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ABSTRACT 

We have simulated multi-exciton generation (MEG) processes in Si and Ge nanocrystals, 

employing the equation of motion coupled cluster single and double as a high-level ab initio 

approach. Simulations, consistent with the experimental results reported so far, reveal the key 

role of the d-polarized valence component in the chosen basis set on the accuracy and reliability 

of the results. Moreover, the MEG thresholds calculated with def2SVP basis set are shown to be 

~8.23(8.07) eV for seven (eight)-atom Si clusters and ~7.58(6.84) eV for similar Ge clusters. 

The normalized MEG thresholds of Ge nanocrystals are 8% smaller with respect to Si. Thus in 

contrast to Si, they are more appealing to the optical device designers for enhancing the device 

quantum efficiency. Furthermore, the resemblance of the symmetry of the simulated seven-atom 

clusters to those of the experimentally dome-like grown nanocrystals makes the behavior of their 

MEG quantum probability similar. 
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 3

1. INTRODUCTION 

Increasing the conversion efficiency of the light-harvesting devices is one of the most 

challenging issues facing the device design. In the ideal situation, an indirect single-junction 

solar cell reaches a conversion efficiency of 33% known as Shockley-Queisser limit.
1
 This is 

obtained under the assumption of one electron-hole pair absorption by a single photon. The main 

portion of the energy of the absorbed photon is wasted through the phonon scattering and 

emission inside the device by heat conversion. Therefore, reduction of the energy loss is an 

approach in designing more efficient optical devices.
2
  

Multiple exciton generation (MEG) can provide a great mechanism to increase the efficiency 

of an optical device. As a result, MEG has received an ample attention in recent years.
3-36

 In a 

MEG process, several excitons are generated by the absorption of a single photon of energy 

greater than twice the semiconductor energy gap. If one can reduce the minimum required 

energy for MEG process to start in an optical device such as solar cell, the quantum efficiency 

increases accordingly. Nanocrystals are at the center of the attention because of their lower MEG 

thresholds with respect to the bulk semiconductors. They have unique optical properties that 

enhance the MEG process. There are several reasons for the improvement in the MEG process 

by nanocrystals. First, the physical dimension of a nanocrystal is close to the exciton Bohr 

radius. Consequently, the carriers’ coulomb interaction becomes strong and therefore can 

improve the MEG process. Second, the large gaps between the energy levels of a nanocrystal can 

be greater than the optical phonon energy, causing the phonon bottleneck.
4,5

 Moreover, the 

momentum conservation, which is a result of the crystal long-range periodic atomic potential, is 

relaxed in a zero-dimensional nanocrystal. Finally, the quantum confinement properties, such as 

shape, size, composition, and surface can influence the MEG process and increase the degree of 
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 4

the freedom in the design of the MEG based devices.
6
 The possibility of enhancing MEG by 

nanocrystals was first predicted by Nozik et al 
4
 and then approved experimentally for a number 

of nanocrystals, such a PbSe and PbS,
7-9

 PbTe,
10

 CdSe,
11,12

 InAs,
13,14

 Si,
15,16

 and Ge.
17

 In their 

prediction, Nozik et al 
4
 they also discussed about the effect of phonon bottleneck on the MEG 

enhancement. Despite the experimental confirmation of this effect by other research groups 
18-20

, 

there is still an on-going debate regarding this issue. For typically grown nanocrystals in which 

the upper states are degenerate and the energy separation between two adjacent levels is much 

smaller than the thermal energy (kBT), thermal vibration of atoms lifts the degeneracy and 

relaxes the phonon bottleneck effect.
21-24

 Selection rules, may not allow some of these states 

contribute to the optical transition. Nonetheless, the phonon-assisted relaxation between these 

states is highly probable. However, the role of phonon bottleneck in the lower states of these 

nanocrystals cannot be ignored. Moreover, in very small nanocrystals, wherein the carrier-carrier 

interaction is strong, the phonon bottleneck effect is pronounced.
25 

Experimental studies, so far, indicate that the MEG process is very fast (≤a few fs), and 

therefore its evolution cannot be followed. Three mechanisms have been proposed to explain 

MEG procedure in nanocrystals.
21

 One of these mechanisms is claimed to be the incoherent 

coulomb scattering that plays a similar role in the impact ionization process in bulk 

semiconductors. This incoherent scattering can relax the hot carriers to the lower energy states 

that in turn excite the valence electrons across the bandgap, generating multiple e-h pairs 
26,27

. 

