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Abstract 

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable 

quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome 

sequencing from NHLBI’s Trans-Omics for Precision Medicine Initiative (TOPMed) in a large multi-ethnic sample to further explore common 

and rare variation contributing to PLT (n=61,200) and MPV (n=23,485). We identified and replicated secondary signals at MPL (rs532784633) 

and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet related 

disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with 

lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at 

TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). 

However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian 

genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several GWAS identified loci 

for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results 

highlight the value of whole genome sequencing in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even 

for well-studied traits like platelet traits.  



Introduction 

Platelets play a critical role in thrombosis and hemostasis, and anti-platelet agents are used for secondary prevention of cardiovascular 

disease events, preventing thrombosis and inflammation which can lead to further acute events(1). Platelet count (PLT) and mean platelet volume 

(MPV) are commonly measured platelet quantitative traits used in clinical diagnosis. Very high PLT can indicate thrombocytosis, a type of 

myeloproliferative neoplasm caused primarily by somatic variation in JAK2, CALR, and MPL, and can lead to thrombosis/clotting(2). Very low 

PLT, known as thrombocytopenia, can instead lead to bleeding, for example during surgery (3). However, there is also extensive variation in PLT 

and MPV in healthy individuals, and this variability has been epidemiologically associated with chronic disease outcomes (such as associations of 

higher MPV with higher risk of myocardial infarction (4) and diabetes (5)).  

Like other clinical hematologic laboratory measures, PLT and MPV are highly heritable, with hundreds of genetic signals identified in 

recent genome-wide association studies (GWAS), mostly in European populations (6) (7). Better knowledge of the genetic determinants of platelet 

measures is important for informing diagnosis and understanding penetrance of inherited bleeding disorders, elucidating novel mechanisms of 

platelet production and clearance, and understanding of platelet biology and its connection with clinical disease endpoints (8). Along with 

common, noncoding variants most often identified in GWAS, analyses of exome arrays and exome sequencing have pointed to the role of lower 

frequency coding variants in genes like GFI1B, CD36, IQGAP2, PLG and TUBB1, or the African-specific MPL coding variant rs17292650 

(p.Lys39Asn), in explaining platelet phenotypic variation (7, 9, 10). Mutations in many of the same genes identified by GWAS and exome 

analyses are known to cause Mendelian platelet disorders, often with a recessive mode of inheritance; the impact of heterozygote carrier status for 

such Mendelian disease variants, or of other coding variation in these genes, in general population cohorts is unclear. Studies of PLT and MPV in 

a significant number of individuals without known hematological disorders, or other disease case selection, have not been conducted using whole 



genome sequencing data (WGS), though some analysis of WGS in a small number of individuals (n<4000) in combination with densely imputed 

cohorts with genotype array data only has been conducted (11). The first study of WGS with platelet aggregation traits in a general population was 

only recently conducted (12). A WGS approach allows more complete assessment of rare and ancestry-differentiated variants than imputation-

based approaches.  

Here we present results from the first WGS-based analysis of PLT and MPV, two platelet quantitative traits which tend to be inversely 

correlated with one another. These results from a multi-ethnic population help identify new secondary signals at known loci by direct conditional 

analysis and novel rare variant gene-based signals. Our results demonstrate the potential of WGS, but also point to the need for larger and more 

diverse sample sizes to accelerate genetic discovery for platelet related traits. 

Results 

Analyses of PLT were conducted in 61,200 individuals of diverse ancestral backgrounds from thirteen studies (including n=14,392 

African Americans, n=13,985 Hispanic/Latino individuals, n= 32,129 European ancestry, n= 681 East Asian ancestry, and n=13 from other 

ancestry groups). MPV analyses were conducted in 23,485 individuals (n=7,440 African American, n=5,466 Hispanic/Latino, n=10,120 European 

ancestry, n=447 East Asian, n=12 other ancestry). Cohort demographics are described in Table S1. Average age was 56 years, with 64% women, 

for PLT, and average age was 57 years, with 61% women, for MPV. For the 23,331 individuals in our sample sets that have both PLT and MPV 

data available, the Pearson correlation coefficient between PLT and MPV is -0.3294. Distributions for PLT and MPV in each race/ethnicity group 

are displayed in Figure S1. Compared to European ancestry individuals, and adjusting for age and sex, there is evidence of higher MPV and PLT 

in African Americans, lower PLT in East Asians, and higher MPV in Hispanics/Latinos and East Asians (Table S2). Similar racial/ethnic 



differences in platelet traits have been previously reported (13)), though the prior literature is inconsistent and sample sizes are generally small 

(14) (15). Moreover, we note that these categories are derived primarily from self-reported and socially constructed race/ethnicity identifiers (with

genetic ancestry clustering only used when self-report was not available). These race/ethnicity groupings include individuals with a variety of 

genetic ancestry backgrounds; this emphasizes the need for further understanding of the actual genetic variants where differential frequencies 

across genetic ancestry groups might lead to differences in reference ranges or population means for platelet traits.  

Single variant results 

We first conducted single variant analyses for variants across the autosomes and X chromosome with a minor allele count of at least 10 

(Figure S2). We observed little evidence of inflation in this or aggregate analyses (Table S3). We identified 44 loci (defined using +/- 500 kb 

boundaries from each sentinel variant) for PLT (Table S5) and 28 for MPV (Table S4) at a genome-wide significance threshold of p<1 x 10
-9

. 

