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RESEARCH Open Access

APOC3 genetic variation, serum
triglycerides, and risk of coronary artery
disease in Asian Indians, Europeans, and
other ethnic groups
Shiwali Goyal1, Yosuke Tanigawa2, Weihua Zhang3,4, Jin-Fang Chai5, Marcio Almeida6, Xueling Sim5,
Megan Lerner7, Juliane Chainakul8, Jonathan Garcia Ramiu8, Chanel Seraphin8, Blair Apple8, April Vaughan8,
James Muniu1, Juan Peralta6, Donna M. Lehman9, Sarju Ralhan10, Gurpreet S. Wander10, Jai Rup Singh11,
Narinder K. Mehra12, Evgeny Sidorov8, Marvin D. Peyton7, Piers R. Blackett13, Joanne E. Curran6, E. Shyong Tai5,14,16,
Rob van Dam4,14,15, Ching-Yu Cheng16,17,18, Ravindranath Duggirala6, John Blangero6, John C. Chambers3,4,19,20,21,
Charumathi Sabanayagam16,17, Jaspal S. Kooner4,20,21,22, Manuel A. Rivas2, Christopher E. Aston1 and
Dharambir K. Sanghera1,23,24,25,26*

Abstract

Background: Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-
function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are
cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-
Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD
risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier
reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal
association of TG raising common variants for increasing CAD risk.

Methods: We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic
variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD.
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Results: One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD
in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not
validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was
strongly associated with elevated TG levels showing a p-value 2.8 × 10− 424. Measures of plasma ApoC-III in a small
subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the
wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would
cause a mild increase (3%) in the risk for CAD (p = 0.042).

Conclusions: Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment
and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies
would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.

Keywords: ApoC-III, Rare and common variants, Mendelian randomization, Triglyceride, Coronary artery disease risk,
Asian Indians

Highlights

� There is a strong influence of genetic factors for
controlling circulating triglycerides (TG). However,
the causal association between hypertriglyceridemia
and the development of coronary artery disease
(CAD) is unclear. Earlier published studies have
primarily examined individuals from European
populations. For the first time, in this study, we have
included data from Asian Indians with Europeans
and other ethnic groups to identify the causal
association of genetically raised TG due to ApoC-III
with the risk for CAD.

� We also evaluated the role of six earlier reported
loss-of-function rare variants in APOC3 for protect-
ing CAD. Only one variant IVS2 + 1G-A
(rs138326449), showed ~ 37% reduction in TG and
had a significantly lower risk for CAD (0.64 95%CI
0.47–0.88; p = 0.007), but its phenotypic effects
could not be confirmed in Asian Indians.

� A common variant rs5128 in the APOC3 was
strongly associated with elevated TG across all
cohorts showing a meta-analysis p-value of 2.80 ×
10− 424.

� We have used genetic instrumental variable
methods to obtain estimates of the causal
association between circulating TG levels and CAD
for determining the direction of causality by
performing a Mendelian randomization study.
Genetically instrumented per 1SD increment of
plasma TG level of 15 mg/dL would cause a mild
increase of 3% in the risk for CAD (p = 0.042).

Introduction
Hypertriglyceridemia (HTG) is a common disorder of
blood lipids associated with elevated blood triglyceride
(TG) concentration. Except for the very rare monogenic
form of HTG [1], the common form of HTG is also a

heritable genetic condition and a risk factor for coronary
artery disease (CAD). Genetic variation in several genes
involved in TG hydrolysis, obesity, and metabolic syn-
drome, are implicated in influencing polygenic HTG,
which makes the clinical management of HTG extremely
challenging [2]. HTG can also develop from secondary
causes such as poorly managed type 1 or type 2 diabetes,
hypothyroidism, renal insufficiency, and as side effects of
certain medications (estrogen, beta-blockers, diuretics,
glucocorticoids, antidepressants, and antipsychotics) [3,
4]. Lipoprotein lipase (LPL) is an important regulator of
lipid metabolism and plays a key role in the hydrolysis of
TG-rich very-low-density lipoproteins (VLDL),
intermediate-density lipoproteins, and chylomicron rem-
nants [5]. Apolipoprotein C-III (ApoC-III) is an inhibitor
of LPL and obstructs the hepatic uptake of TG-rich lipo-
proteins and lipoprotein remnants. A blood TG level <
150 mg/dL is considered normal. An increase of TG >
150mg/dL (150–199 mg/dL) is classified as moderate
HTG, and > 200 mg/dL (200 or 250mg/dL) is considered
high HTG, and above 500mg/dL is defined as severely
elevated HTG [6–8]. Elevated blood ApoC-III is corre-
lated with increased TG and increased risk for myocar-
dial infarction and CAD [9]. Average blood ApoC-III
concentration of ~ 10 mg/dL or lower correlates with
normal TG and > 20mg/dL with HTG [10]. However,
very few investigators have measured ApoC-III levels in
human studies.
The APOC3 gene that encodes ApoC-III is located