Moreover, a photon of energy greater than twice the energy gap can form a coherent 

superposition of single and multiple excitons.
8
 This photo-excited superposition state can be 

dephased via the coulomb interaction between their electronic population with phonons. The rate 

of this dephasing mechanism determines the MEG efficiency.
21,28-30

 The last is the direct 
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 5

mechanism, in which a multi-exciton state is strongly coupled to a virtual single exciton, as a 

consequence of which, multi-excitons can be generated instantaneously by an absorbed photon, 

via a perturbative process.
31,32

 This mechanism, which is well-matched with our theoretical 

model used in this article, is independent of the phonon coupling. This explanation has been 

supported by the ultrafast time scale MEG experiments.
8,16

 

Silicon (Si) and germanium (Ge) with unique properties are the key materials in optical 

devices, especially solar cells. Understanding of MEG in these materials can play a major role in 

the material selection or device design. Si and Ge with similar atomic structures and lattices have 

different intrinsic properties such as dielectric constant, energy bandgap, quantum confinement, 

and exciton binding energy. So, MEG is expected to be different in Si and Ge nanocrystals. A 

number of theoretical and experimental studies on MEG processes in Si nanocrystals have been 

reported in the literature,
15,16,33-35

 so far, while there are only a couple of reports about MEG in 

Ge.
17,36

 Unlike the single-particle-based DFT methods, multi-configurational ab initio 

approaches can accurately describe the multi-excitation states and hence the MEG process. In the 

previous ab initio studies,
34, 35

 small basis sets like LANL2DZ 
37

 with symmetry adapted cluster 

configuration interaction (SAC-CI) method has been used. This has motivated us to investigate 

the effect of larger basis sets on the MEG. In this work, using the equation of motion coupled 

cluster single and double (EOM-CCSD) as a high-level ab initio approach, we have studied the 

MEG process in seven(eight)-atom Si and Ge nanocrystals (Si7(8) and Ge7(8)). In this 

comparative study, we have employed various basis sets up to def2-TZVP 
38

 (with 5S, 5P, 2D, 

1F functional components) and obtained more accurate data. To the best of our knowledge, this 

is the first instance in which a comparative theoretical study of MEG processes in Si7(8) and 

Ge7(8) nanocrystals have been reported, to date. 
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 6

2. COMPUTATIONAL METHODS 

The EOM-CCSD method provides a useful path for extending the ground state, resulted from 

the CCSD model to the excited states.
39,40

 In general, EOM-CCSD describes each excited state, 

,kΨ as a superposition of all possible excitations from CCSD ground state 0 .Ψ  This extension 

of the higher order excited configurations in the wave function depicts the dynamic electron 

correlation and the probability that multi-excitations are generated during the photo-excitation. 

By applying the linear excitation operator, ˆ ,kR to 0 ,Ψ  we obtain: 

( )ˆ
0 HF

ˆ ˆ ,
T

k k kR R eΨ ≡ Ψ = Φ  (1) 

where T̂  and HFΦ are the coupled cluster excitation operator and the restricted Hartree-Fock 

reference determinant, and 

{ } { }† † †
,0 ,1 ,2 0

; , ; ,

1 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ,
4

a ab
k k k k i ij

a i a b i j

R R R R r k r k a i r k a ib j= + + = + +∑ ∑  (2) 

in which ;0 ;1 ;2
ˆ ˆ ˆ,  ,  and k k kR R R are the reference, singly excited, and doubly excited components of 

the linear excitation operator. The subscripts i and  j, represent the occupied states that can be 

annihilated by ˆ ˆ and i j and superscripts a and b correspond to the unoccupied states with 

† †ˆˆ  and a b  as the corresponding creation operators. Moreover, 0r , a
ir , and 

ab
ijr  are the EOM 

amplitudes corresponding to the reference, single, and double excitation, respectively.  

