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ARTICLE

Determinants of penetrance and variable
expressivity in monogenic metabolic conditions
across 77,184 exomes

Hundreds of thousands of genetic variants have been reported to cause severe monogenic

diseases, but the probability that a variant carrier develops the disease (termed penetrance)

is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic

variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618

multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants

from the UK Biobank, for whom genotype array data were also available), we apply clinical

standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare

variants causing monogenic diabetes and dyslipidemias display effect sizes significantly

larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance

estimates for monogenic variant carriers average 60% or lower for most conditions. We

assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant

carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker

estimation for two monogenic dyslipidemias.

https://doi.org/10.1038/s41467-021-23556-4 OPEN

A list of authors and their affiliations appears at the end of the paper.
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Healthcare providers and researchers are increasingly faced
with interpreting genetic sequence data collected from
individuals who are asymptomatic or for whom limited

clinical information is available. Standard clinical practice for
reporting whole exome and genome sequencing results may
involve risk assessment for genetic variation causing conditions of
known relevance to the individual and also potentially impactful
variants unrelated to the primary indication for testing (termed
“secondary genetic findings,” for example the American College
of Medical Genetics and Genomics (ACMG) list of 59 medically
actionable genes)1–3. Thus, predicting the risk conferred by genetic
findings in individuals who are not known to have the relevant
conditions is of critical importance, but remains a challenge4.
Furthermore, the scope of genetic variation interpreted in current
clinical genetics practice is predominantly limited to rare mono-
genic “Mendelian” disease variants with large predicted effect sizes,
leaving the vast majority of the genome, including common var-
iants, unassessed. Recent studies have suggested that a high burden
of common genetic variation may confer increased disease risk
equivalent in magnitude to carrying rare monogenic variants5;
however, this equivalency has also been called into question6, and
it remains uncertain whether and how to integrate polygenic scores
capturing common genetic variation into medical care7.

Clinical application of genomic sequence data requires iden-
tification of medically significant genetic variants and estimation
of their impact. In recent years, detailed guidelines from the
ACMG and the Association for Molecular Pathology (AMP)8

have provided standards for reporting clinically significant var-
iants, which have been implemented by ~95% of clinical
laboratories internationally9. Nevertheless, the probability that
carriers of such variants will manifest the given condition (termed
“penetrance”) is unknown or uncertain for the vast majority of
reported pathogenic variants4. Furthermore, individuals with the
same genotype may exhibit variable degrees of phenotype
expression (termed “variable expressivity”)10,11. Estimates of
penetrance and expressivity traditionally have been derived from
studies focusing on individuals with a given condition and their
family members; this approach suffers from ascertainment bias,
since the proband, who came to clinical attention due to having
the condition, may share other genetic and/or environmental
factors influencing manifestation of the condition with their
family members11,12. Interpretation of rare variants identified by
sequencing is further complicated by limited or no data available
from any source, including families, to assess penetrance4.

Large-scale population-based and cohort studies with both
sequence and phenotype data offer an opportunity to estimate
penetrance and expressivity with less upward bias compared to
family or case-control studies. In fact, population-based studies
may have a healthy-participant bias, which could provide
downwardly biased estimates of penetrance13. Recent studies
attempting to connect large-scale genetic and phenotypic data
have noted reduced penetrance estimates compared to those
previously reported; however, these recent studies were limited by
sample size and/or application of less stringent curation of genetic
variants than the current clinical standard of care ACMG/AMP
guideline approach6,13–16. In addition, further characterization of
additional epidemiologic and genetic factors, such as phenotypic
ascertainment and polygenic risk, is needed for accurate predic-
tion of penetrance and expressivity for rare monogenic variants.

Here we present analyses performed in two separate datasets:
38,618 exomes from individuals ascertained as part of multi-
ancestral type 2 diabetes (T2D) case-control studies, and 38,566
exomes from individual volunteers in the UK Biobank (UKB).
Our analyses focus on traits with complex genetic architectures,
involving rare and common genetic contribution, and well-
defined biomarkers. These include diabetes (maturity-onset

diabetes of the young (MODY), neonatal diabetes, autosomal
dominant lipodystrophy) and disorders of LDL cholesterol, HDL
cholesterol, triglycerides, and obesity. In addition to performing
stringent curation using the ACMG/AMP criteria8 to generate a
set of clinically significant genetic variants, we also calculate
polygenic scores in the UKB dataset to assess the cumulative
impact of common variation on the same phenotypes. These data
allow us to make a direct comparison between monogenic and
polygenic risk, and to assess the contribution of polygenic risk to
expressivity for carriers of monogenic variants.

