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miRNA nanotherapeutics for cancer
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Subhash C. Chauhan1, and Meena Jaggi1

1Department of Pharmaceutical Sciences and the Center for Cancer Research, College of 
Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA

2Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, 
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Abstract

miRNAs are noncoding RNA molecules that regulate gene expression through diverse 

mechanisms. Increasing evidence suggests that miRNA-based therapies, either restoring or 

repressing miRNA expression and activity, hold great promise. However, the efficient delivery of 

miRNAs to target tissues is a major challenge in the transition of miRNA therapy to the clinic. 

Cationic polymers or viral vectors are efficient delivery agents but their systemic toxicity and 

immunogenicity limit their clinical usage. Efficient targeting and sustained release of miRNAs/

anti-miRNAs using nanoparticles (NPs) conjugated with antibodies and/or peptides could reduce 

the required therapeutic dosage while minimizing systemic and cellular toxicity. Given their 

importance in clinical oncology, here we focus on the development of miRNA nanoformulations to 

achieve enhanced cellular uptake, bioavailability, and accumulation at the tumor site.

Keywords

miRNAs; tumor suppressors; oncogenic; nanotechnology; non-viral delivery; liposome; cationic 
polymers

Introduction

miRNAs are 22 nucleotide-long, noncoding RNA molecules that act as negative regulators 

of gene expression and regulate a range of biological functions, including cell survival, 

proliferation, apoptosis, tumor growth, and metastasis [1]. miRNAs bind to a complimentary 

mRNA sequence and result in post-translation repression or degradation and silencing. 

miRNAs are formed by transcription of RNA polymerase II, which folds back to form a 

distinctive hairpin structure, whereas other small mRNAs are formed from longer hairpin 
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structures [2]. Processing of miRNAs as primary (pri)-miRNA and pre-miRNA (in the 

nucleus); mature miRNA duplexes, RNA-induced silencing complex (RISC) strand-

mediated complex, and complementary mRNA sequence formation cause translation 

repression and mRNA degradation (in the cytoplasm) [3,4].

miRNAs have significant roles in cancer, as evident from the more than 25 000 peer-

reviewed reports (Figure 1A) and clinical studies on this topic over the years. Although 

several miRNAs modulating carcinogenic processes have been identified, their clinical 

translation is limited because of their unsuccessful delivery at the tumor site and their broad 

functionality, which results in off-target effects. Lentiviral vectors have shown efficient 

cellular delivery, but their activation of oncogenes and/or excessive immunogenicity raise 

concerns over the safety of genomic integration. To overcome such limitations, nonviral 

miRNA delivery systems, such as polyethyleneimine (PEI)-based NPs, liposomes, polymeric 

micelles, dendrimers, magnetic NPs, and polymeric NPs (Figure 1B), have been proposed. 

These delivery systems protect the degradation of miRNAs by nucleases and increase their 

half-life in the blood [5], can escape from endosomal and/or lysosomal degradation, and 

deliver miRNAs to the cytoplasm or nucleus (Figure 1C). The first miRNA replacement 

therapy to enter clinical trials involved the restitution of a tumor suppressor miRNA 

(miR-34) in modified liposomes (MRX34, Mirna Therapeutics; 

www.mirnatherapeutics.com/pipeline/mirna-MRX34.html). MRX34 showed promising 

results in a Phase I clinical trial, where partial responses where observed in patients with 

renal cell carcinoma (RCC), acral melanoma, or hepatocellular carcinoma. Many patients 

with advanced-stage disease showed promising results while on treatment. Thus, the 

company plans to start two Phase 2 trials with MRX34 for patients with RCC and melanoma 

by the end of 2016. Given the clinical impact of miRNAs in cancer, we review here the 

strategies implemented for the delivery of tumor suppressor miRNAs or anti-miRNAs using 

nanotechnology-based formulations for the treatment of various types of cancer.