Quantum probability of observing a single (double) excitation in a photo-excited state equals 

the sum of the squares of the corresponding EOM amplitude (i.e. 
2 2

; , ; ,

 or 
a ab
i ij

a i a b i j

r r∑ ∑ ). One way 

to obtain the MEG quantum probability (efficiency) is to calculate the percentages of the 
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 7

probabilities of the single and double excitations, that can be obtained by the reduced excitation 

level (REL),
41

 

( )

( )

( ) ( )

( ) ( ) ( )

2 22†

, ,
, ,0

2 222†
0, ,

, ,0

2

REL

iji
a abk n k n

i a i j a bn

iji
a abk n k n

i a i j a bn

r rn R R

r r rR R

< <=

< <=

+Φ Φ

= =

+ +Φ Φ

∑ ∑∑

∑ ∑∑
 (3) 

in which n  =  0, 1, 2 for reference, singly, and doubly excited components, respectively. The 

states configurations before and after absorption of a photon are different. Each configuration has 

a coefficient, denoting the contribution of that configuration to the electronic structure of the 

excited state. If the coefficient of the single excitation configuration is larger than that of the 

multi-excitation configuration, the single exciton generation is dominant. Therefore, the MEG 

probability (REL) is close to one. Otherwise, the MEG prevails. 

This EOM-CCSD based calculation method is an advanced quantum methodology that 

includes electron correlation effects for both the ground and the excited states. In this approach, 

the static and dynamic properties of a photo-excited nanocrystal can be characterized by 

superposition states, and hence is much more accurate than the effective mass 
8,42,43

 and pseudo-

potential
26,44

 approaches. In this approach, unlike in the time domain methods (such as TDDFT), 

the time-dependent processes such as phonon-induced mechanisms cannot be considered.  

Nonetheless, it can precisely describe the initial photo-excitations that can be developed further 

by a number of mechanisms, including Auger processes, 
45,26

 phonon-induced dephasing, 
28,29,46

 

and electron– phonon relaxing mechanisms.
22,47

 

3. RESULTS AND DISCUSSION 

Due to the computational cost of the EOM-CCSD, our simulations are limited to Si7(8) and 

Ge7(8) nanocrystals whose global structures are theoretically well established.
48,49

 Using DFT 
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 8

and B3PW91 functional with the def2-TZVP basis set in GAMESS-US 
50 

package, the 

nanocrystals have optimized in global minima in their neutral ground states. These have been 

successfully used in a variety of applications and shown to optimize the clusters geometry.
51

 Our 

calculations show that under the same conditions the atomic structure of Si7(8) and Ge7(8) 

clusters are alike, similar to their bulk structures. Figure 1 shows the schematics of the globally 

optimized structures of these nanocrystals. The Si7 and Ge7 clusters have similar pentagonal 

bipyramid structures with D5h point group and Si8 and Ge8 are arranged in distorted bicapped 

octahedrons with C2h point group. 

 

 

Figure 1. Schematics of (a) Si7 or Ge7 (b) Si8 or Ge8 nanocrystals optimized by global minima 

in their neutral ground states using DFT.  

First, using various basis sets up to def2-TZVPD, we investigated the influence of the basis 

sets on the MEG threshold energy of the Si7. We also calculated the HOMO-LUMO and optical 

energy gaps (EHL and EOP) for Si7 and Ge7 clusters, as compared in Table 1. It is evident that use 

of the larger basis sets in the ab initio simulations should lead to the more accurate numerical 

data. Nonetheless, use of a very large basis set can be computationally prohibitive. The purpose 

of this study is to find a reasonable basis set that can lead to the numerical results with a 

reasonable accuracy. In doing so, we used def2-TZVPD (the largest basis sets among those 

shown in Table 1) as the reference basis set for our comparison.  
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 9

Table 1. EHL and EOP for Si7 and Ge7, calculated for various basis sets 
52

 and related valence 

components. 