within the APOA5-APOA4-APOC3-APOA1 gene cluster
in the chromosomal region 11q23.3. Common genetic
variants-specifically in the promoter or 5′ (T-455C, C-
482 T) and 3′ UTR (Sst-1 or rs5128) regions, have con-
sistently been shown to be robustly associated with
blood lipid levels in candidate gene- and genome-wide
association studies (GWAS) [11, 12]. Meta-analyses of
GWAS in multi-ethnic populations have shown strong
association signals between the APOA5-APOA4-APOC3-
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APOA1 gene cluster and circulating TG levels [13, 14].
However, whether the genetically enhanced TG (owing
to the APOC3 common variants) increases CAD risk re-
mains inconclusive across many studies.
Resequencing studies of the APOC3 gene have identi-

fied rare null variants with strong phenotypic effects as-
sociated with lower TG levels in recent studies [15, 16].
A rare missense variant (A43T; rs147210663; earlier no-
tation A23T) in the APOC3 found in Yucatan Indians
was linked with ApoC-III deficiency with reduced blood
TG concentration [17]. Another rare loss-of-function
(LoF) variant in APOC3 (initially found in an Amish
population) (R19X; rs76353203) was associated with re-
duced TG levels. The heterozygous minor allele carriers
had a 50% reduced ApoC-III concentration compared to
non-carriers [15]. A sequencing study on the Danish
population from Europe and the results of the Exome Se-
quencing Project of the National Heart, Lung, and Blood
Institute on epidemiological cohorts (predominantly of US
white) also confirmed earlier known rare variants to be as-
sociated with reduced TG and, hence, protective against
CAD [16, 18]. However, there is a paucity of data on
whether these or other rare and common variants in the
APOC3 would show the same phenotypic effects that
would be cardio-protective in other European and non-
European populations, particularly the populations of
Asian Indians. People of the Indian diaspora contribute
the highest number of CAD deaths worldwide and in their
countries of origin [19]. Epidemiological studies suggest
that people of Asian Indian descent exhibit an increased

predisposition for earlier and acute myocardial infarction
and atherosclerotic cardiovascular disease that is not ex-
plained by traditional risk factors [20]. Therefore, the pur-
pose of this study was: 1) to perform gene-centric analysis
of the APOC3 region to identify common and rare vari-
ants associated with TG; 2) to verify the cardioprotective
role of earlier reported LoF/reduced-function variants of
the APOC3; and 3) to analyze whether genetically raised
TG due to APOC3 variation would increase the develop-
ment of CAD, in Asian Indian and other multi-ethnic co-
horts comprising 396,644 individuals.

Methods
Study cohorts
Our study investigated 396,644 individuals comprised of
4659 Asian Indians from India and the US (AIDHS/
SDS) [21–23]; 11,339 Asian Indians from London, UK
(LOLIPOP) [24]; 2713 Asian Indians (MEC_Indian, and
SINDI) from Singapore [25], 7885 Asian Indians from
UK BIOBANK (UKBB) [26], and 2999 Chinese (MEC_
Chinese and DC_SP2) from Singapore [27]. Additionally,
we included 2153 Europeans from London, UK (LOLI-
POP) [24]; 362,043 Europeans from UKBB [28]; 2341
Mexican Americans from San Antonio (SAMAFS) [29],
and 512 multi-ethnic individuals from Oklahoma
(MISS_OLIVER) [30]. Details of clinical and demo-
graphic characteristics of all cohorts are described in
Table 1. Diagnostic criteria for CAD cases and non-
CAD controls in participating study cohorts are summa-
rized in Supplementary Table 1.

Table 1 Clinical attributes of study cohorts

Cohort AIDHS/SDS
N = 4659

LOLIPOP_
AI
N =
11,339

LOLIPOP_
EU
N = 2153

SINGAPORE_
AI
N = 2713

SINGAPORE_
CHS
N = 2999

SAMAFS
(MEXICANS)
N = 2341

MISS_OLIVER
(MULTIETHNIC)
N = 512

UKBB_AI
N = 7885

UKBB_EU
N =
362,043

Ancestry AI AI EU AI CHS MEX MULTI-ETHNIC AI EU

N 4659 11,339 2153 2713 2999 2341 512 7885 362,043

Female (%) 44 19 15 51 49 58 52 45 54

CAD (%) 17 26 27 NA NA 10 27 7 4

Age (yrs) 52.14 ±
13.21

52.13 ±
9.67

56.99 ±
8.96

55.08 ± 9.24 54.49 ± 8.59 53.78 ± 15.12 53.78 ± 16.47 66.68 ± 8.3 70.29 ±
7.39

BMI (kg/
m2)

26.78 ± 4.84 27.91 ±
4.34

29.62 ±
5.18

26.66 ± 5.06 24.32 ± 3.81 32.31 ± 7.7 29.26 ± 6.52 26.91 ± 7.42 29.41 ±
5.61

TG (mg/dL) 169.94 ±
107.59

159.24 ±
100.9

176.79 ±
131.9

154.53 ±
94.58

130.68 ± 79.32 165.33 ± 105.36 147.92 ± 97.23 180.73 ±
104.43

175.41 ±
99.51

HDL-C (mg/
dL)

40.81 ±
14.47

48.43 ±
12.04

48.34 ±
10.14

41.93 ± 12.09 54.10 ± 13.87 47.98 ± 13.98 41.46 ± 12.98 46 ± 11.52 51.01 ±
13.35

LDL-C (mg/
dL)