Delivery of miRNAs: major obstacles and nanotechnology

Although accumulating scientific evidences proves that the role of miRNAs is significant in 

cancer, translation into clinical applications has several issues. The main reasons include 

poor systemic stability, rapid clearance, and lack of efficient delivery. In general, 

oligonucleotides in the bloodstream have a half-life of a couple of minutes; however, 

suitable substitution can improve the half-life to several hours [6]. The kidney is one of the 

barriers that readily accumulates and clears oligonucleotides from the body via renal 

clearance. The liver is another organ that abundantly takes up these oligonucleotides for 

clearance from the body [6]. The other major barrier is the reticuloendothelial system (RES), 

in which Kupffer cells of liver and spleen macrophages eliminate these oligonucleotides 

from the circulation system. Phagocytosis of the oligonucleotide results in a phagosome, 

which is then integrated into the lysosome, where it is degraded by nucleases [6]. Nuclease 

activity in plasma and tissue degrade the oligonucleotide very rapidly. This phenomenon can 

be avoided by targeted delivery of NPs to cancer cells [7]. Nanocarrier-mediated 

oligonucleotide delivery is capable of crossing endothelial cells into the interstitial space of 

the tumor [6]. In addition, oligonucleotides can be delivered into the cytoplasm for 

translation via endocytosis using a nanocarrier that can escape endosomal degradation. 
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There are many NPs or nanocarriers being used to deliver miRNAs, each uniquely 

formulated and with distinctive composition.

One of the most widely used groups of polymers for the delivery of nucleic acids to cells are 

cationic polymers, because, being positively charged, these can be conjugated to the 

negatively charged nucleic acids. They also present low toxicity and low immunogenic 

responses compared with other polymer-based systems for gene delivery [8]. Cationic 

polymers are subdivided into naturally derived and synthetically derived polymers. Naturally 

derived cationic polymers include chitosan (CS), dextran, gelatin, cellulose, and cyclodextrin 

polymer, whereas synthetically derived cationic polymers include PEI, poly(L-Lysine), 

poly(amido amines), poly(amino-co-ester), poly-(2-N,N-dimethylaminoethylmethacrylate), 

and dendrimers, of which PEI and its conjugates have been widely exploited for gene 

delivery purposes [8]. Low-molecular-weight PEI polymers are considered to be efficient 

carriers for the delivery of small nucleic acids, miRNAs, and small interfering (si)RNAs 

because of their low toxicity compared with other transfection agents [9]. The main 

advantage of the PEI-based delivery system is the rapid uptake and release (`proton sponge 

effect') (Figure 1C) of the nucleic acid inside the cell via an endocytic mechanism [9]. 

Schade et al. [10] showed that the combination of PEI with a magnetic NP formulation led 

to efficient delivery of the nucleic acid to target cells. Quantum dots (QDs) conjugated to 

PEI can enhance theranostic applications to provide imaging, gene delivery, and cellular 

labeling [11]. However, limitations associated with the PEI delivery system include poorer 

biodegradability inside the cell, leading to its accumulation and cytotoxicity [12]. Therefore, 

new research leading to improved PEI-based delivery systems is needed.

Liposomes are amphiphilic molecules that comprise phospholipids, are biocompatible and 

biodegradable, and, to a great extent, resemble the cell membrane of a human cell [13]. 

Given their resemblance to the cell membrane bilayer, liposomes have a tendency to pass 

through cell membranes and release their encapsulated payloads (i.e., miRNAs). The issues 

of low sensitivity or specificity and toxicity [13] can be overcome by surface modification, 

as detailed in Table 1. Polymeric micelles, which are highly soluble in water, have been 

largely identified as suitable carriers for, and distributors of, anticancer drug(s). These 

micelles have an outer and inner core that determine the different physicochemical 

properties of these nanocarriers [14]; for example, their surface composition, 

hydrophobicity, and crystallinity [14] determine the payload release. NPs comprising 

polymers, lipids, hybrids, and metal/metal oxides provide significant opportunities for 

targeted delivery [15]. NPs readily accumulate at tumor sites because of an `enhanced 

permeability and retention' effect [16].

Here, we discuss various novel strategies to circumvent antisense targeting and delivery to 

cancer cells through the use of nanotechnology.

Using nanotechnology formulations to deliver miRNAs to tumors

Breast cancer

miRNA nanoformulations targeting hyaluronic acid (HA) receptors, which are 

overexpressed in breast cancer, is a novel approach. A recent study showed that HA-CS NPs 
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efficiently delivered tumor suppressor miR-34a and doxorubicin (Dox) to breast cancer cell-

derived xenograft tumors in athymic nude mice, resulting in the increased inhibition of 

tumor growth and tumor volume compared with Dox-NPs or free Dox [17]. HA-CS-coated 