Many loci (N=16) were significantly associated with both PLT and MPV, as expected given the strong inverse correlation between these two 

phenotypes. Where the lead sentinel variant was shared (N=8 loci), the PLT and MPV effects were in the opposite direction. All 56 loci 

significantly associated with PLT or MPV in TOPMed were located within 1 Mb (500 kb on either side of sentinel) of at least one variant from the 

GWAS, Exome Chip, and exome-sequencing literature previously reported to be associated with the respective quantitative trait (6, 7, 9-11, 16-

33). To evaluate which populations might be driving association signals in the pooled ancestry analysis, and to more finely examine association 

signals in European, African, Hispanic/Latino, and East Asian ancestry populations with different linkage disequilibrium patterns, we also 

performed ancestry-stratified single variant analyses on autosomes. Ancestry stratified results are displayed for sentinel lead variants from the 

pooled ancestry analysis in Tables S4 and S5. 



Conditional analyses 

We next evaluated whether each of the 44 genome-wide significant signals for PLT and 28 for MPV included novel variants, conditionally 

distinct from variants reported in previous publications for any quantitative platelet trait (PLT, MPV, plateletcrit and platelet distribution width). 

The latter two measures were previously assessed in (6) but are not available in TOPMed (Table S6). For signals that remained significant after 

conditioning on variants in Table S6, we also performed analyses adjusting for variants identified in recent large GWAS from the Blood Cell 

Consortium (BCX) meta-analyses (Table S10) (17) (16), published while this paper was in preparation, leaving 2 signals at a conventional GWAS 

threshold (p<5 x 10
-8

) for PLT and one for MPV (Table 1). These signals can be considered as additional (secondary) independent signals at 

previously reported genomic loci. Ancestry stratified results for the 3 lead variants post conditional analysis are also displayed in Table S7.  

PLT associated single variant signals 

The first conditionally distinct signal (Table S7) for PLT in the ancestry-combined analysis is an intronic variant of MPL (rs532784633, 

p=1.01x10
-8
 post-conditioning, β= -19.53, overall effect allele frequency=0.34%, MAC=410, more common in African ancestry populations 

(1.15%, MAC=332)) associated with lower PLT. In TOPMed, this variant is not significantly associated with MPV (p=0.32). MPL encodes the 

receptor for the hematopoietic growth factor thrombopoietin, which regulates platelet production. Rare loss-of-function mutations of MPL underlie 

the autosomal recessive disorder congenital amegakaryocytic thrombocytopenia, whereas “gain-of-function” germline and somatic MPL coding 

mutations are associated with familial thrombocytosis and predisposition to myeloproliferative neoplasms (MPNs) [MIM 159530]. The latter 

category of germline mutations includes a MPL coding variant rs17292650 (p.Lys39Asn) associated with higher PLT and common only in African 

ancestry individuals. The sentinel variant at the MPL locus (rs59506047), prior to conditional analysis, is a near perfect LD proxy for rs17292650 



(r
2
=0.98 in all TOPMed samples with measured PLT). However, the newly discovered MPL intronic rs532784633 variant is associated with PLT 

independently of the rs17292650 missense variant (r
2
<0.01 with rs532784633 in all TOPMed samples with measured PLT) as well as other 

recently reported common or intermediate frequency PLT-associated MPL coding and non-coding variants in the region [(17) (16)].The intronic 

MPL rs532784633 variant associated with lower PLT is located within an ENCODE cross-tissue enhancer (EH38E1342407) and overlaps a 

binding site and canonical motif for the transcription factor E2F1, which plays a role in megakaryocyte differentiation and proliferation (34). The 

second conditionally distinct signal, an intronic variant in RCL1 (rs78022296), is also more common in African ancestry versus European ancestry 

individuals (8.2% versus 1.8%) but has little compelling functional evidence linking it to PLT. However, it does lie ~175kb upstream from JAK2, 

a key blood lineage factor mutated in MPNs, raising the possibility of long-range interactions between these genomic loci. 

MPV associated single variant signals 

For MPV, we identified an association with an intronic variant in PECAM1 common only in African ancestry populations (rs73345162, 

p=2.38x10
-10

 post-conditioning, β= -0.15, 12.56% in African ancestry participants, and 0.05% in Europeans). This conditionally distinct variant is 

also nominally associated with higher platelet count (p=4.82x10
-4
, β= 3.75). PECAM1 encodes a cell adhesion molecule expressed on platelets, 

leukocytes, and vascular endothelial cells and is involved in leukocyte transendothelial migration and regulation of platelet activation and 

thrombosis (35) as well as megakaryopoiesis (36). Other common non-coding variants 3’ of PECAM1 (such as rs1050382) have been associated 

through prior GWAS with both higher MPV (16) and increased risk of coronary heart disease (37), providing a potential genetic link between 

epidemiologic observations that suggest MPV as a predictor of CVD outcomes (38).  