 Basis Set

Si7 cluster 
Ge7 cluster 

 Valence Components EHL (eV) EOP (eV)  Valence Components EHL (eV) EOP (eV) 

LANL2DZ
* 

2S, 2P 2.94 3.6 2S, 2P 2.65 3.48 

LANL2DZdp 2S, 3P, 1D 2.68 3.30 2S, 3P, 1D 2.4 3.31 

6-31G
* 

2S, 2P 2.88 3.57 2S, 2P, 1D 2.53 3.49 

6-31G(d) 2S, 2P, 1D 2.69 3.39 2S, 2P, 2D 2.4 3.37 

def2-SVP
* 

2S, 2P, 1D 2.71 3.36 2S, 2P, 2D 2.42 3.37 

def2-SVPD
* 

2S, 2P, 2D 2.66 3.19 2S, 2P, 3D 2.39 3.29 

def2-TZVP
* 

3S, 4P, 2D, 1F 2.65 3.16 4S, 4P, 4D, 1F 2.41 3.34 

def2-TZVPD 4S, 4P, 3D, 1F 2.64 3.14 5S, 4P, 5D, 1F 2.39 3.29 

* The basis set used for MEG quantum probability calculations. 

The comparison shows that the EHL and EOP values obtained by LANL2DZ and 6-31G basis 

sets with no d-polarized valence components show the two largest deviations from those 

obtained by the reference basis set. Therefore, use of the basis sets with d-polarized valence 

components is crucial in these calculations. The optical bandgap of Si7 is smaller than that of 

Ge7, which is opposite to what we expect in the corresponding bulk structures. In all cases, 

the HOMO-LUMO gap of Ge7 is smaller than that of Si7. 

Employing eq 3 we calculated the MEG quantum probability for Si7 cluster using the basis 

sets designated by asterisks in Table 1. In these calculations, only the valence orbitals in the 

active space are included. In addition, we used the largest abelian subgroup of D5h namely the 

C2V point group. The optical transitions from the ground state to the excited states in this point 

group are allowed only for A1, B1, and B2 symmetries. For each of these symmetries, we have 

considered at least hundred thirty lowest excited states. Figure 2 illustrates the quantum 
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 10

probability of the MEG for the dark and bright states versus the normalized energy. The open 

symbols represent the data for the dark states, for which the oscillator strengths are near zero and 

the optical transition does not occur. The data for the bright states that contribute to the optical 

transitions are represented by the solid symbols. Comparison of the numerical results depicted in 

Figure 2a and 2b shows the MEG thresholds obtained by LANL2DZ or 6-31G basis sets with no 

d-polarized valence components are much smaller than that obtained by the reference basis set. 

Whereas, the MEG thresholds obtained by the three basis sets with d-polarized valence 

components, as compared on Figure 2b, are comparable. 

 

Figure 2. MEG quantum probability versus E/EOP in Si7 cluster, using the basis sets (a) 6-31G 

and LANL2DZ; (b) def2-SVP and def2-SVPD, and def2-TZVP. The open and solid symbols 
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 11

represent the dark and bright states, respectively. All data is normalized in terms of its optical 

energy gap.  

The results for Si7 cluster obtained by LANL2DZ basis set is in agreement with the results 

obtained by others using the SAC-CI method.
34

 The theoretical results on MEG in Si7 reported, 

so far,
34,35

 are based on a basis set without d-polarized valence component, namely LANL2DZ. 