PEI-poly(D,L-lactide-co-glycolide) (PEI-PLGA) NPs conjugated with dox and miR-542-3p 

both improved targeting and increased the uptake of NPs in triple-negative breast cancer 

cells [18]. Furthermore, delivery of PLGA-PEG NPs encapsulating antisense-miR-21 and 

orlistat or orlistat NP in combination with Dox significantly enhanced apoptotic effects in 

MDA-MB-231 and SKBR-3 triple-negative breast cancer cells [19]. In another study, 

PLGA-b-PEG NPs were successful in delivering anti-sense miR-21 and miR-10b in triple-

negative breast cancer [20]. A nanoporous silicon microparticle modified by arginine-PEI in 

combination with miR-18a has been used to target breast cancer cells and resulted in a 90% 

knockdown of ATMK (an miR-18a target gene) and a significant reduction in tumor volume 

in a murine model of MDA-MB-231 cells [21]. Another CS-based nanoformulation 

incorporating negatively charged poly(γ-glutamic acid) (PGA) was conjugated with QD-

miRNA let-7a-gold NP (QD-RNA-Au NP) for delivery to breast cancer cells where Dicer-

mediated release of QD resulted in fluorescence, demonstrating its theranostic effectiveness 

[22]. Anti-miR-21 delivery with a PEI/poly(sodium 4-styrenesulfonates) (PSS)/grapheme 

oxide (GO) nanocomplex conjugated to adriamycin inhibited 40% of miR-21 and 45% of 

ABC transporter expression levels and resulted in a twofold increase in uptake of adriamycin 

[23]. In a recent study, intravenous injection of exosomes conjugated with epidermal growth 

factor (EGF) peptide targeting EGF receptor (EGFR)-expressing cells with encapsulated 

let-7a was shown to be effective in xenograft mouse models of breast cancer cells [24].

Prostate cancer

Various miRNAs, including miR-34a, −21, and −153, have been implicated in prostate 

tumorigenesis [25]. A recent study demonstrated that the delivery of CS-encapsulated 

miR-34a intrafemorally reduced bone tumor growth and volume by twofold [26]. Exosomes 

have been shown to effectively deliver anti-miR-21 oligonucleotides to prostate cancer cells, 

leading to a significant downregulation of miR-21 levels and decreased motility of prostate 

cancer cells [27]. miR-34a delivery has shown chemosensitization of paclitaxel treatment in 

prostate cancer cells by targeting the Bcl-2 protein [28]. Let-7c miRNA, conjugated with a 

NP-based system targeted for prostate cancer cells using anti- prostate specific membrane 

antigen (PSMA) antibody or aptamer conjugation, showed enhanced targeting and uptake. 

Gold NPs formulated for the delivery of miRNAs into cancer cells showed a payload that 

was approximately 10–20 times higher than that of lipofectamine, lower toxicity, efficient 

uptake, fast endosomal[DE1], and increased half-live [29]. Introduction of disulfide linkage 

in PEI (SSPEI) led to better biocompatibility and reduced the associated toxicity, whereas 

delivery of polyarginine peptide (R11)-labeled SSPEI NP showed specific uptake in prostate 

cancer cells [30]. This strategy not only reduced toxicity, but also enhanced the restitution of 

the tumor suppressor miR-145 to prostate cancer, resulting in decreased tumor burden in 

xenografted mice.

Pancreatic cancer

Deregulation of miRNAs has been shown in pancreatic cancer, leading to enhanced tumor 

growth and metastasis [31]. Various miRNAs, such as miR-221, −21, −375, −34a, and −145, 

Ganju et al. Page 4

Drug Discov Today. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have been implicated in pancreatic carcinogenesis. miR-221 has been known to function as 

an oncogene by promoting the growth of pancreatic ductal adenocarcinoma (PDAC) by 

regulating the key oncogenic PTEN-AKT pathway [32] and increased expression of matrix 

metalloproteases (MMP), such as MMP-2 and MMP-9 [33]. miR-145 functions as a tumor 

suppressor in pancreatic cancer and is known to target Mucin 13 (MUC13) to inhibit 

pancreatic cancer growth and invasion [34]. A magnetic NP formulation encapsulating 

miR-145 efficiently delivered miR-145 to the tumor site and downregulated the expression 

of oncogenic signaling, such as MUC13, HER2, and pAKT, to inhibit pancreatic cancer 

growth and invasion [35]. NP-encapsulated delivery of miRNA for pancreatic cancer 

treatment remains an unexplored field that has potential therapeutic value. In a previous 

report, tumor suppressor miR-34a restitution was achieved using an antibody-modified 