Replication 



We pursued replication analyses in independent samples from multi-ethnic GWAS and sequencing studies (no overlap with TOPMed 

samples), including studies with representation of African American and Hispanic/Latino participants. Cohorts included for replication analyses 

were 1) participants from the INTERVAL study (WGS data), and imputed genome-wide genotype data from 2) additional, non-overlapping 

African Americans from the Women’s Health Initiative, 3) African American and Hispanic/Latino participants from the Genetic Epidemiology 

Research on Adult Health and Aging (GERA) cohort, and 4) African ancestry participants from the UK Biobank). For PLT, the MPL signal 

replicated in the meta-analysis of these 4 independent cohorts (p=4.74x10
-6
) but RCL1 did not replicate (p=0.20) (Table S9). For MPV, the 

PECAM1 signal also replicated (p=1.86 x10
-6
) (we do note that the variant/chromosomal location is not mapped in build 37, which may explain 

why this signal was not identified in prior genetic analyses). The replicated MPL and PECAM1 signals are both largely driven by African ancestry 

participants and are non-significant in individuals of European ancestry in ancestry stratified marginal and conditional analyses (Table S7, 

Supplementary Figure 3e-h), unsurprisingly based on the allele frequency differences for MPL and PECAM1 lead variants.  

Gene-based aggregated rare variant results 

Next, we performed gene-based aggregate association analyses for variants with a minor allele frequency <1%. In these aggregate tests, 

we included only variants which, based on their genomic annotation, are more likely to play a functional role. Criteria for variant inclusion are 

described in detail in the Methods section. We first assessed loss-of-function (LoF), missense, and synonymous variants, using three different 

filters with a decreasing level of stringency for inclusion of protein- or splice-altering variants. Using Efficient Variant-Set Mixed Model 

Association Test (SMMAT) (39) and burden tests, and a Bonferroni corrected significance threshold for the number of genes tested with each 

filter, we identified 11 unique genes associated with PLT (ITGA2B, PTPRH, TUBB1, MPL, CD36, TET2, TNFRSF13B, GP9, ITGB3, SH2B3, 

CHEK2) and 4 with MPV (TUBB1, IQGAP2, GFI1B, GP9), with some genes identified under multiple variant filters (Table 2). Two genes were 



significantly associated with both traits (GP9 and TUBB1). We also performed gene-based burden and SMMAT tests incorporating non-coding 

regulatory promoter and enhancer variants (in addition to coding variants), but no additional genes were identified that were not also identified by 

the coding only variant filters. 

Adjusting for all single variants within 500 kb previously reported in the GWAS literature for any PLT trait (Table S6 and S10), the gene-

based rare variant association signals at two of the genes (TNFRSF13B, IQGAP2) were completely attenuated (p>0.05). All other gene-based rare 

variant tests retained at least some nominally significant signal; GFI1B, GP9, CD36, CHEK2, ITGA2B, ITGB3, SH2B3, TET2, MPL, and TUBB1 

remained genome-wide significant (based on thresholds in Table S3) for at least one of the variant filter/association models following adjustment 

for all previously identified coding and non-coding GWAS single variants in the region. Variant level residuals for rare variant carriers for each of 

the 15 associations, after adjusting for prior GWAS variants within 500kb, are presented alongside functional annotation and ClinVar 

pathogenicity in Figure S4. 

Most of the associated genes are noted in the Online Mendelian Inheritance in Man (OMIM) catalog for their association with inherited or 

acquired quantitative platelet disorders. In each instance, the overall direction of effect for PLT and MPV is consistent with the phenotypic disease 

characteristics: ITGA2B, ITGB3, and CD36 with congenital thrombocytopenia (lower PLT), GP9 and TUBB1 with congenital macro-

thrombocytopenia (lower PLT/higher MPV); MPL and SH2B3 with familial and essential thrombocytosis (higher PLT). Germline CHEK2 

mutations are one of the most frequent causes of hereditary predisposition to cancer (40), which is a common acquired cause of thrombocytosis 

and therefore consistent with the observed burden test association with higher PLT. Along with information from the functional annotation scoring 

programs (such as FATHMM, PolyPhen, etc) used to select variants, we additionally include annotation from ClinVar in Table S11 (which lists all 



variants included in our gene-based tests), highlighting reported Mendelian disease variants included in our TOPMed based aggregate tests (for 

example, rs5030764, Asn61Ser in GP9, which has also been reported to have a heterozygote effect for platelet traits in (17), see Table S10).  

Somatic mutations of TET2 are associated with myeloproliferative neoplasms or myelodysplasia, which often secondarily result in 

thrombocytosis or thrombocytopenia, respectively (41). Based on this prior literature for TET2, we annotated somatic variants using the COSMIC 

database (https://cancer.sanger.ac.uk/cosmic) for all included variants in our gene-based tests (Table S11); for TET2, which is a reported driver 

gene for clonal hematopoiesis of indeterminate potential (CHIP), we also annotated variants included in (42) as CHIP driver variants. We observed 

that a large percentage of variants in TET2 were somatic (77.6% (104) of 134 variants, all but one a singleton, in the most significant gene-based 

test); similar results were not observed for other genes, though multiple likely somatic variants were also observed in MPL (14% (10) of 73 

included variants, including nominally significant single variant rs141311765 (p=2.11E-06)) and SH2B3 (10% (7) of 71 included variants). We 

therefore specifically assessed whether the TET2 gene-based signal for PLT in the bi-directional SMMAT was driven primarily by somatic 

variants. As seen in Supplementary Figure 5, most of the variants contributing to our aggregate signal (at extreme ends of the null model residual 

distribution) at TET2 were in fact somatic. Conditional analysis of the TET2 gene-based signal in which we conditioned on variants that were 

reported somatic attenuated the signal (p= 0.227).  