Results
Identification of high confidence clinically significant variants
enhances risk stratification. We studied two distinct datasets for
which both individual-level exome sequence and phenotypic data
were available (N= 77,184): a compilation of multi-ancestral case-
control studies for T2D, involving 22,875 T2D (or prediabetes) cases
(see “Methods”) and 15,743 controls from the T2D-GENES and
AMP-T2D consortia17, (referred to subsequently as AMP-T2D-
GENES); and 38,566 unrelated individuals of European origin from
the UKB18 (see “Methods”, Supplementary Table 1, Supplementary
Data 1). Our analyses focused on 26 genes offered by clinical
laboratories in the United States for evaluation of monogenic forms
of diabetes or diabetes-related traits through autosomal dominant
modes of inheritance: MODY most commonly offered in panel
testing (GCK, HNF1A, HNF1B, HNF4A, PDX1), an extended set of
purported MODY genes less frequently offered in panel testing
(AKT2, KLF11, APPL1, ABCC8, KCNJ11, NEUROD1, CEL, INS),
neonatal diabetes (ABCC8, GATA4, GATA6, HNF1B, INS, KCNJ11),
lipodystrophy (AKT2, LMNA, PLIN1, PPARG), elevated LDL cho-
lesterol (LDLR, APOB), low serum LDL cholesterol (APOB, PCSK9),
elevated serum HDL cholesterol (CETP), hypertriglyceridemia
(APOA5, LPL), and monogenic obesity (MC4R).

We performed stringent variant curation using the clinical gold
standard ACMG/AMP criteria, blinded to carrier phenotypic data
for two classes of variants: 276 variants previously reported to be
clinically significant (designated “pathogenic” or “likely patho-
genic”) in the ClinVar database19 or designated as disease-causing
in review articles20–22; and 218 predicted loss of function (pLoF)
variants in genes with supported loss-of-function mechanism of
action, which underwent curation including manual inspection of
sequence reads by two independent reviewers (see “Methods”).
Our approach was intended to capture high-confidence clinically
significant variants, although notably excluded missense variants
beyond those in the ClinVar database because of the low prior
probability of disease relevance and the challenges of inferring
pathogenicity for this variant class. In total across the AMP-T2D-
GENES and UKB study exomes, 238 variants, representing 51%
of all 463 variants curated, were determined by ACMG/AMP
criteria to be clinically significant and were found in 626 carriers
(Fig. 1, Supplementary Table 2, Supplementary Data 2). Across
the conditions, the clinically significant variants were observed in
all represented ancestral groups (Supplementary Fig. 1).

We next assessed the impact of clinically significant monogenic
variants on corresponding biomarkers, restricting analyses to
conditions with at least ten carriers of variants in relevant genes
(Supplementary Table 2). Monogenic variant carriers for
dyslipidemias had significantly more extreme lipid trait values
compared to non-carriers, with shifts on average of ~55 mg/dL
for both high and low LDL cholesterol conditions, ~130 mg/dL
for high triglycerides, and ~16 md/dL for high HDL cholesterol
(P < 10−5 for all; adjusted for age, sex, and 10 PCs; Table 1). For
monogenic obesity, MC4R variant carriers had ~2 kg/m2 higher
mean body mass index (BMI) than non-carriers in both datasets,
however, this difference reached significance only in UKB
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(P= 0.063 AMP-T2D-GENES, P= 0.006 UKB). Despite differ-
ences in the study populations and designs in AMP-T2D-GENES
and UKB, the effect sizes of clinically significant variants on
relevant biomarkers were remarkably consistent across the two
studies for dyslipidemia and obesity gene sets, once the former
was adjusted for lipid medication use (Table 1, Supplementary
Data 3). MODY variant carriers had significantly increased odds
of having diabetes compared to non-carriers in both studies
(OR > 7, P < 10−4; Table 1, Supplementary Data 3); differences in
risk estimates between the two studies were likely influenced by
ascertainment practices in AMP-T2D-GENES, as it was a T2D
case-control study and several sub-studies intentionally excluded
diabetes cases with clinical features suggestive of MODY17