liposome/polycation delivery system in a Panc-1 xenograft mouse model [21]. Gold NPs 

with fluorophore-labeled hairpin DNA, so-called `gold nanobeacons', were used to target 

and silence miR-21, an endogenous miRNA involved in cancer development and 

chemoresistance [36]. The miR-375 expression level in pancreatic cancer is associated with 

the carcinogenesis of pancreatic cancer cells. A solid lipid NP delivery system in 

conjugation with miR-375 efficiently reached pancreatic tumors and inhibited pancreatic 

cancer growth in vitro and in in vivo models. The delivery of miR-150-encapsulated NPs 

increased the expression of miR-150 in Colo-357 and HPAF cells by 28- and 26-fold, 

respectively, compared with transfection of miRNA via lipofectamine [37].

Ovarian cancer

The efficient delivery of anti-miR-21 to ovarian cancer cells has been observed to reduce the 

tumor initiation cell burden [38]. A recent study showed a gold NP delivery system for anti-

miR-21 to be an excellent platform to target and silence miR-21 in ovarian cancer cells, 

inhibiting the sphere-forming capacity of tumor-initiating cells. miR-155 is downregulated 

in ovarian tumor-associated dendritic cells (DCs) and is essential for optimal antigen 

presentation and activation of T cells by DCs [39]. PEI-based nanocomplexes were used to 

deliver miR-155 to tumor-associated DC, which increased the expression of miR-155 in 
vitro and resulted in increased antitumor immunity and, thus, increased survival of the mice 

(by 65%) [39]. miR-124 is downregulated in ovarian cancer and acts as a tumor suppressor 

by targeting proteins such as myc and Rb and increasing the expression of p27, subsequently 

leading to cell cycle arrest at G1 phase because of the loss of phospho-Rb and decreased 

expression of the myc protein [40]. Transfection of miR-124 in an ovarian cancer cell line 

reduced the invasive and migratory capability of ovarian cancer cells and increased their 

sensitivity to etoposide by twofold. Another miR-124 miRNA, which acts as a tumor 

suppressor in ovarian cancer, modulating cell cycle-regulating genes, was efficiently restored 

in ovarian cancer cell xenograft tumors using 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(DOPC) NPs. These DOPC NPs significantly restored miR-124 in tumors, resulting in a 

significant decrease in tumor weight alone or in combination with etoposide [40].

Lung cancer

Recent studies demonstrated the feasibility of systemically delivering miRNA mimics and 

siRNAs simultaneously to lung adenocarcinoma cells using polymer-based NPs in a mouse 

model of lung cancer, eliciting a potent antitumor response. [41]. It was shown that miR-34a 

Ganju et al. Page 5

Drug Discov Today. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acts as a tumor suppressor and is significantly downregulated in lung cancer [42]. miR-34a 

targets the p53 signaling pathway to regulate cell cycle progression and apoptosis induction 

in cancer cells [42]. Liposomes encapsulating miR-34a were effectively delivered to lung 

cancer cells to mediate the inhibition of cell cycle progression and activation of apoptosis in 

lung cancer cells, thereby causing a significant decrease in tumor cell growth and volume in 

an orthotopic mouse model of lung cancer [43]. miR-200c is a known negative regulator of 

ZEB1, which induces the epithelial–mesenchymal transition (EMT) in cancer cells [44]. 

Liposomal NP-encapsulated miR-200c delivered to lung cancer cells induced the activation 

of oxidative stress response genes and enhanced the radiosensitivity of lung cancer cells up 

to 1.5 times in an in vivo mice model [45]. Multifunctional aptamer conjugated to miRNA is 

another method of delivering tumor suppressor genes, such as let7g, to lung cancer cells, 

significantly reducing tumor volume compared with aptamer treatment alone [46]. miR-29b 

is downregulated in non-small cell lung cancer (NSCLC) cells and directly targets oncogene 

cyclin-dependent kinase 6 (CDK6) to regulate cell cycle progression in these cells [47,48]. 

Cationic lipoplex-based delivery of miR-29b to lung cancer cells effectively reduced CDK6 

expression by almost 54% and reduced tumor volume by almost 50% in vivo [48].