The aggregate gene-based results may also aid in identification of likely causal genes at previously identified platelet GWAS loci. In 

particular, the PTPRH gene associated with lower PLT in TOPMed contains a rare LoF variant (rs147881000) recently reported (17) to be strongly 

associated with lower PLT as well as other quantitative blood cell traits, though some residual signal for this gene remains in TOPMed after 

adjusting for this variant (p= 5.14E-04). Though PTPRH is not highly expressed in platelets, other protein tyrosine phosphatase receptors are 

https://cancer.sanger.ac.uk/cosmic


present in platelets/megakaryocytes and are involved in platelet signal transduction and biogenesis (43, 44). Specifically, PTPRJ (CD148) LoF 

mutations have been reported in cases of familial autosomal recessive thrombocytopenia (44). 

Lastly, for gene-based signals which included coding variants common enough to be tested in our single variant analyses (MAC>10), we 

assessed whether these variants had a single variant p-value for association <0.001, and further adjusted for any such nominally significant single 

variants in our gene-based tests (Table S7). This additional adjustment step was included to evaluate whether gene-based signals were driven in 

large part by a small set of individual single variants. Some residual signal remained for all tested genes, but some tests were attenuated (for 

example GP9, where for filter 1 and filter 3 burden tests for PLT (the most and least stringent coding variant filters used) p-values were attenuated 

from p<1 x 10
-14

 to p<1x10
-9

 by adjustment for lead single variant rs5030764, p.Asn61Ser, p=3.83E-09 in pooled analysis). 

Discussion 

Our analyses of WGS data from the TOPMed consortium highlight the role of ancestry-specific and rare/low frequency variants in 

variability in platelet count and size. Our work has particularly highlighted the influence of both common and Mendelian disease rare variants in 

the genetic architecture of quantitative platelet traits, in general population cohorts not enriched for blood disorders (for example at GP9 and 

TUBB1 gene-based signals). This approach is complementary to efforts utilizing WGS to screen large numbers of patients with rare diseases 

and/or those in the tails of the quantitative phenotypic distribution for patient diagnosis and coding and non-coding causal variant discovery (45). 

We anticipate more information to accrue on the penetrance of high-impact rare variants or clinical importance of ancestry-specific variants on 

platelet disorders as larger sequencing-based analyses are conducted in diverse populations. Ultimately, we expect that sequencing studies will 

lead to an increased understanding of the joint importance of common, mostly noncoding variation and rare, high impact variation for platelet trait 



variance in the population, as demonstrated by identification of multiple Mendelian disease related genes by our rare variant gene-based 

aggregation tests. As platelets play roles in both bleeding and thrombotic disorders, additional rare variant associations of large effect may inform 

platelet biology and interpretation of future clinical genetics cases (46). The large impact of genetic variation on platelet traits (with heritability 

estimated at ~50-80% (47)) in general population cohorts is often underappreciated, and improved elucidation of the genetic component of 

variation in platelet traits in individual patients (for example through polygenic scoring) may influence clinical inference and care. This current 

work in TOPMed makes several important contributions to understanding this joint impact of both common and rare variation on platelet 

variation, including identification of secondary, conditionally distinct signals at known loci more common in understudied African ancestry 

populations and identification of multiple novel aggregate rare variant signals, which are distinct from previously identified GWAS variants.  

Identification of secondary signals at known loci was facilitated in our analyses by availability of individual level data in a large sample 

size. In most GWAS studies, summary statistics are contributed by each individual study and then meta-analyzed. Secondary signals are thus 

usually identified using approximate conditional analysis, with tools like GCTA. Approximate conditional analysis methods are challenging, 

however, with rare variants and with admixed populations, due to lack of availability of appropriate reference panels. Thus, it would be difficult to 

find signals such as our novel secondary signal at MPL, low frequency intronic variant rs532784633. The original sentinel variant at MPL 

(rs59506047), prior to conditional analysis, is a linkage disequilibrium proxy for known African-specific coding signal rs17292650, as reflected in 

the very low allele frequency and non-significant association for this variant in Europeans in our TOPMed data. This secondary signal is also 

largely African ancestry specific (too rare to be assessed in European and East Asian ancestry subsets, frequency 1.1% African ancestry 

individuals, p=4.50E-09, frequency 0.3% Hispanic/Latino individuals, p=0.18). This type of secondary signal would be very difficult to observe 

using summary data, instead of direct conditional analysis using individual level data. Unfortunately, neither our novel MPL nor PECAM1 variant 



was available in platelet specific eQTL datasets from either GeneSTAR (48) (megakaryocytes and platelets) or CEDAR (49) (platelets only), 

likely due to low frequency for MPL and lack of mapping to build 37 for PECAM1; however, given the known role of both PECAM1 (50) and 

MPL (51) in platelet biology we assume these are the likely target genes.  