(Supplementary Data 1).
We also performed the same effect size estimates noted above,

but for the variants filtered out during our curation process. We
reclassified 7% (21/276) of curated variants from review articles

and from ClinVar (which had been designated as clinically
significant by at least one submitting source) to “benign” or
“likely benign.” Likewise, 27% (59/218) of the pLoF variants were
downgraded by our manual review of sequence reads. Together,
these ClinVar, review, and pLoF variants that were downgraded
by our curation (77/463, 17%) had markedly reduced effect sizes
compared to variants we curated as clinically significant
(Supplementary Data 4)23–26. These findings support our
curation process and highlight the need for caution in relying
on available variant designations without additional review.

Monogenic variant effect sizes are significantly larger than the
top 1% of polygenic risk scores. We next directly compared the
effect of monogenic variation to common genetic variation on
the same corresponding biomarkers in UKB participants. We
employed published polygenic scores capturing millions of

AMP−T2D−GENES UKBB
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Fig. 1 Curation of ClinVar and pLoF variants across the monogenic conditions. Total number of curated ClinVar/Review (blue) and pLoF (red) variants
with carriers in AMP-T2D-GENES (left panel) and UKB (right panel). Darker color shades indicate variants determined to be clinically significant
(pathogenic, likely pathogenic, or pLoF) and lighter shades indicate variants excluded during curation from further analysis.

Table 1 Impact of clinically significant variants on traits.

AMP-T2D-GENES (N= 38,618) UK Biobank (N= 38,566)

Condition (proxy measure) Gene N carrier Beta (se) P value* N carrier Beta (se) P value*

High LDL (LDL mg/dL) composite 55 56.0 (5.2) 3.9 × 10−24 83 54.2 (3.9) 1.6 × 10−44

APOB 11 31.5 (12.0) 8.9 × 10−3 26 52.2 (6.8) 2.2 × 10−14

LDLR 44 65.3 (6.3) 9.0 × 10−25 57 55.1 (4.7) 1.1 × 10−31

Low LDL (LDL mg/dL) composite 35 −56.1 (7.1) 4.4 × 10−15 90 −56.4 (3.7) 6.9 × 10−52

APOB 8 −79.8 (14.7) 5.9 × 10−8 48 −74.5 (5.1) 6.7 × 10−48

PCSK9 27 −48.7 (8.2) 2.6 × 10−9 42 −36.1 (5.4) 2.7 × 10−11

High HDL (HDL mg/dL) CETP 21 16.5 (3.0) 3.6 × 10−8 20 16.8 (2.4) 2.3 × 10−12

High triglycerides (TG mg/dL) composite 20 130.0 (27.3) 2.8 × 10−6 54 126.0 (12.2) 2.4 × 10−16

APOA5 15 122.4 (29.7) 2.6 × 10−5 38 145.5 (13.6) 2.4 × 10−14

LPL 5 152.8 (54.6) 2.5 × 10−2 16 79.3 (22.4) 9.4 × 10−4

Monogenic obesity (BMI kg/m2) MC4R 28 1.5 (1.0) 6.3 × 10−2 31 2.2 (0.8) 6.3 × 10−3

Condition Gene N carrier OR P value* N carrier OR P value*

MODY (diabetes) composite 22 7.8 (4.2–14.6) 6.5 × 10−5 16 21 (12.5–35.2) 2.6 × 10−8

GCK 7 37.4 (6.3–222.0) 1.3 × 10−3 10 40.5 (20.3–80.7) 3.1 × 10−8

HNF1A 11 4.8 (2.2–10.4) 1.7 × 10−2 5 9.0 (3.51–22.9) 2.3 × 10−2

MODY (T2D and prediabetes) composite 22 4.8 (2.6–8.8) 2.5 × 10−3 16 21.5 (11.5–40.4) 9.1 × 10−9