Brain cancer

Poly(amido amine) (PAMAM) has been found to be an effective carrier for the delivery of 

miR-7 into glioma cells owing to its low toxicity, high solubilization, and delayed release 

[49]. A recent study demonstrated the successful delivery of tumor suppressor miRNA 

(let-7a)-conjugated magnetic NPs to brain cells followed by magnetic hyperthermia. In 

another study, PLGA NPs encapsulating antisense miR-21 were found to be effective in the 

delivery and sustained silencing of miR-21 function in glioblastoma cells [50]. Mesoporous 

silica NPs containing polyarginine-peptide nucleic acid (R8-PNA) conjugates targeting 

miR221 were used to treat temozolomide (TMZ)-resistant glioma cells. These NPs, 

combined with TMZ treatment, led to a significant increase in apoptosis [51].

miRNA-mediated sensitization therapeutics

Recently, the combination treatment of miRNA therapeutics with small-molecule anticancer 

drugs has received much attention because of its superior therapeutic benefit (Figure 2). This 

approach has many advantages over conventional therapies, such as reverting the EMT, 

inhibiting drug resistance build-up, promoting apoptosis and autophagy, suppressing tumor 

angiogenesis, and inhibiting the expression of efflux transporters, such as P-glycoprotein 

[52]. By actively targeting oncogenic miRNAs using an anti-miR system or restoring lost 

tumor suppressor miRNAs, it is possible to sensitize cells to chemotherapeutic drugs. This 

treatment modality resulted in smaller tumor nodules in vivo, which are less likely to show 

tumor relapse. Co-delivery of miRNA/siRNA along with chemotherapeutic drugs is 

recommended because it has additive or synergistic effects. Chemotherapeutic drugs can 

inhibit cancer growth and proliferation but, over a period of time, cells acquire resistance 

against these drugs because of the increased expression of efflux transporters and 

antiapoptotic signaling. The miRNA/siRNA platform helps to overcome drug resistance by 

directly targeting efflux transporter expression and antiapoptotic signaling, thereby 

sensitizing cancer cells to chemotherapeutic drugs [53]. This co-delivery system is an 
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exciting platform that holds promise as a better therapeutic modality for treating cancer cells 

and, thus, requires further investigation. Another study using a dual miRNA combination of 

miR-21 and miR-10b in triple-negative breast cancer showed promising outcomes for 

miRNA combination therapies with drugs or with other miRNAs [20]. A recent study 

demonstrated that lipid NP-loaded miR-34a with paclitaxel induced increased anticancer 

effects compared with paclitaxel or miRNA alone [54]. miR-205 is known to sensitize 

pancreatic cancer cells to gemcitabine by targeting chemoresistance markers (i.e., OCT3/4, 

CD44, and Tubulin β3) [55]. Gemcitabine-miR-205 conjugated micelles showed a highly 

significant reduction in tumor volume compared with gemcitabine alone in an in vivo 
pancreatic cancer model, thereby suggesting a synergistic or additive effect of the 

combination treatment on tumor cells [56]. miR-34a directly targets Notch-1 signaling in 

breast cancer, thereby inhibiting cell proliferation, invasion, and chemoresistance [57]. Dox 

conjugated to miR-34a HA-CS NPs not only targeted breast cancer cell migration by 

inhibiting Notch-1 signaling, but also sensitized cells to Dox by suppressing Dox-mediated 

activation of Bcl-2 expression at both the protein and transcriptome levels [57]. miR-21 is 

known to modulate sensitivity to chemotherapeutic drugs [58]. Co-delivery of an anti-

miRNA system with chemotherapeutic drug also holds promise as an improved treatment 

modality. miR-21 has been proven to be an oncogenic miRNA in various types of cancer, 

and suppresses PTEN expression, thus promoting Akt-mediated activation of Bcl-2 signaling 

and inducing chemoresistance in cancer cells [59]. Co-delivery of miR-21 inhibitor 

conjugated to Dox encapsulated in a star-branched copolymer comprising poly(lactic acid) 

and poly(dimethylaminoethyl methacrylate) showed excellent anticancer efficacy. Tumor 

volume in glioma cells decreased by ninefold compared with control, suggesting a 

promising treatment approach combining gene delivery and chemotherapeutic drugs [60]. 

miR-200c targets class III beta-tubulin and CD44, improves the sensitivity of cancer cells to 

chemotherapeutic drugs, and reverts EMT by increasing E-cadherin expression [61,62]. 