Our gene-based tests for coding variants highlighted multiple genes known from the Mendelian platelet disorder literature. All identified 

genes were near a prior GWAS signal, but residual signal which remains after adjusting for these GWAS variants also provides evidence of low 

frequency coding variant signal independent of common, mostly noncoding variants identified by GWAS. Some of the variants partially driving 

these gene-based tests have been specifically reported in the clinical literature. For example, the top variant contributing to the GP9 gene based 

signal is rs5030764 (chr3:129061921, p.Asn61Ser, p=3.83E-09 in pooled analysis, frequency 0.09%, corresponding to 108 counts of the minor 

allele in our TOPMed sample, all heterozygotes). The variant is more common in European populations (p=7.31E-09, 0.1% frequency, 96 counts 

of minor allele). Conditioning on this lead variant, which has also been reported to have a heterozygote effect in prior GWAS from UK Biobank 

(17), the GP9 gene-based signal was attenuated, though still significant (p=9.57x10
-10

 for top filter in Table 2, upon adjustment for rs5030764, p= 

1.03 x10
-9 

after adjusting for all variants identified in (16, 17)). This suggests that multiple additional coding variants in this gene impact platelet 

traits in the general population. rs5030764 is listed as pathogenic/likely pathogenic in ClinVar for Bernard-Soulier syndrome, a rare autosomal 

recessive platelet bleeding disorder. Bernard-Soulier syndrome is caused by a defect in or deficiency of the platelet glycoprotein membrane 

complex GPIb-IX-V which binds von Willebrand factor (vWF). Inability to bind vWF impairs the clotting process and causes excessive bleeding. 

Bernard-Soulier syndrome is clinically characterized by low platelet count, large platelets, prolonged bleeding time, and abnormal platelet 

agglutination response to ristocetin. In a 2015 study of 30 carriers of Bernard-Soulier syndrome variants, individuals showed lower platelet counts 

than controls, mild bleeding phenotype, and higher vWF levels (52). We also note that some tests are at least partially driven by loss of function 



variants, including PTPRH (rs147881000, p=1.61E-04 in single variant analyses), TUBB1 (rs199948010, p=2.48E-07, previously reported in 

BCX), and CD36 (rs571975065, p=4.78E-05) (Table S11). Some additional tests also include variants reported in ClinVar and nominally 

significant in single variant analyses, including variants of uncertain significance for the platelet disorder Glanzmann thrombasthenia rs142445733 

(p=0.003) and rs143967758 (p=2.25E-05) in ITGA2B. The lead variant within ITGB3 (integrin subunit beta 3, also known as platelet membrane 

glycoprotein IIIa), which was also significantly associated with PLT, was the missense variant rs5917 (chr17:47284587, R143Q), which is 

annotated as benign in ClinVar. Previous work has linked this polymorphism to the Pena/Penb or Human Platelet Alloantigen (HPA)-4 system 

(53), which is a cause of platelet alloimmune disorders such as neonatal alloimmune thrombocytopenic purpura and post transfusion purpura, 

highlighting the plausibility of the aggregate rare variant association for platelet related traits. 

Our gene-based results showed broad concordance with previous whole exome sequencing and Exome Chip analyses of rare coding 

variation, while expanding the number of identified genes for platelet traits. A large Exome Chip paper including >150,000 people (7) identified 

five gene-based signals (TUBB1, SH2B3, JAK2, LY75, IQGAP2) in aggregate tests of >1 coding variant associated with either MPV or PLT; we 

similarly identify significant signals at 3 of these genes (TUBB1, SH2B3, IQGAP2). Coding single variant signals at IQGAP2, TUBB1, and SH2B3 

from this Exome Chip paper were adjusted for in conditional analyses, but residual signal remained at all genes (though IQGAP2 was attenuated to 

non-significance on adjustment for all previously known single variant associations from GWAS, Exome Chip, and exome sequencing based 

analyses in general population cohorts). This highlights the additional power to detect rare variant signals using an unbiased sequencing method in 

TOPMed (despite smaller total sample size), as opposed to genotyping of selected variants from a small sequencing reference panel (as was done 

for Exome Chip). The largest existing platelet trait exome sequencing study in ~15,000 people (25) identified two single variant signals for low 

frequency and rare variants (CPS1 and GFI1B); GFI1B was also identified in our analyses for MPV, and was robust to adjustment for the lead 



variant identified from this prior exome sequencing study, rs150813342, as well as other mostly common noncoding variants. We also checked 

results in ancestry pooled PLT and MPV analyses for previously identified genes JAK2, LY75, and CPS1, which did not meet multiple testing 

corrected significance thresholds in any of our gene-based analyses. All, however, showed nominal significance (p<0.05) for at least one test and 

filter (JAK2, filter 2, burden, p=9.56E-05, LY75, filter 3, burden, p=7.23E-05, CPS1, filter 2, burden, p=0.013, all for PLT). We note that the lead 

variant from Polfus et al (25) at CPS1 (rs1047891) was too common to be included in our gene-based analyses (MAF ~ 32.6% in TOPMed pooled 

ancestry analyses, p=9.08E-14 for PLT, see Table S5), and that this variant has also been identified in multiple PLT GWAS analyses (6) (16). 