110.40 ±
38.42

122.33 ±
34.97

117.43 ±
35.87

125.99 ±
34.74

117.27 ± 30.86 113.3 ± 32.36 109.67 ± 39.96 117.34 ±
30.93

122.82 ±
32.94

Values are displayed in mean ± SD; AI Asian Indians, EU Europeans, CHS Chinese, MEX Mexicans, CAD Coronary Artery Disease, BMI Body-Mass Index, TG
Triglycerides, HDL-C High-Density Lipoprotein-Cholesterol, LDL-C Low-Density Lipoprotein-Cholesterol, AIDHS/SDS Asian Indian Diabetic Heart Study/Sikh Diabetes
Study, LOLIPOP The London Life Sciences Prospective Population Study, SAMAFS San Antonio Mexican American Family Studies, UKBB UK BIOBANK, MISS-OLIVER
Metabolome in Ischemic Stroke Study and Oklahoma Multiethnic CardioVascular Health Disparity Study
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Genotyping and sequencing
Details of genome-wide genotype and sequencing infor-
mation are described in the online Supplementary Sec-
tion and Supplementary Table 2.

Serum/plasma ApoC-III measurements using ELISA
Circulating concentrations of ApoC-III were quantified
using frozen serum aliquots by enzyme-linked immuno-
sorbent assay (ELISA) kits from Thermofisher Scientific
(Waltham, MA, USA) following the manufacturer’s in-
structions. Briefly, the Thermofisher’s Human ApoC-III
ELISA Kit was based on solid-phase sandwich ELISA
technology with a target-specific antibody pre-coated
onto 96-well plates, and test samples were added to the
wells in duplicates. A biotinylated detection polyclonal
antibody was added subsequently and then followed by
washing with 1x PBS buffer. Avidin-biotin-peroxidase
complex was added, and unbound conjugates were
washed away with 1x PBS buffer. Horseradish peroxidase
(HRP) substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
was used to visualize HRP enzymatic reaction. TMB was
catalyzed by HRP to produce a blue color product that
changed into yellow after adding an acidic stop solution.
The density of yellow color is proportional to the Hu-
man ApoC-III concentration of sample captured in the
plate, and the optical density (OD) absorbance was mea-
sured at 450 nm by GENEMATE microplate reader.
Samples were blinded for ApoC-III measurements, and
each specimen was run in duplicate. A standard curve
was generated and used to determine the ApoC-III level
in the tested serum samples. The ApoC-III measures
were performed in a selected subset of 38 Sikh individ-
uals, half with wild-type (CC), half with mutant genotype
(GG).

Statistical analysis
Genetic association analysis
Each study site provided summary statistics of the asso-
ciation for all available rare variants (with a minor allele
frequency (MAF) < 1%) and common variants (MAF >
5%) within the region encompassing the open reading
frame of the APOC3. Statistical evaluations of genetic ef-
fects of common and rare variants on lipid panel and
other metabolic traits and CAD were performed using
multivariable logistic and linear regression models using
covariates such as age, gender, BMI, and diabetes. Prin-
cipal components (PC) were included in the models to
adjust for the population structure as described previ-
ously [21, 22]. As the existing HapMap and 1000 Ge-
nomes data do not include Sikhs, the 5 principal
components used for this correction were estimated
using our Sikh population samples as described earlier
[21]. We genotyped the discovery and the replication
datasets of AIDHS/SDS set using Human 660W Quad

BeadChip and Illumina’s Global Screening Array (Illu-
mina, Inc., San Diego, CA) as described previously [23].
We also performed pairwise identity-by-state (IBS) clus-
tering in PLINK across all individuals to assess popula-
tion substructure due to cryptic relatedness and to
remove outliers. Samples with < 93% call rate, SNPs with
< 95% call rate, SNPs with deviation from Hardy-
Weinberg Equilibrium (HWE; p < 10− 6), and individuals
with gender discrepancies were excluded from the ana-
lysis. To increase genome coverage, imputation was per-
formed using Minimac4 [31] (https://imputationserver.
sph.umich.edu/) with 1000G Phase 3 v5 multi-ethnic ref-
erence panel in NCBI Build 37 (hg19) coordinates as de-
scribed [22, 23]. Quality control for the imputed SNPs
included removal of variants with an imputation cer-
tainty info score (R2) < 0.8 and SNPs significantly devi-
ated from HWE in controls (p < 1 × 10− 6). From a total
of 46,511,137 variants, 9,400,020 variants with MAF >
1% were available after the quality control. For this
study, we performed a locus-wide association of
chromosome 11 encompassing APOC3 and its flanking
regions (116698024–116,710,387) for common variant
association analysis. We selected all independent signals
(p < 10− 3) from Sikh discovery (n = 820) with MAF > 5%
for replication and look-up in GWAS in replication co-
horts of Sikhs (AIDHS/SDS) (n = 3839) and other Asian
Indians (from Asian Indian component of the LOLIPOP,
Singapore, and South Asian component of the UKBB),
Europeans (LOLIPOP, UKBB), and Others (including
Singapore Chinese [MEC_CHS], Mexican American
[SAMAFS], and African American, Hispanic and mixed
ethnicity [MISS-OLIVER]) (Table 1). General mixed lin-
ear models were used to test the impact of genetic vari-
ants on transformed continuous traits using the
variance-component test adjusted for the random-effects
of relatedness to account for family structure and fixed
effects of age, gender, BMI, and diabetes status and PCs
assuming an additive genetic model using SVS version
8.8.3 (Golden Helix, Bozeman, MT, USA) [23]. Continu-
ous traits with skewed sampling distributions (e.g., TG)
were log-transformed before statistical analysis. How-
ever, for illustrative purposes, values were re-transformed
into the original measurement scale. Meta-analysis was
performed on selected SNPs showing significant associ-
ation in most of the study cohorts. To combine common
SNP association results from all cohorts, both fixed and
random effect inverse variance metanalysis implemented
in METAL [32] was employed. Two-tailed p-values lower
than 5 × 10− 8 were considered genome-wide significant.
The LocusZoom standalone tool was used to generate a
regional association plot for the APOC3 locus [33]. The
Forest Plot Viewer (http://ntp.niehs.nih.gov/ntp/ohat/
forestplot/) and PRISM (https://www.graphpad.com/
scientific-software/prism/) were used to generate forest
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plots. For determining the association of the five known
rare variants for CAD, a value of 0.5 is added to all the
cells where zeros caused problems in the computation of
odds ratios as described [34].