The calculated MEG quantum probabilities in these two reports were normalized with respect to 

the corresponding EHL values and then compared with experimental results,
15

 using the 

femtosecond transient absorption technique. However, to the calculated EHL may not be included 

in optical transitions. To include all possible optical transition, in this work, we have calculated 

the MEG quantum probabilities versus the energy normalized with respect to EOP, instead. As 

shown in Figure 2a, the MEG thresholds obtained by the smaller basis sets are smaller than 

2×E
OP

. This contradicts the energy conservation principle, indicating the vital role of the d-

polarized valence component in the MEG quantum probability calculation. On the contrary, the 

MEG thresholds obtained from the three basis sets with the d-polarized valence component are 

about 
OTh P2.4 ,E E≈ ×  despite the differences in their optical energy gaps. This is in good 

agreement with the experimental results.
15

 Henceforth, we use the def2-SVP, which is the 

smallest of the three basis sets. 

Next, using def2-SVP we calculated the MEG quantum probability versus E/EOP for the dark 

states (open symbols) and bright states (solid symbols) in Ge7 and compared the results with 

those of Si7, as shown in Figure 3. In order to relax the comparison, we also show the spline-

smoothed data for the bright states by the solid curve and dashes-dots in this figure. The 

comparison shows that despite the similarity in the MEG quantum probability characteristics, 
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 12

Th-Si(Ge)7 8. 7.5823( ) eV,E =  or ( )Th-Ge7 OP-Ge7 Th-Si7 OP-Si70.92E E E E≈ . This means the MEG in 

Ge7 is ~8% stronger than that in Si7. This can be attributed to the slightly stronger quantum 

confinement in Ge nanocrystals.
53,54

 Hence, the stronger the quantum confinement in 

nanocrystals, the more intense is the carriers’ interaction, reducing the MEG threshold.  

 

Figure 3. MEG quantum probability versus E/EOP in Si7 and Ge7. The open and solid symbols 

represent the dark and bright states, respectively. The states energies are normalized in terms of 

its optical energy gap. The spline-smoothed data corresponding to the bright states are 

respectively depicted by the solid curve and dashes. 

Employing def2-SVP basis set and using the C2h point group, we calculated the MEG 

quantum probability versus E/EOP for the dark and bright states in Si8 and Ge8 nanocrystals, as 

shown by open and solid symbols in Figure 4. The allowed optical transitions from the ground 

state to excited states in the C2h point group follow Au and Bu symmetries. Our calculations 

show that the HOMO-LUMO and optical energy gaps for Si8 and Ge8 nanocrystals are 

HL 1.82  and 1.59 eVE = and OP 2.60 and 2.40 eV.E =  
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 13

 

Figure 4. MEG quantum probability versus E/EOP in Si8 and Ge8. The open and solid symbols 

represent the dark and bright states, respectively. The states energies are normalized in terms of 

its optical energy gap. The spline-smoothed data corresponding to the bright states are 

respectively depicted by the solid curve and dashes. 

The MEG thresholds for Si8 and Ge8 nanocrystals extracted from the data shown in Figure 4 

are respectively Th 8.07 and 6.84 eV.E =  Interestingly, the MEG threshold for the Ge8 

normalized with respect to its optical energy gap is ~8% smaller than that of Si8 nanocrystal; the 

same as that obtained for their seven-atom counterparts — i.e., 

( )Th-Ge8 OP-Ge8 Th-Si8 OP-Si80.92 .E E E E≈  This could be generalized for the MEG thresholds for 

larger Ge and Si nanocrystals. It is noteworthy that this similarity is despite the significant 

difference in the relative shifts between the optical energy gaps of the seven-atom Si and Ge 

clusters as compared with the similar shift for their eight-atom counterparts. Moreover, 

comparison of Figure 4 with Figure 3 shows that the MEG quantum probabilities for the eight-

atom clusters exhibit large shifts toward the higher normalized energies and their data are less 

scattered as compared with the seven-atom nanocrystals. These can be attributed to the lower 

symmetry of the eight-atom nanocrystals, with smaller optical gaps. 
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 14

Finally, we compared the calculated MEG quantum probabilities for Si7(8) and Ge7(8) 

clusters with the data obtained from the experimentally grown nanocrystals made of Si (solid 

circles),
15

 (solid triangles)
16

 and Ge (solid squares),
17

 as depicted in Figure 5. 