GCK 7 17.8 (3.4–94.0) 8.2 × 10−3 10 132.0 (28.7–611.0) 1.4 × 10−9

HNF1A 11 3.1 (1.5–6.6) 8.9 × 10−2 5 5.1 (2.0–12.9) 6.1 × 10−2

Composite= individuals carrying variants in any of the genes analyzed for that condition. Note that MODY composite gene set included GCK, HNF1A, HNF1B, HNF4A, and PDX1.
*Comparison of variant carriers to non-carries using EPACTS burden two-sided testing, adjusted for age, sex, 10 PCs. No adjustment has been made for multiple comparisons.
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common genetic variants across the genome, termed global
extended polygenic scores (gePS)27 (see “Methods”). Since the
gePS predicts lifetime risk of developing a disease, and the
population mean age in UKB was 58 years, it was possible that
estimates by gePS would be under-estimates not capturing indi-
viduals who would later in life develop a given condition.
We therefore performed gePS analyses restricted to individuals
age ≥ 60 year (mean age 65 years) so as to have a fairer
comparison with monogenic conditions, which are typically
diagnosed at a younger age.

Individuals with the top 1% of gePS had more extreme lipid levels
or diabetes risk compared to those with average gePS (25–75% tiles)
(Supplementary Table 3); however, the carriers of clinically significant
monogenic variants for these same conditions had even more severe
values compared to those top 1% respective gePS’s (P < 0.05 for each
condition, Fig. 2, Supplementary Table 3). For obesity, the difference
in BMI between MC4R monogenic variant carriers and the top 1%
BMI gePS was not significant (Fig. 2).

Monogenic metabolic conditions display highly variable pene-
trance estimates. While in aggregate clinically significant mono-
genic variants had marked effect sizes, individual-level trait values
in carriers varied considerably (Fig. 3A). In both datasets, pene-
trance estimates based on standard disease cut-offs (see “Methods”)
were estimated to be 60% or lower in both studies for all mono-
genic metabolic conditions except APOB low HDL cholesterol and
monogenic diabetes (Fig. 3B, Supplementary Data 1). Penetrance
estimates for continuous traits will depend on the chosen threshold
level, and it is notable that there was greater variability between
studies than was seen with the analysis of effect sizes. Nevertheless,
we clearly saw evidence of incomplete penetrance for all gene-
conditions with the only exception of GCK-MODY; in both
datasets 100% (17/17) of carriers of clinically significant GCK
variants developed diabetes or prediabetes (penetrance estimates of
100%, 95% CI: 59.0–100% in AMP-T2D-GENES and 69.2–100% in
UKB) (Fig. 3B, Supplementary Data 3, 5).

Genetic vs phenotypic ascertainment of MODY suggests broad
phenotypic spectrum. We performed deeper phenotyping of
MODY variant carriers in the two datasets to determine whether
these genetically ascertained individuals manifested clinical fea-
tures suggestive of MODY, as typically seen in phenotypically
ascertained MODY cases. Monogenic diabetes, and particularly
MODY (the most common form) can often be misdiagnosed as
type 1 or type 2; however, MODY has subtle phenotypic differ-
ences from these other forms of diabetes and also, importantly,
distinct gene-specific therapeutic strategies28.

Focusing on the MODY genes most commonly offered in
commercial panels available in the United States (HNF1A, GCK,
HNF4A, HNF1B, and PDX1)29, 86.4%, 95% CI 65.1–97.1%, of
carriers of clinically significant variants had evidence of prediabetes
or diabetes in AMP-T2D-GENES and 81.2%, 95% CI 54.4–96.0%, in
UKB (Supplementary Data 5, Supplementary Fig. 2). GCK-MODY is
characterized by non-progressive asymptomatic mild hyperglycemia
that is present from birth and may remain in the prediabetes state
rather than progress to diabetes.30 As noted, there was 100%
penetrance for carriers of clinically significant GCK variants
developing diabetes or prediabetes; in addition, all those with
glycated hemoglobin (HbA1c) values available (N= 13) had levels
consistent with GCK-MODY, ranging from 5.7 to 7.2% (HbA1c in
GCK-MODY is typically 5.6–7.6%31) (Supplementary Data 5).
Penetrance estimates for diabetes in HNF1A-MODY from our two
datasets (81% in AMP-T2D-GENES, 95% CI 48.2–97.7% and 40% in
UKB, 95% CI 5.27–85.3% diagnosed with diabetes by 56 years) were

lower than what has previously been reported in the literature (e.g.,
97%, 95% CI 96–98% by 50 years32) (Supplementary Data 5).