Mendelian randomization (MR) studies
In general, elevated plasma TG is known to increase the
risk for CAD in epidemiological and prospective studies;
however, whether the genetically increased TG is caus-
ally related to the development of CAD is still unknown.
The MR approach uses the genetic variation as an in-
strumental variable (IV) to define the causal association
between a risk factor or exposure (e.g., TG) with the dis-
ease (e.g., CAD) [35, 36]. The basic principle of the MR
methodology is based on the assumptions that the IV
(APOC3 genotype) associated with the phenotype (TG),
is independent of known and unknown confounders,
and it can only influence the outcome (i.e., CAD)
through the exposure (TG). To ensure that the MR as-
sumptions were not violated, we chose the APOC3 vari-
ant with the strongest independent association with the

exposure (i.e., TG) across all cohorts and pruned the
SNPs in linkage disequilibrium (LD). Further, the SNP
used as a Mendelian instrument was not associated with
the outcome via exposure to other confounding factors
(BMI, age, gender, and diabetes). For assessing the causal
association of exposure with the outcome, we used a
one-sample MR using the inverse-variance method.

Results
Genetic associations of common variants with TG and
CAD
A gene-centric association analysis was performed on all
directly genotyped and high-quality imputed SNPs
within the APOC3 region with MAF ≥5% to identify
gene variants associated with TG concentrations using
multiple linear regression controlling for age, gender,
BMI, diabetes, and PCs. Of all common variants sur-
veyed from the open reading frame of the APOC3, two
variants [rs5128 (3′ UTR) (Fig. 1) and rs734104 (in-
tronic)] showed a strong association with increased
plasma TG in Sikhs (AIDHS). These two variants were

Fig. 1 Regional association plot for the APOC3 common variant rs5128 showing association with plasma triglyceride levels. SNPs from the APOC3
region are plotted by position on the x-axis versus association with triglyceride levels (−log10 P) on the y-axis. The black diamond signifies p-
values of the studied SNP (rs5128) in Sikhs and in the combined analysis using replication studies. Global meta-analysis results are depicted by a
red diamond at the top of the plot. The SNPs surrounding the most significant SNP are color-coded to reflect their LD with this SNP. We present
linkage disequilibrium (LD) using the GIH panel (Gujarati Indians in Houston), the closest HapMap population to the Sikhs. At the bottom of the
plot, the locations of known genes in the region are shown
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in LD with each other (r2 = 0.78), therefore, we only
used one variant (rs5128) as a genetic instrument (IV)
for MR studies. The estimates (β ± SE) for rs5128 for
effecting TG levels was 0.06 ± 0.01; p = 7.18 × 10− 7 after
adjusting for the effects of age, gender, BMI, diabetes,
and PCs. (Fig. 2, Supplementary Table 3). Similarly,
rs5128 showed a robust replication with significantly
raised TG (0.09 ± 0.01; p = 8.10 × 10− 41) in other inde-
pendent Asian Indian cohorts (LOLIPOP, UKBB_AI,
MEC_INDIAN, and SINDI). Apart from South Asians,
the highly significant association of this variant was also
observed in Europeans (LOLIPOP, and UKBB) (0.19 ±
0.004; p = 2.36 × 10− 420) and others (MEC_CHS, DC_
SP2, SAMAFS, MISS_OLIVER) (0.09 ± 0.01; p = 1.15 ×
10− 11), adjusting for the effects of age, gender, BMI, dia-
betes, and PCs. A global meta-analysis across all cohorts
showed strong allelic results of rs5128 for increasing
plasma TG (0.15 ± 0.004, p = 2.80 × 10− 424 (Fig. 2; Sup-
plementary Table 3). No association of this variant was
observed with T2D, LDL-cholesterol, and total choles-
terol (data not shown). A per SD increase of TG of 15
mg/dL ± 0.004 mg/dL (p = 2.80 × 10− 424) for rs5128 is
predicted to increase CAD risk by 3% 95% CI [0–5%];
p = 0.042. (Fig. 3; Supplementary Table 3).
We also explored if genetically raised TG will correlate

with increased ApoC-III concentration. For this, we
measure serum ApoC-III levels in a small subset of 38

Sikh individuals, half with homozygous wild type (CC)
and half with mutant (GG) alleles of rs5128. The correl-
ation between serum TG and serum ApoC-III levels was
significantly positive (r = 0.54, p = 0.0004) (Fig. 4A)
which is very similar to an earlier published study (r =
0.59; p < 1 × 10− 4) [37]. While there was a 76% increase
in TG level among the mutant homozygous carriers than
the wild type carriers (Fig. 4B), the ApoC-III levels in-
creased 37% among the mutant homozygous carriers
compared to the wild type carriers (Fig. 4C).