Gelatinase-stimuli NPs for co-delivery of miR-200c and Dox in cancer stem cells (CSC) 

resulted in a 75% decrease in tumor volume compared with control, again suggesting a 

synergistic effect of combination treatment [63]. Development of multidrug resistance in 

breast cancer cells occurs when the miR-21-mediated signaling pathway enhances 

expression of efflux transporters, such as P-glycoprotein, which are then overexpressed in 

cancer cells [64,65]. Graphene NPs have excellent physical and mechanical properties. It 

was shown that adriamycin and miR-21 inhibitor encapsulation in graphene NPs had more 

pronounced antiproliferative effects on adriamycin-resistant MCF7 breast cancer cells [23]. 

Similarly, co-delivery of miR-21 inhibitor with 5-fluorouracil (5-FU) using a poly(amido 

amine) dendrimer showed an enhanced cytotoxic effect compared with 5-FU alone in 

glioblastoma cells [66]. Delivery of anti-miR-21 with poly(L-lysine)-modified PEI NPs 

breast cancer cells increased cell cycle arrest in G1 phase, enhanced PDCD4 expression (a 

direct target of miR-21), and led to apoptosis by increased expression of caspase-3. 

Furthermore, it decreased the IC50 of Dox from 0.585 to 0.415 Mg/ml and that of cisplatin 

from 1.051 to 0.940 Mg/ml, showing the synergistic effect of this anti-miR21 and 

chemotherapeutic drug treatment [67].
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Targeted drug delivery system

A possible solution to the problem of cell-specific delivery of therapeutic miRNAs/anti-

miRNAs is the utilization of targeted miRNA mimics. The problem with NP-mediated 

miRNA and/or drugs is that uptake by cancer cells is not specific; however, this can be 

circumvented utilizing targeted approaches by coating the surface of NPs with specific 

antibodies or ligands against proteins that are specifically expressed in cancer cells. The 

targeted delivery of curcumin (a natural product) was shown in C4-2 prostate cancer cell-

derived xenograft tumors using PLGA NPs conjugated with I-131-labeled PSMA antibody 

[68,69]. These results showed significantly reduced prostate tumor burden, and the efficient 

delivery of curcumin to targeted prostate tumors with reduced or no uptake by other organs. 

This novel targeted PSMA delivery system can be used to co-deliver miRNAs and 

chemotherapeutic drugs to prostate cancer cells in a specific manner without any adverse 

effects. PSMA ligand-conjugated polymeric micelles have also been used to target prostate 

cancer cells. Transferrin-coated NPs have shown an excellent ability to pass through the 

blood–brain barrier and showed increased cytotoxic effects with zoledronic acid compared 

with free zoledronic acid in glioblastoma cells [70]. Folate receptors are highly expressed in 

breast cancer cells and NPs conjugated to the folate receptor for delivery of siRNA led to the 

specific uptake of NPs by breast cancer cells and the efficient delivery of siRNA to the 

cancer cells [71]. Aptamer-mediated delivery of short RNA therapeutics in cancer cells [72] 

has been studied, with promising results, and this system can be further enhanced by 

aptamer-conjugated drug NPs encapsulating short RNA therapeutics and chemotherapeutic 

drugs for enhanced cytotoxic activity.

These examples show that the targeted delivery of short RNA therapeutics combined with 

chemotherapeutic drugs not only increases uptake by cancer cells specifically, but also 

inhibits chemoresistance in cancer cells and enhances their cytotoxic effects, suggesting a 

synergistic effect of combinational therapy. Interleukin (IL)-10 is an important 

immunoregulatory cytokine and has an important role in T regulatory cell function [73]. 

Let-7b directly suppresses IL-10 expression in T cells and expression of let-7b regulates 

tumor-associated macrophages (TAMs) and tumor infiltrating DCs (TIDCs), leading to 

increased immune responses against the cancer cells [74]. Conjugation of let-7b miRNA to 

mannose moieties (TAMs and TIDCs express high levels of mannose receptors) and pH-

responsive PEG-histamine-modified alginate, which disintegrates in acidic 

microenvironments, led to the targeted delivery of let-7b. This nanocomplex formulation 

showed improved survivability in tumor-bearing mice, with nearly 50% of let-7b-treated 

mice still alive 50 days after the start of treatment. In addition, this formulation resulted in 

decreased tumor weight and volume along with decreased levels of M2 macrophage 

markers, with a subsequent increase in M1-specific gene (iNOS) and decreased expression 

of TIDCs markers, such as CD40 and CD80 [74]. A miRNA nanobeacon constructed with 

HA and miR-34a efficiently targeted cancer cells and endocytosis through the CD44 

receptor, which was observed both in vitro and in vivo [75] (Figure 3). Such specific 

targeting would improve therapeutic outcomes. A future goal would be to construct a unique 

nanoplatform that has inbuilt therapeutic components in addition to miRNAs, and a specific 

targeted moiety to specifically to kill or eradicate cancer cells.
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Concluding remarks

The successful delivery of miRNAs to cancer cells is a major hurdle in cancer therapeutics. 

