may play role in these gene/diet
interactions [69]. In the present study carriers of the PPARα X162V
and PPARγ2 X12A variants showed a larger decrease after treatment.
Both of these genetic variants have been associatedwith differences in
the activity of the encodedprotein PPARα andPPARγ2 andvariation in
metabolic traits [8,9,23,26–30,66,67], and the independent effect of
the analyzed genotypes on the response to interventionwithO3FAhas
been tested before. Indeed, both polymorphisms have been described
as “diet-dependent metabolic sensors”; in diets low in PUFA, carriers
of the minor alleles have higher blood lipids compared to carriers of
the major alleles [9,27]. In our study, levels of PUFA in erythrocytes at
baseline are lower than recommended and we observed a clear trend
for an increased beneficial effect in specific genotypes. The previous
supports that carriers of theminor alleles of PPARα L162V and PPARγ2
P12Awith similar lifestyle characteristics as theMexicanpopulation in
this study could particularly benefit by increasing their PUFA intake in
their diet.

The secondary objectives of the study included the assessment of
the bioefficacy of O3FA supplementation, dependent on PPARα L162V
and PPARγ2 P12A genetic variants, on glucose metabolism and
inflammatory response, assessing also the link to insulin resistance.
Interestingly, novel effects of PPARα L162V and PPARγ2 P12A
following FO supplementation were observed for glucose metabolism

Fig. 3. Mean (±SD) insulin (mlU/L) in baseline (visit 1) and week 6 (visit 3) for all subjects (N=191), PPARγ2 P12P carriers (N=153), PPARγ2 X12A carriers (N=38).
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markers. Our findings revealed a significant improvement in HbA1c
and fasting insulin after 6 weeks of intervention. The PPARγ2 P12A
variant was shown to associate with the responses in insulin: carriers
of the minor allele had higher fasting insulin levels at baseline and
achieved a greater reduction after 6 weeks compared to wild-type
allele carriers. These observations are supported by the fact that the
PPARγ2 P12A variant reduces the transcription of PPARγ2, expressed
in adipose tissue and is known to be involved in the modulation of
insulin sensitivity, and that the PPARγ2 P12A variant has been
associated with a lower risk for T2D mellitus [27,28]. There were no
significant effects for PPARα L162V and glucosemarkers in the present
study, perhaps not surprisingly as this locus appeared previously to
have no impact on T2D and prediabetes phenotypes [70]. Importantly,
in our study lower intake levels of O3FA (1.8 g/day) compared to the
intended dose (2.7 g/day) seemed to be sufficient to induce significant
changes in these biomarkers, suggesting that lowerdoses of FOneed to
be further investigated for the potential to improve glucose manage-
ment and prevention of T2D. Overall, greater effects in glucose
metabolism have been reported in subjects with milder metabolic
abnormalities than in subjectswith overt diabetes, inwhich the effects
of O3FA intake on glucose metabolism seem to be less clinically
significant [11,12,71,72]. Effects on adiponectin and apelin did not
contribute to explain insulin and HbA1c reduction in our study,
indicating that the observed effect on glucose metabolism is not
mediated by these adipokines; other mechanisms, such as changes in
insulin signaling, may be exerting the observed modulation in insulin
sensitivity. Our findings support that moderately elevated levels of
O3FA in the dietmay be a preventive step for T2D for some individuals.
In light of the technological challenges to add sufficient doses of O3FA
in nutraceuticals and the compliance issues related to FO taste and
gastrointestinal symptoms, exploring using low doses of O3FA is
pertinent.

In the present study, no response to treatment was observed in
primary pro-inflammatory markers, such as IL-6 and C-reactive
protein. Previous studies have reported similar findings in healthy
middle-aged subjects, with no significant changes in circulating
indicators of inflammation including cytokines, chemokines, or cell
adhesion molecules [10,38]. The generally healthy state, young age
and absence of smoking in the study population may explain the lack
of significant changes on the analyzed inflammatory markers.