Association of previously known APOC3 rare variants with
TG and CAD
We evaluated the role of previously reported rare vari-
ants for their association with TG and CAD in our co-
hort. We observed a total of 56 carriers of null variant
rs76353203 (R19X): one carrier of Sikh ancestry (India),
two Asian Indians, and 53 European carriers from UKBB
(Table 2). Five (9%) of the 53 European carriers of this
variant from UK BIOBANK were affected with CAD
(Fig. 5).
All other known variants detected in AIDHS/SDS and

other cohorts were not associated with low TG levels as
seen in white populations in published studies. For in-
stance, 12 heterozygous carriers (IVS3 + 1GT;
rs140621530) of Punjabi Sikh ancestry (AIDHS/SDS)
had high TG (ranging from 133 to 469 mg/dL); three

Fig. 2 Random-effect metanalysis showing allelic effects of the APOC3 common variant rs5128 with plasma TG levels among 396,644 participants
from different ethnic cohorts. Analysis was adjusted for age, gender, BMI, diabetes, and 5 principal components using linear regression
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heterozygous US white carriers from MISS_OLIVER also
had high TG levels (average 141 mg/dL). In contrast,
one African American carrier from MISS_OLIVER had
low TG (78mg/dL), but this individual was a CAD pa-
tient. In the UKBB European cohort, eight carriers were
observed with a mean TG level of 92.2 mg/dL. A single
carrier of a known rare variant D65N (rs149707394) ob-
served in UKBB (European) had a plasma TG of 377.7
mg/dL (Fig. 5).
Our data detected 18 carriers of A43T (rs147210663)

in AIDHS/SDS and only two of 18 showed reduced TG
(57 ± 31mg/dL; range 35–79 mg/dL) while the
remaining 16 individuals had elevated TG (mean 267 ±
101 mg/dL; range 142 to 464 mg/dL). One of the two
carriers of A43T with very low TG (35mg/dL) also had
low HDL-C (22 mg/dL). Four carriers of A43T were also
observed in UKBB (Asian Indian) with a mean TG level of
111.3mg/dL. Furthermore, 300 carriers of A43T of UKBB
(European) had a mean TG of 117.7mg/dL, and 11/300 (4%)
had CAD. A single Mexican American carrier from SAMAFS
had a low TG level of 46mg/dL and an African American
fromMISS_OLIVER had low TG (69mg/dL) (Fig. 5).
We performed a combined association analysis of five

known rare variants (found in most of the cohorts). Even
though the plasma mean TG levels were significantly
lower among the variant allele carriers vs. the wild type
carriers, none of these variants exhibited any significant

protection against CAD except for the rs138326449
(IVS2 + 1G-A). As shown in Table 2, the splice variant
rs138326449 was associated with a significantly reduced
risk for CAD (OR 0.64 95%CI 0.47–0.88; p = 0.007) with
~ 37% reduction in TG in the combined sample. How-
ever, the cardioprotective effect of this variant was not
significant in Asian Indians when data was analyzed sep-
arately (OR = 0.50 95%CI 0.03–9.26; p = 0.641) (Table 3).
Similarly, no other variant revealed any significant pro-
tective association against CAD despite showing a re-
duced concentration of TG in Europeans or other
populations used in our study (Tables 2 and 3).

Discussion
The role of ApoC-III in lipid metabolism has been
well-documented in human and animal studies. How-
ever, the molecular mechanism of the action of ApoC-
III in lipid metabolism and CAD is still unclear. The
discovery of LoF or reduced function variants in
APOC3 and other lipid genes has started shedding light
on their putative molecular role in lipid metabolisms.
Because these LoF/reduced function variants were
shown to be cardioprotective in recent studies, there
has been a consensus to therapeutically inhibit ApoC-
III for treating dyslipidemia and prevent CAD suscepti-
bility using antisense oligos [38]. However, as most of
the large-size studies have been heavily focused on

Fig. 3 Random-effect metanalysis showing allelic effects of the APOC3 common variant rs5128 with CAD among 390,932 participants from
different ethnic cohorts. Analysis was adjusted for age, gender, BMI, diabetes, and 5 principal components using logistic regression
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Table 2 Allelic distribution of previously known APOC3 rare variants and their association with TG, HDL-C, and CAD

Variant Carrier Non-
Carrier

%
Carriers

Mean TG
(mg/dL)
Carrier/Non-
carrier

Mean HDL-C
(mg/dL)
Carrier/Non-
carrier

CAD Among
Carriers

CAD Among
Non-carriers

Odds Ratio/CI/P
(CAD)

rs373975305
(IVS1-2G-A)

16 390,916 0.004 129.8/164.2
(−21%)

46.5/45.4 (2.4%) 0/16 20,145/370771 0.56 95%CI (0.03–9.30);
p = 0.684

rs76353203
(R19X)