Some genes (PTPRH, TET2, CHEK2) are in loci which are near GWAS signals, but which have not been previously implicated as 

associated with platelet traits through coding variant analysis either in general population cohorts or through Mendelian disease genetics (for 

example GP9, as discussed earlier). All are genes which have been associated with cancer risk; for example, CHEK2 is a Mendelian cancer gene 

and critical for cell cycle arrest. TET2 is a known oncogene, an epigenetic and cell differentiation regulator (54), and has a key role in regulation of 

telomere length. It is also a known driver gene for clonal hematopoiesis of indeterminate potential (CHIP). Germline noncoding variants at this 

locus more common in African ancestry populations have also been associated with CHIP risk (42). CHIP from TET2 driver variants has been 

associated with lower PLT as well in previous work from TOPMed (p=0.005); this signal for TET2 variants is stronger in our analysis, likely due 

to inclusion of additional somatic variants not annotated as CHIP driver variants (42). The influence of coding variants in these genes on platelet 

levels is less clear. In megakaryocyte RNA-sequencing data, expression of CHEK2 (p=0.04) and TET2 (p=0.02) were associated with measured 

platelet production (Table S12), again suggesting a plausible role in platelet biology for these genes. PTPRH was not associated with platelet 

production (p=0.13).   



Our analysis does have limitations. While these analyses were being completed, new larger GWAS analyses (17) (16) have been published 

from the BCX consortium; these variants were included in secondary conditional analyses for significant loci only. Sample overlap between this 

effort and previous analyses of GWAS, Exome Chip, and exome sequencing datasets make TOPMed an inappropriate replication dataset for these 

prior findings. Larger sample sizes and fuller integration of platelet specific regulatory information are needed to fully explore rare variation in the 

noncoding space; our joint analyses of coding variation with non-coding variation in enhancers and promoters only identified genes already found 

in coding variant only analyses and for simplicity are not presented here. Identification of somatic variants driving the observed rare variant 

association signal in TET2, with a smaller percentage of likely somatic variants also contributing to gene-based signals such as SH2B3 and MPL, 

suggests that somatic variation, not just germline variation, is included in calls from TOPMed WGS (and likely in other sequencing studies for 

common complex disease). This could be a potential confounder in blood-based sequencing studies for age-related diseases (given the increases in 

CHIP and other somatic variation with increased age (55)), and suggests examination of somatic versus germline origin for identified variants may 

be warranted using clinical information, variant characteristics, or repeated sequencing (56) in future sequencing based work. We also note that we 

do not have consistent data on whether participants in TOPMed cohorts have conditions that cause reactive thrombocytosis (such as cancer or 

acute infections). 

To conclude, our analyses of platelet related traits in TOPMed WGS data has added to our knowledge of ancestry-specific variants and 

rare variants, notably coding variants, in genetic regulation of platelets. These results highlight the utility of sequencing data in better 

understanding complex traits, even in relatively modest sample sizes. These results also highlight the importance of larger and more diverse 

cohorts for the genetic analysis of platelet related traits, to allow identification of ancestry differentiated variants which may influence baseline 

levels of these highly heritable platelet traits and inform clinical practice and understanding of platelet biology.  



Materials and Methods 

Description of TOPMed sequencing, freeze 8 

In brief, >30x WGS was completed across >70 cohorts and subcohorts and 140,062 individuals (some from CCDG sequencing initiative, but from 

TOPMed overlapping cohorts), and then jointly called. Details are described at https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-

methods-freeze-8.  Freeze 8 TOPMed data (and all positions in this paper) are on build 38. The thirteen included cohorts with blood cell traits are 

further described in the Supplementary Material. 

Single Variant Association Analysis Methods 

Genome-wide single variant association tests for the PLT and MPV traits were performed using linear mixed models implemented in GENESIS. A 

“null model” was fit under the null hypothesis that there is no association between the trait and variant. The null model included fixed effect 

covariates of age at time of trait measurement, sex, study phase, and the first 11 genetic principal components (PCs) estimated using PC-AiR (57). 

The null model incorporated a 4th degree sparse empirical kinship matrix estimated using PC-Relate (58) to account for genetic relatedness. These 

PCs and the kinship matrix were generated by the TOPMed Data Coordinating Center (DCC). The null model also allowed for heterogeneous 

residual variance for groups defined by HARE (59) strata. HARE strata with fewer than 30 subjects were merged with the largest HARE stratum 

for that study.  

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8


To avoid increased false positives and power reduction associated with non-Normal trait distributions, the null model was fit using a fully-adjusted 

two-stage procedure for rank-normalization. In stage 1, a linear mixed model (LMM) was fit using the trait as the outcome, fixed effect covariates, 

a sparse kinship matrix, and heterogeneous residual variance groups. The resulting marginal residuals were rank-based inverse-normal transformed 

and rescaled by the original trait variance. In stage 2, a second LMM was fit using the rescaled marginal residuals as the outcome with the same 

fixed effect covariates, sparse kinship, and heterogeneous residual variance groups as in stage 1. 

Marginal residuals from stage 2 were used to perform score tests to interrogate association of each variant on chromosomes 1 through 22 that had 

minor allele count of at least 10 and passed the IRC quality filters. Genome-wide significance was set at the p<1 x 10
-9

 level, based on estimates of 

the number of independent tests for WGS data in populations with at least some African admixture (60). The X chromosome was analyzed 

separately using a sex-chromosome specific kinship matrix, as in (61).  