Clinical features classically associated with MODY (BMI ≤ 30
and triglycerides ≤15033,34) were only observed in 50% (11/22) of
MODY variant-carrying individuals in AMP-T2D-GENES and
75% (12/16) in UKB. Similarly, an expected young age of diagnosis
(age ≤ 35 years), was only observed in 20% (3/15) of those with
available data across both datasets (Supplementary Data 5). Thus,
at least 63% of all MODY variant carriers did not have expected
clinical features. Since participants in AMP-T2D-GENES were
selected to be T2D cases or controls, and specific exclusion
criteria were employed by several studies to remove possible
monogenic diabetes cases (Supplementary Data 1)17, these
ascertainment practices could have introduced bias away from
classical MODY features in MODY variant carriers. Nevertheless,
when all MODY carriers were compared to others with diabetes in
each study, they had significantly lower mean BMI and serum
triglycerides (BMI: AMP-T2D-GENES: 26.6 vs 28.7 kg/m2, P=
0.027; UKB: 25.8 vs 31.7 kg/m2, P= 0.004; triglycerides: AMP-
T2D-GENES: 136 vs 182mg/dL, P= 0.032; UKB: 97 vs 186mg/
dL, P= 0.004; adjusted for age, sex, and 10 PCs). Thus, in
aggregate, MODY variant carriers displayed expected clinical
features, but on an individual level, genetically ascertained
individuals revealed a broader spectrum of disease phenotype.

Phenotypic ascertainment strongly impacts estimates of
expressivity. It is well-appreciated that phenotypic ascertainment of
individuals can upwardly bias estimates of expressivity13,35, and we
sought to better define this impact by studying conditions of high
and low LDL cholesterol levels, where we had information on phe-
notypic ascertainment within a specific AMP-T2D-GENES cohort. A
set of 535 individuals selected for extreme LDL cholesterol (>98th or
<2nd percentile), without knowledge of their monogenic condition
carrier status, were sequenced as part of the Exome Sequencing
Project (ESP) cohort in AMP-T2D-GENES36 and not included in the
prior analyses. Within this ascertained sample, we identified 18
carriers of clinically significant monogenic high LDL cholesterol
variants in APOB and LDLR (mean LDL 329mg/dL) and 15 carriers
in low LDL cholesterol variants in APOB and PCSK9 (mean LDL
49.2mg/dL). As expected, compared to carriers of variants for the
same LDL cholesterol conditions, but not ascertained on LDL phe-
notype, the two ascertained groups had more extreme LDL choles-
terol levels (mean LDL cholesterol values 198mg/dL, P= 4 × 10−4

and 77mg/dL, P= 0.06, respectively, Fig. 4, Supplementary Table 4).
Five variants (High LDL: LDLR p.Glu101Lys, LDLR p.Asp266Glu,

LDLR p.Gly592Glu, APOB p.Arg3527Gln; Low LDL: PCSK9 p.
Tyr142Ter) were carried by individuals both in the phenotypically
ascertained group and in the rest of the AMP-T2D-GENES cohort.
These variants showed the same pattern of significantly more
extreme LDL cholesterol values in the phenotypically ascertained
compared to genetically ascertained individuals (P < 0.05; all analyses
adjusted for age, sex, ancestry, and diabetes status; Fig. 4;
Supplementary Table 4). These marked differences in LDL
cholesterol values between the phenotypic vs genetic ascertained
carriers, even among those carrying exactly the same LDL cholesterol
variant, could not be explained by the use of lipid-lowering
medication, assay use, or biased selection of the LDL cholesterol
values among those available (e.g., selection of maximum LDL
cholesterol value ever for phenotypically ascertained participants)36.

In fact, the mean absolute impact of phenotype ascertainment
on serum LDL cholesterol levels among individuals with
monogenic LDL-raising or lowering variants (27.8–131.0 mg/dL,
Supplementary Table 4, Fig. 4) was thus similar or greater than
the mean impact of carrying these same variants compared to
non-carriers (31.5–65.3 mg/dL, Table 1, Fig. 4). Such a substantial
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effect from phenotypic ascertainment reflects the large variation
in expressivity at the single-variant level and underscores the
importance of considering phenotypic ascertainment bias in
monogenic risk prediction.