56 390,876 0.014 84.5/163.4
(−48.3%)

60.5/45.7
(32.4%)

5/51 (8.9%) 20,156/370720 1.80 95%CI (0.72–4.52);
p = 0.208

rs138326449
(IVS2 + 1G-A)

1157 389,775 0.297 98.9/157.9
(−37.4%)

61.4/47.1
(30.4%)

39/1118 (3.5%) 20,105/369670 0.64 95%CI (0.47–0.88);
p = 0.007

rs147210663
(A43T)

326 390,606 0.083 122.5/163.4
(− 25%)

50.4/45.7
(10.3%)

11/315 (3.5%) 20,131/370475 0.64 95%CI (0.35–1.17);
p = 0.150

rs140621530
(IVS3 + 1G-T)

24 390,908 0.006 133.1/164.2
(−18.9%)

52.9/45.4
(16.5%)

1/23 (4%) 30,010/360898 0.52 95%CI (0.07–3.87);
p = 0.526

Variant data from Singapore Chinese (MEC_ Chinese) and Singapore Asian Indians (MEC_ Indian and SINDI) were not included because of the lack of information
on CAD

Fig. 4 Bar graphs show mean differences of (A) Scatter plot of ApoC-III concentration (mg/dL) X-axis vs TG levels (mg/dL) Y-axis in the
homozygous mutant (GG) and wild-type (CC) genotype carriers of Sikh ancestry. Red dots indicate individuals with CAD (B) plasma TG mg/dL
and (C) ApoC-III concentrations (mg/dL) among mutant (GG) and wild-type genotype carriers (CC) of rs5128 in Sikhs
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Europeans, whether the therapeutic inhibition of
ApoC-III (based on the LoF variants) would be univer-
sally effective to prevent CAD in all dyslipidemic pa-
tients has not been explored. Moreover, in this study,
we, for the first time, are reporting the role of APOC3
genetic variation on TG and CAD in Asian Indians,

who are grossly underrepresented in genetic, clinical,
biomarker research despite having a huge burden of
cardiometabolic conditions. Also, because of the rapidly
expanding role of genetic testing in disease prediction
or diagnosis, the transferability of these findings in
other diverse ethnic groups is imperative. Here, we are

Fig. 5 Distribution of earlier known rare functional variants in APOC3 and their relation with plasma TG. Figures present the study-wise
distribution of earlier reported rare variants (x-axis) and corresponding TG levels (y-axis). Each dot in the graph represents the carrier(s) of the
variant. A cut-off of 100 mg/dL was used to define low or normal plasma TG levels. Variants with a large number of carriers from the UKBB, only
mean levels were available for plasma TG

Table 3 Allelic distribution of previously known APOC3 rare variants and their association with TG, HDL-C, and CAD only in Asian
Indians

Variant Carrier Non-
Carrier

%
Carriers

Mean TG
(mg/dL)
Carrier/
Non-carrier

Mean HDL mg/dL
Carrier/Non-carriers

CAD Among
Carriers

CAD Among
Non-carriers

Odds Ratio/CI/P
(CAD)

rs373975305
(IVS1-2G-A)

12 23,871 0.05 166.6/173.6
(−4%)

44/42.6 (3.3%) 0/12 4364/19507 0.18 95%CI (0.01–
3.02); p = 0.233

rs76353203
(R19X)

3 23,880 0.01 84.9/171.5
(−50.5%)

55.1/43.3 (27.3%) 0/3 4364/19516 0.64 95%CI (0.03–
12.37); p = 0.767

rs138326449
(IVS2 + 1G-A)

4 23,879 0.02 101/165.8
(−39.1%)

46.7/46.2 (1.1%) 0/4 4351/19528 0.50 95%CI (0.03–
9.26); p = 0.641

rs147210663
(A43T)

22 23,861 0.09 175.2/171.5
(2.2%)

42.7/43.4 (−1.6%) 0/22 4364/19497 0.09 95%CI (0.01–
1.64); p = 0.106

rs140621530
(IVS3 + 1G-T)

12 23,871 0.05 221/173.6
(27.3%)

43/42.6 (0.9%) 0/12 4364/19507 0.18 95%CI (0.01–
3.02); p = 0.233

Variant data from Singapore Asian Indians (MEC_ Indian and SINDI) were not included because of the lack of information on CAD
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reporting the role of APOC3 rare variants (known and
novel) and common variants for their effects on TG,
and CAD in Asian Indians, Mexicans, Chinese, and Eu-
ropeans from India, Singapore, the UK, and the USA.
The MR analysis showed a TG raising common vari-

ant (rs5128) in the APOC3 gene may be involved in a
modest increase in CAD risk by elevating circulating TG
levels. A genetically instrumented per 1-SD increase in
TG of 15 mg/dL would modestly increase CAD risk to
3% 95%CI (0–5%; p = 0.042) (Fig. 3). Agreeing with earl-
ier reports, this variant was not associated with LDL-
cholesterol in any of the participating cohorts in this
study [39]. These results suggest that the observed asso-
ciation of APOC3 with CAD could be in the pathway in-
dependent of cholesterol metabolism. The two APOC3
SNPs, rs5128 and rs734104, were independently associ-
ated with increased TG concentrations. Notably, except
for these two variants, no other SNP within the open
reading frame of the APOC3 was associated with TG
levels in any studied cohorts. The rs5128, also known as
Sst-I, resides in the 3′-untranslated region of the APOC3
gene and might enable microRNA binding and hence can
change the transcriptional activity of ApoC-III, which ul-
timately would lead to higher plasma ApoC-III levels, in-
creased TG, and the increased risk for CAD [40].
Further, we examined the role of earlier published LoF