In this review, we have focused on various advanced nanoformulations and new 

methodologies for the successful delivery of miRNAs to tumor cells. Via these 

complexation, encapsulation, and conjugation nanotechnology strategies, miRNAs can be 

delivered that target the tumor in passive, active, and stimuli-responsive ways. Furthermore, 

because of the high fibrosis and heterogeneity of tumor tissues, a single theranostic 

nanoformulation with simultaneous therapeutic and imaging capabilities is of current 

interest. In addition, nanosystems have shown reduced systemic toxicity, which has been an 

important concern with earlier conventional transfection systems.
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Highlights

• MicroRNAs play a major role in cancer

• Several clinical trials with microRNA are reported for cancer treatment

• Delivery of microRNA encounters several challenges

• We report successful microRNA nano-mediated delivery for the treatment of 

cancer
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Figure 1. 
[DE11]Scientific evidence and nano-based delivery of miRNAs for cancer therapeutics. (A) 
Publications reporting miRNA (green bars) and miRNA delivery (red bars in insert) using 

nanoparticle (NP) formulations from 2005 to July 2016. Data was collected from PubMed 

on July 26, 2016. (B) Structural differences in nanoparticle formulations used for miRNA 

delivery. (i) Polyethyleneimine (PEI) or cationic polymer-based nanoassemblies; (ii) 

liposomal formulations; (iii) polymer micelles; (iv) polymer NPs; (v) metal or magnetic 

NPs; and (vi) dendrimer-based formulations. (C) Possible routes of miRNA uptake 

mechanisms in cells: clathrin, caveolin, and receptor-mediated endocytosis. The proton 

sponge effect leads to the release of miRNAs from NPs.
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Figure 2. 
[DE12]miRNA-mediated chemosensitization of cancer cells for improved therapeutics. 

Schematic representation: Step 1: loading of nanoparticles (NPs) with miRNA and drug 

molecules. Step 2: antibody conjugation reaction for targeted delivery; Step 3: targeted 

binding and intracellular release of miRNA induces chemosensitization; and Step 4: drug 

release promotes apoptosis in cancer cells.
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Figure 3. 
Hyaluronic acid (HA) conjugation offers superior targeted delivery of miRNAs in breast 

cancer cells. (A) Schematic representation of a miR-34a-targeted nanoformulation 

preparation and in vitro specific targeting of triple-negative breast cancer cells. (B) In vivo 
whole-mice imaging of miR-34a nanoparticles (NPs) in an orthotopic breast cancer mouse 

model at different time points after intravenous injection. (C) Photon intensity of tumor 

region after injection of NPs. (D) Ex vivo excised tumor tissue exhibiting superior targeting 

potential of HA-conjugated NPs. Reproduced, with permission, from [72].
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Table 1

Surface modification of NPs facilitates miRNA binding and successful drug delivery

Nanoformulation Modification miRNA Refs

PEI/poly(L-lysine) HA miR-542-3p [18]

E-selectin miR-146a/miR-181b [76]

Polyarginine miR-145 [30]

Carboxymethyl-hexanoyl CS miR-122 [77]

Rabies virus glycoprotein miR-124a [12]

Liposomes Chlorotoxin miR-21 [78]

Surfactant protein C miR-486 [79]

Ephrin-A1 Let-7a [80]

Cyclic RGD miR-296 [81]

Transferrin miR-1 [82]

Transferrin miR-29b [83]

N-lactobionyl-dioleoyl-phosphatidylethanolamine miR-155 [84]

Gold NPs Folic acid miR-122 [85]

PEG-peptide-poly(ε-caprolactone) copolymer NPs Gelatinase miR-200c [63]

Silica NPs GD2 miR-34a [86]

PLGA Cyclic RGD miR-132 [87]

uPA miR-10b and miR21 [20]

Magnetic NPs PEI miR-145/9/21 [88]

Cy3-DNA probe Let-7 [89]

Lanthanide cations miR-99a/486/21 [90]

PEG miR-16 [91]
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