Single variant tests for ancestry stratified groups were performed similarly. Self-report race/ethnicity was used to assign individuals to ancestry 

stratified groups, and then inference using HARE was used when self-report was not available. Self-report outliers were not removed. HARE 

groups were used to stratify individuals into one of four ancestral groups: East Asian, African American, Hispanic/Latino (including Central 

American, Cuban, Puerto Rican, Dominican, Mexican, and South American HARE strata), and European (including White and Amish HARE 

strata). HARE strata with five or fewer subjects were excluded. 

Gene-based Aggregate Rare Variant 



Gene-based aggregate rare variant tests were performed using burden tests (62) and SMMAT (39). The same null models as the single variant tests 

were used. Marginal residuals from stage 2 of the null model were used as the outcome. Variant sets consisted of variants with minor allele 

frequency less than 1%. Flat weights were applied to variants. Genome-wide significance was determined using Bonferroni correction (Table S3).  

Description of gene-based filters 

Three gene-based filters with decreasing levels of stringency for variant inclusion were used. Coding filter 1, the strictest variant set, retained high-

confidence LoF variants inferred using LOFTEE (63), missense variants with MetaSVM (64) score>0, and protein altering or synonymous 

variants with FATHMM XF coding score (65) >0.5. Coding filter 2 retained high-confidence LoF variants, missense variants which were 

predicted deleterious by all of the included prediction approaches (SIFT4G (66), Polyphen2_HDIV (67) ,Polyphen2_HVAR, and LRT (68)), and 

protein altering or synonymous variants with FATHMM XF coding score>0.5. Coding filter 3 retained high-confidence LoF variants, missense 

variants if they are predicted deleterious by any of the prediction algorithms tested (SIFT4G, Polyphen2_HDIV,Polyphen2_HVAR, or LRT_pred), 

and protein altering or synonymous variants with FATHMM XF coding score>0.5.  

Finally, we tested a fourth filter including both coding and noncoding variants. However, all genes identified were the same ones already identified 

in the first three coding filters, and these results were not considered further. This combined coding and noncoding variant filter retained high-

confidence LoF variants, missense variants with MetaSVM_score>0, protein altering or synonymous variants with Fathmm-XF score>0.5, 

variants overlapping with enhancer(s) linked to a gene using GeneHancer (69), and which have Fathmm-XF score>0.5 & overlap with regions 

defined as “Promoters”, “Promoter flanking regions”,“Enhancers”,“CTCF binding sites” , “Transcription factor binding sites” or “Open chromatin 

regions” by Ensembl regulatory build annotation, and variants overlapping with promoters either linked using GeneHancer or 5 Kb upstream of 



the Transcription start site, and which have Fathmm-XF score>0.5 & overlap with regions defined as “Promoters”, “Promoter flanking regions”, 

“Enhancers”, “CTCF binding sites”, “Transcription factor binding sites” or “Open chromatin regions” by Ensembl regulatory build data.  

Description of conditional analyses 

Conditional analyses for the MPV and PLT traits were performed for genome-wide significant loci from single variant and gene-based aggregate 

rare variant association tests. Conditional analyses were performed separately for each locus by incorporating variants to condition on as a fixed 

effect in the null model (see Table S6) for previously reported variants for each locus). In some cases, variants that had been reported in previous 

publications did not pass all sequencing quality controls. We performed conditional analyses with and without these “fail” variants. In general, fail 

variants will still capture informative genotypes for most individuals. Conditional single variant tests were performed for all variants with a MAC 

of at least 10, that passed the sequencing quality filters, and were within 500kb of each sentinel variant using a score test as previously described 

with the adjusted null model. Conditional gene-based aggregate rare variant association tests were performed for each aggregate unit using a 

burden or SMMAT test with the adjusted null model.  

We defined a locus as containing a conditionally distinct variant if there were any variants more significant than a Bonferroni corrected 

significance threshold, adjusting for the number of tested variants within 500 kb of each sentinel variant. 

Additional large GWAS analyses were released while this paper was being prepared (17) (16). For significant single variant and aggregate tests, 

we reran conditional analyses adjusting for all conditionally distinct variants identified in these publications (see Table S10).  



We performed conditional analysis on the TET2 gene-based SMMAT test under coding filter 1 to test if somatic variants drive the association 

between TET2 and PLT. We included as fixed effects variants that were reported somatic and aggregated the remaining rare variants in a testing 

unit. 

Description of replication cohorts 

We sought replication of the lead variants at genome-wide significant loci identified in the trait-specific conditional analysis in independent studies 

including the INTERVAL study (https://www.intervalstudy.org.uk/), the Kaiser-Permanente Genetic Epidemiology Research on Adult Health and 

Aging (GERA) cohort (70, 71) (genotyping data on African American and Hispanic/Latino participants), non-TOPMed samples from the 

Women's Health Initiative - SNP Health Association Resource (WHI-SHARe) (https://www.whi.org/) (72), and African ancestry samples from 

phase 2 of UKBB (as defined in (73)). INTERVAL used WGS, while either TOPMed or 1000G phase 3 imputed data was used in all other 

cohorts. In all cohorts, we adjusted for at a minimum age, sex, and cohort specific principal components/genetic relationship matrix and assessed 

association of each variant with inverse normalized PLT or MPV values, adjusted for covariates. Results from each study were combined using a 

sample-size weighted meta-analysis approach in METAL (74). Explained briefly, for each study and for each variant, the direction of effect and p-

value is converted into a signed Z-score. Z-scores for each variant are combined across studies as a weighted sum, with weights proportional to the 

square root of the sample size for each study. The overall Z-score is used to compute a meta-analysis p-value; this meta-analysis p-value tests the 

null hypothesis that there is no association between the variant in question and the trait of interest. 