or reduced function splice/missense rare variants known
to be protective against the CAD. One splice-donor vari-
ant IVS2 + 1G-A (rs138326449), which predominantly
segregated in populations of European ancestry (with
99.6% European heterozygous carriers), showed an ~
37% reduction in TG and had a significantly lower risk
for CAD compared to wild type carriers (0.64 95%CI
0.47–0.88; p = 0.007) (Table 2). However, the cardiopro-
tective association of this variant could not be confirmed
in Asian Indians in our study, despite with ~ 39% reduc-
tion in TG (Table 3). The reason might be the difference
in MAF between Asian Indians (MAF = 0.00013) and
Europeans (MAF = 0.002). Hence, a much larger sample
would be required to confirm the cardioprotective role
of this variant in other ethnic groups. With the excep-
tion of this splice variant, our data could not validate the
cardioprotective role of other five rare functional vari-
ants (IVS1-2G-A (rs373975305); R19X (rs76353203);
A43T (rs147210663); IVS3 + 1G-T (rs140621530); D65N
(rs149707394); A10T (rs150821374). One of these six
variants, A10T (rs150821374) was not found in any of
our study cohorts. Generally, rare variants are
population-specific and are often not seen in multiple
ethnic populations [23, 41], but interestingly, these rare
variants were present in Asian Indian Sikhs (Fig. 5).
Nevertheless, their phenotypic effects were not repli-
cated in these subjects as observed in earlier (predomin-
antly European) studies [15, 18]. Our findings could not

confirm the role of the most widely studied R19X
(rs76353203) for its cardioprotective effect even in Euro-
peans as first seen in Amish [15] and even in a Pakistani
population [42]. Compared to the wild-type allele, 56
rare variant carriers of R19X (observed in the entire
study) showed a 48.3% reduction in plasma TG (range
41.6–84.9 mg/dL), and a large majority were Europeans
from UKBB. These results agree with earlier published
findings of Crawford et al., [43] where known rare LoF
variants did not reveal any protection from CAD in the
European Americans from BioVU biobank.
Previous studies examining the function of ApoC-III in

animal and cell culture models have shown that the in-
creased expression of ApoC-III attenuates the activity of
LPL and reduces the clearance of TG-rich lipoproteins [5,
44]. The increase in ApoC-III concentration in hepato-
cytes stimulates the assembly of TG-rich VLDL and in-
hibits VLDL lipolysis [5]. Both the increased expression of
ApoC-III and hypertriglyceridemia (HTG) are predictors
of CAD risk in diabetic patients [45]. Thus, it is possible
that due to the abnormalities in ApoC-III, the same rare
LoF or splice variant may not show similar phenotypic ef-
fects in multiple carriers due to pleiotropic effects of other
genes within the LD region. Perhaps, because of these dif-
ferences, we and other studies are unable to confirm that
carriers of the LoF variants have low TG.
On the other hand, our data on 396,644 individuals

using a common variant as a genetic instrument suggest
that the APOC3 elevates plasma TG levels through TG-
raising mutations. However, a modest increase in the
CAD risk of 3% despite a substantial increase of ~ 76%
in TG levels by rs5128 suggests the possibility of pleio-
tropic effects of other variants or other nearby genes
within the LD region of chromosome 11q23.
HTG is a multifactorial disease, and hence, the clinical

management of these patients can be challenging. Ad-
herence to lifestyle interventions such as weight loss, al-
cohol/tobacco withdrawal, use of lipid-lowering
medications, and increased physical activity is empha-
sized as the essential principle for managing HTG in
both the US and European guidelines [7]. Also, the de-
velopment of novel technologies such as antisense oligo-
nucleotides, siRNAs, dual apoC-II mimetic and apoC-III
antagonist (called D6PV) offer promising results as po-
tential therapies for HTG [6].
Substantial evidence in the literature on animal

models and humans suggests that increased plasma
ApoC-III levels increase with TG concentrations
and are strong predictors of CAD [5, 44]. Although
this study lacks measures on circulating levels of
ApoC-III in all multi-ethnic datasets, plasma levels
of ApoC-III in a small subset of Sikhs with wild
type and mutant carriers of rs5128 revealed a 76%
increase in TG levels and 37% increase in ApoC-III
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levels among mutant homozygous carriers compared
to the wild type carriers. Of note, some wild-type allele
carriers with very low TG (< 80mg/dL) had high levels
(>85th percentile) of ApoC-III (ranging between 24 and
29.5mg/dL). From these results, it appears that other vari-
ants within APOC3 could also be influencing the ApoC-
III concentrations without affecting TG levels. Perhaps be-
cause of the missing information on ApoC-III levels, our
MR results suggested only a modest increase in the risk
for CAD. Availability of data with ApoC-III concentra-
tions in the entire study subjects would be required to
clarify the causal association of ApoC-III with CAD.