The effect of the O3FA intake on circulating lipids other than TG
(total cholesterol, and bound to specific lipoproteins) has been
controversial. Numerous human studies have been conducted using
a wide range of O3FA doses with different combinations of fatty acids
and treatment times, across different groups of participants, although
few of them have tested the effect of specific genotypes. Our study
showed that in subjects with BMIN25 carrying the PPARγ2 12A allele,
TC and LDL-c are significantly increased following the 6-weeks
intervention. These observations are concordant with results seen by
Itariu et al. [73].The authors reported differences in the concentration
of TC, LDL-c and ApoB related to variation in PPARγ2, after treatment
with O3FA (eight weeks, 3.36 g/d of EPA and DHA). Interestingly their
study population consisted of severely obese subjects, which in
combination with our finding may suggest that these responses may
be BMI-dependent. In the present study the pattern of the observed

differences in total cholesterol between PPARγ2 genotypes seemed to
be explained by increase in LDL-c, given that changes in HDL-c were
not significant and do not appear to contribute to the TC concentration
changes. The findings on HDL-c circulating levels in the present study
contrast with observations reported by Lee et al. [4], and Carvajal et al.
[6]. The first study found an overall favorable shift in TC, LDL-c, TG and
HDL in diabetic subjects and the second reported similar beneficial
effects in normolipemic, hypertriglyceridemic and hypocholesterole-
mic Mexican subjects, with concomitant increase in HDL-c. They used
a similar dose of O3FA as the present study during only four weeks, in
older participants. No genetic effects were tested in these studies. The
effect of O3FA intake on HDL-c has been inconsistent across
investigations, with responses that include a small increase in HDL-c
levels or in some cases, inconsistent sex-dependent effects [24] or
genotype-dependent [24,73,74] effects. Studies conducted in in vitro
models suggest that treatment with EPA and DHA may decrease the
expression of ApoA1 and ABCA1 transport, which would decrease the
synthesis of HDL-c [75]. An ex vivo study conducted in human
macrophages showed increase of ApoA1 expression after exposure to
O3FA [26]. Thus, the effect of O3FA on HDL-c levels remains
controversial and requires further investigation.

In order to integrate the described results of our study, the most
relevantfindings of genotype-related effects are summarized in Table 4.

It is important to acknowledge that our study has some limitations.
First, it did not have the power to identify significant effects on TG
between all examined genotype groups. The frequency of the PPARα
162 V variant was very low so there were only 5 subjects in this study
with the combination of minor alleles of both genotypes. The clear
trends observed in the different TG reduction between the genotype
groups, supports the need to confirm the effect size of the treatment by
genotype in larger intervention studies. Second, it only included the
investigation of the role of two genotypes in the O3FA-induced
physiological effects; however, other genotypes within the same or
other genes may also have an important effect on the response to the
intervention. A more comprehensive genome-wide approach is
warranted to reveal changes in pathways, including those dependent
of or interacting with PPAR that were not investigated in the present
study, as proposed in previous studies [7,74,76,77]. Another limitation
of the study is the number of inflammation-related markers and
transcripts that were analyzed. Measures of other molecules influ-
enced by O3FA, such as other cytokines and marine fatty acid
derivatives, and related transcripts is recommended. Findings of the
present study may not be applicable to older participants, or subjects
with chronic diseases. Finally, another limitation was the low
compliance to the treatment (b80%); in this case we consider that
the presence of gastrointestinal symptoms reported by N 50% of the
participants precluded these participants from completing the
treatment. Other studies have reported minor transient gastrointes-
tinal symptoms administering a similar source and dose of O3FA [26].
Interestingly, measuring an objective indicator of the changes induced
by the treatment such as the relative fatty acid composition in RBC, we
found no significant differences in the levels of FA between the FAS
and the PP datasets. This observation may be part of the explanation
why regardless of this study limitation, we identified that some of the
study outcomes, such as HbA1c and fasting insulin, appeared to be

Table 4
Summary of genotype-related effects

Phenotype Overall genotype independent effect Genotype effect

Triglycerides -5% 5 fold ↓ in carriers of the combined minor alleles compared to overall effect
Total cholesterol NS ↑in PPARγ2 P12A carriers with BMIN25
LDL-cholesterol NS ↑in PPARγ2 P12A carriers with BMIN25
Insulin -6% 8 fold ↓ in carriers of PPARγ2 P12A compared to wild type
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significantly reduced even in the subpopulation with the lowest
compliance.

Nevertheless, a strength of our study is that it included the
interrogation of several biomarkers for cardiometabolic health in a
young Mexican population providing insight for potential preventive
measures. The Mexican population has a high prevalence of
dyslipidemia, obesity and metabolic syndrome and according to the
results of the present study, the intake of O3FA may contribute to
improve some risk factors for cardiovascular disease in this popula-
tion. The impact of an increase in the intake of these nutrients on
cardiovascular events and other related diseases should be assessed.
Future studies need to confirm the effects of the individual genotypes
and their combinations in larger populations or subjects at risk for
cardiovascular disease and T2D. Lower doses of FO, as well as other
sources of O3FA need also to be investigated for their responses to the
improvement of glucosemetabolismmarkers, thus contributing to the
use of O3FA as a preventive approach against T2D and cardiovascular
disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2017.02.002.
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