Megakaryocyte RNA-seq and platelet production 



Immortalized cells were differentiated into megakaryocytic cell line (imMKCL) clones as previously described (75). Phenotypically 

heterogeneous single-cell subclones were cultured and expanded via doxycycline dependent expression of C-MYC, BMI-1 and BCL-XL. Clones 

were differentiated to generate platelets (3 biological replicates of 8 clones), with megakaryocytic RNA extraction on day 3 of differentiation and 

platelet production assessed by flow cytometry on day 6. Total RNA was extracted with miRNeasy Mini Kit (Qiagen), libraries prepared with 

NEB Ultra (PolyA) kits with 50 ng RNA input, and sequenced with 200-cycle paired-end kits on an Illumina HiSeq2500 system. Tuxedo Tools 

was utilized for read mapping (TopHat v. 2.1.0; Bowtie2 v. 2.2.4). Association of CHEK2, PTPRH and TET2 MK expression with platelet 

production was assessed by linear mixed effects (LME) models between transcript levels (FPKM) and platelet production (number of 

platelets/megakaryocyte) for the 8 clones with replicate experiments as random effects in the models. 



Web Resources: 

Full single variant and aggregate test summary statistics will be provided at the TOPMed genomic summary result dbGaP accession (phs001974). 
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Table 1: Single variant signals still significant after conditioning on previously known variants (full results in Table S7). Original p-value is prior 

to conditional analysis. The meta-analysis p-value is the result of combining variant-level test statistics from various replication cohorts using the 

sample size-based weighting approach in METAL (full results in Table S9). The RCL1 locus was not considered further due to the high replication 

p-value (p=0.20). Effect allele frequency is listed as NA if the variant has a minor allele count <10 in that ancestry subset and is thus not available

for analysis. PLT, platelet count, MPV, mean platelet volume. NA, not applicable.

Effect Allele Frequency, by Population 

rsID Nearest 

Gene 

Trait Annotation P-value 𝛃 P-value, 

Original 

Pooled 

Analysis 

Europeans African 

Americans 

Hispanic/L

atino 

East 

Asians 

Meta-analysis p-

value 

rs532784633 MPL PLT intron 1.01E-08 -20 3.36E-09 0.34%  NA 1.15% 0.26%  NA 4.74E-06 

rs78022296 RCL1 PLT intron 2.29E-08 -5.8 2.44E-08 3.77% 1.78% 8.17% 3.63% 7.05% 0.20 

rs73345162 PECAM1 MPV intron 2.38E-10 -0.15 4.70E-10 4.91% 0.05% 12.56% 3.87%  NA 1.86E-06 



Table 2: Lead results for gene-based aggregate tests, for burden and SMMAT tests, with platelet count (PLT) and mean platelet volume (MPV). 

Only the most significant test (burden or SMMAT) and variant filter combination are displayed for each gene, full results can be found in Table 

S8. The maximum p-value post-conditioning is taken from either the GWAS catalog (Table S6) or BCX (Table S10) identified variant conditional 

analysis.  

Gene_name OMIM Mendelian Platelet 

Disorder Gene 

Number of 

included sites 

Number of 

alternate 

alleles 

P-value Trait Test Filter Maximum p-value 

post conditioning 

GFI1B yes 36 197 4.48E-08 MPV SMMAT 2 3.02E-07 

GP9 yes 27 171 4.23E-08 MPV SMMAT 3 6.62E-06 

IQGAP2 no 66 298 2.52E-07 MPV burden 1 0.24 

TUBB1 yes 59 254 6.21E-15 MPV SMMAT 2 5.52E-03 

CD36 yes 248 2886 5.66E-08 PLT SMMAT 2 8.06E-08 

CHEK2 no 193 2520 3.06E-07 PLT burden 3 3.13E-06 

GP9 yes 42 487 5.96E-17 PLT SMMAT 3 1.03E-09 

ITGA2B yes 232 2565 4.11E-10 PLT SMMAT 3 5.13E-09 

ITGB3 yes 203 1693 5.40E-10 PLT SMMAT 3 1.10E-06 

MPL yes 73 414 2.92E-11 PLT burden 1 1.61E-11 



PTPRH no 91 1303 2.76E-08 PLT burden 1 2.39E-05 

SH2B3 yes 71 585 1.15E-07 PLT SMMAT 2 2.17E-07 

TET2 no 134 138 8.67E-07 PLT SMMAT 1 8.52E-07 

TNFRSF13B no 89 1560 3.24E-07 PLT burden 1 0.17 

TUBB1 yes 107 635 1.95E-24 PLT SMMAT 2 1.29E-06 
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