Study strengths and limitations
The role of the common variants (identified in this
study) for increasing serum TG has been reported in
several small studies. Here, we have not only consoli-
dated the multi-ethnic datasets and validated the associ-
ations of these common variants with TG and CAD, but
also, for the first time are reporting the causal associ-
ation of genetically raised TG with the risk for CAD
using the MR approach using data from 396,644 partici-
pants from 10 independent multi-ethnic cohorts. Fur-
ther, as earlier published studies have primarily
examined individuals from European populations, we
have included data from Asian Indians from India and
other South Asians (UKBB), and Europeans and other
ethnic groups to analyze the role of genetic variation in
APOC3 with CAD. For the first time, our study reports
the role of earlier published rare variants for affecting
TG and CAD in Asian Indians and other cohorts. Some
limitations in this study deserve discussion. Firstly, even
though our study included some independent cohorts of
Asian Indians, the largest representation was still limited
to the population of European origin. Thus, larger data
sets of Asian Indians and other ethnic groups would be
necessary to identify population-specific functional rare
variants. In targeted sequencing of Punjabi Sikhs, we
identified ~ 200 unique, rare variants; of these, 35 were
associated with low TG levels (Supplementary Figure 1).
However, their phenotypic effects could not be con-
firmed because of the small size of other Asian Indian
cohorts and the lack of Sikh data. Secondly, the availabil-
ity of ApoC-III concentrations in a large number of indi-
viduals would be required to clarify the causal
association of ApoC-III with CAD. Thirdly, we evaluated
the causal association with the CAD outcome using a
single-sample MR and using the same datasets that
could induce a bias if the genetic instrument is weak
[46]. However, given our IV was strong and weighted on
the TG effects, we do not expect that the data overlap
had introduced any bias. Meta-analysis of 19 published
studies, in fact, has reported a significant association be-
tween rs5128 and CAD in 11,186 subjects from multi-

ethnic populations; however, because of the limited sam-
ples size of each study and heterogeneity, further valid-
ation was warranted [47]. Future independent evaluation
using two-sample MR and using ApoC-III concentration
in addition to TG would be helpful to confirm the caus-
ality. Fourthly, the data access was limited to summary
statistics for many consortium cohorts that limited our
ability to precisely correlate genotype-phenotype effects.

Conclusions
Overall, these results highlight the challenges of inclu-
sion of rare variant information for clinical risk assess-
ment and generalizability of implementation of ApoC-III
inhibition for treating atherosclerotic disease in dyslipid-
emia. On the other hand, our MR study suggests that
the genetically regulated hypertriglyceridemic effects of
ApoC-III may be partially associated with the increased
risk for CAD, and other variants within APOC3 and/or
other nearby genes in the 11q23 cluster could be con-
tributing to the increased ApoC-III levels and effecting
CAD susceptibility. More studies on diverse populations
would be needed to clarify the putative role of rare vari-
ants in APOC3 or nearby genes (within the cluster) for
their effects on dyslipidemia and CAD.

Clinical perspective
Interindividual variation in circulating triglyceride (TG)
is attributed to both genetic and environmental factors.
Gene mapping studies have confirmed the strong influ-
ence of genetic factors for controlling circulating TG.
However, the causal association of hypertriglyceridemia
and the development of coronary artery disease (CAD)
is unclear. Some loss-of-function rare variants in
apolipoprotein-CIII (APOC3) have been suggested to de-
crease circulating TG and lower the risk for CAD. Yet,
the results of relevant studies across diverse ethnic pop-
ulations have been inconsistent and unclear. Population-
based clinical and observational studies often suffer from
confounding due to reverse causation because it is diffi-
cult to account for individual variation related to obesity,
cultural and ethnic/genetic variations in such studies.
On the other hand, human genetic information used

by Mendelian randomization (MR) methods up to some
extent can outwit the noise of the reverse causation
using suitable gene variants as a genetic instrument and
may help assess the underlying mechanistic association
between the disease phenotype and biomarker. Our MR
study suggests that the genetically regulated hypertri-
glyceridemia via APOC3 may be causally associated with
the increased risk for CAD. From these findings, it ap-
pears that the siRNA/antisense inhibition of ApoC-III
may be beneficial on the subsets of patients carrying
these gain-of-function common variants (s).
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Additional file 1: Supplementary Table 1. Diagnostic criteria for CAD
cases and non-CAD controls in participating study cohorts. Supplemen-
tary Table 2. Work performed at each study site. Supplementary
Table 3. Meta-analysis results of the association of APOC3 common vari-
ant rs5128 with plasma TG and the risk for CAD. Supplementary Figure
1. Detection of rare variants in APOC3 gene region by targeted sequen-
cing in Sikhs from AIDHS/SDS (Discovery). Dots in the graph represent
variant (SNV). Figures on the x-axis denote the number of variants (SNVs),
and the y-axis represents the corresponding mean plasma TG (mg/dL),
and a cut-off of 100 mg/dL was used to define low or normal plasma TG
levels. Of a total 201 rare variants or SNVs (MAF<1%) detected in Sikhs
within APOC3 region (116697024-116711387), only 35 (17%) had low TG
(57-100 mg/dL) while a vast majority 166 (83%) of these were linked to
high or very high TG (101-865 mg/dL).
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