 

Figure 5. MEG quantum efficiency in Si nanocrystals: calculated for Si7 (tiny solid curve), Si8 

(thick solid curve), and experimental data (solid circles 
15

), and (solid triangles 
16

); and calculate 

for Ge nanocrystals: Ge7 (tiny dashes), Ge8 (thick dashes) and experimental (solid squares 
17

). 

Our numerical results for Si7 and Ge7 are close to the experimental data for Si
 15 

and Ge
 17

. 

This is due to the similarities in the Dh5 symmetry with the symmetries of the typically dome-

like grown nanocrystals. On the contrary, the data obtained for the eight-atom clusters do not 

agree with those of the experiments. This might be due to the lower symmetry in eight-atom Si 

and Ge clusters. On the other hand, a significant difference in the two experimentally obtained 

MEG quantum probabilities for the Si clusters can be observed from Figure 5. This might be due 

to the different surface chemistries and hence different exciton relaxation dynamics for the 

nanocrystals, owing to the different conditions in which they were fabricated. The lack of enough 

experimental data on the Si and Ge nanocrystals and the inconsistency in the two sets of data on 

Si, reported so far, makes a fair comparison between their MEG processes difficult. Nonetheless, 

the numerical results reported in this paper show nearly similar behavior for the MEG quantum 
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 15

probabilities for Si and Ge nanocrystals versus the energy normalized to their respective optical 

gaps. 

4. SUMMARY AND CONCLUSION  

Employing high-level ab initio approach we have calculated MEG quantum probabilities for Si 

and Ge nanocrystals versus energy normalized with their respective optical gaps. Simulations 

show that the calculated threshold energies for these clusters depend on the degree of the chosen 

basis sets. Specifically, the role of the d-polarized valence component of a basis set is vital in the 

results. The energy window over which single to multi-excitation transition takes place in the 

seven-atom Si(Ge) nanocrystal is wider than the transition window for the eight-atom Si(Ge) 

nanocrystal. This can be attributed to the larger degree of symmetry in the smaller cluster. The 

larger the degree of the symmetry, the larger the set of the selection rules, and hence the more 

transitions are available. Moreover, it is shown that the MEG threshold for Ge7(8) normalized 

with its optical gap is ~8% smaller than that of the Si7(8) nanocrystal. This can be generalized 

for the larger nanocrystals and hence makes the Ge nanocrystals more appealing for MEG 

processes for enhancing the quantum efficiency of the optical devices, such as solar cells and 

photo-detectors. 
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Schematics of (a) Si7 or Ge7 (b) Si8 or Ge8 nanocrystals optimized by global minima in their neutral ground 
states using DFT.  
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MEG quantum probability versus E/EOP in Si7 cluster, using the basis sets (a) 6-31G and LANL2DZ; (b) 
def2-SVP and def2-SVPD, and def2-TZVP. The open and solid symbols represent the dark and bright states, 

respectively. All data is normalized in terms of its optical energy gap.  
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MEG quantum probability versus E/EOP in Si7 and Ge7. The open and solid symbols represent the dark and 
bright states, respectively. The states energies are normalized in terms of its optical energy gap. The spline-
smoothed data corresponding to the bright states are respectively depicted by the solid curve and dashes.  
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MEG quantum probability versus E/EOP in Si8 and Ge8. The open and solid symbols represent the dark and 
bright states, respectively. The states energies are normalized in terms of its optical energy gap. The spline-
smoothed data corresponding to the bright states are respectively depicted by the solid curve and dashes.  
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MEG quantum efficiency in Si nanocrystals: calculated for Si7 (tiny solid curve), Si8 (thick solid curve), and 
experimental data (solid circles 15), and (solid triangles 16); and calculate for Ge nanocrystals: Ge7 (tiny 

dashes), Ge8 (thick dashes) and experimental (solid squares 17).  
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