Polygenic risk may increase expressivity of monogenic variants.
The variability in phenotype expressivity that we observed across
all monogenic conditions (Fig. 3A) suggests that additional
environmental and/or genetic factors contribute to expressivity
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Fig. 2 Carriers of rare clinically significant monogenic variants for lipid conditions and monogenic diabetes have more extreme effect size estimates
than individuals with the top 1% of global extended polygenic scores (gePS). In all plots data is from the UK Biobank participants. The left panels show
the distribution of the phenotype in each percentile of the gePS for the relevant condition (black, N mean 364 individuals per centile), and the right panel
shows the phenotype distribution in carriers of rare clinically significant monogenic variants for the corresponding condition (red); low LDL cholesterol
(APOB, PCSK9; N= 90), high LDL cholesterol (LDLR, APOB; N= 83), high HDL cholesterol (CETP; N= 20), high triglycerides (APOA5, LPL; N= 54),
monogenic obesity (MC4R; N= 31), and MODY (GCK, HNF1A, PDX1; N= 16). A–EMean and 95% CI of each phenotype are indicated by the point and error
bars, respectively. The same gePS calculated for risk of increasing LDL levels was used for (A and B); however, the inverse of this gePS was used for (B) to
illustrate that higher gePS indicates risk of lower LDL cholesterol. F The proportion of individuals with diabetes and 95% CI computed with the
Clopper–Pearson method are shown as points and error bars, respectively. Individuals in the gePS analysis were restricted to those age ≥ 60 years. LDL
cholesterol and triglyceride values were adjusted for lipid-lowering medication use (see “Methods”).
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beyond the given monogenic variant. We assessed whether
common genetic variation alters expressivity in UKB participants
carrying monogenic disease variants.

Among carriers of high HDL cholesterol, low LDL cholesterol,
high triglycerides, and monogenic obesity variants, we found that

a higher gePS for each condition was associated with a more
severe phenotype (e.g., among carriers of monogenic high HDL
cholesterol variants, having an increased HDL gePS was
associated with even higher HDL cholesterol). However, these
trends were only significant for high HDL cholesterol (gePS one

Fig. 3 Phenotype distributions and penetrance estimates of clinically significant variant carriers. In all plots, clinically significant variant carriers are
shown in red and non-carriers are shown in grey. The left panel of each plot shows AMP-T2D-GENES participants (T2D case/control study) and the right
panel shows UK Biobank participants (population-based study). See Supplementary Data 3 for individual counts. A Mean and 95% CI are represented by
the black circle and black lines, respectively. Relevant lipid levels (mg/dl) or body mass index (kg/m2) are shown for carriers (C) and non-carriers (NC) of
clinically significant variants for the five monogenic conditions. The blue boxes indicate the phenotype values that meet a clinical threshold for diagnosis of
each of the conditions, and P values were obtained by two-tailed burden analysis in EPACTS (see “Methods”). No adjustment has been made for multiple
testing. B Dots are the proportion of individuals that have the condition based on the clinical diagnosis threshold for each condition; for MODY, we show
the proportion of individuals meeting T2D as well as T2D and prediabetes criteria (see “Methods”). Error bars reflect 95% CI computed with the
Clopper–Pearson method.
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SD: beta 17.52 mg/dL, P= 0.012) and high triglycerides (gePS one
SD: beta 80.57 mg/dL, P= 0.014) (Fig. 5, Supplementary Table 5).
Notably, despite our large study size, power in this analysis was
limited, and we estimate that at least 98 carriers of clinically
significant variants for a given monogenic condition would be
needed for 80% power to detect a correlation of 0.25 (the
minimum noted for the above traits) between a given trait and
gePS at significance level α= 0.05. Therefore, for a monogenic
condition with prevalence of 1 in 10,000 individuals, a
population-based study with sample size on the order of one
million individuals would be required to categorically determine
the impact of polygenic risk.

We also assessed the interaction between gePS and monogenic
risk in both monogenic carriers and non-carriers in the UKB, and
observed significant positive interactions for the same two
conditions, high HDL cholesterol (P= 0.001) and high triglycer-
ide levels (P= 0.01); however, given the complexities of
interaction analyses, additional work will also be needed in larger
cohorts before we can conclude that gePS contributes to
phenotype expression differently in carriers and non-carriers37.

Discussion
Until recently, the impact of clinically significant monogenic
variants on predicting phenotype expression has been pre-
dominantly studied in individuals or families ascertained on
phenotype12. Our analysis employed population-based studies to
provide less upwardly biased estimates of penetrance and
expressivity, and to quantify the impact of phenotypic ascer-
tainment and polygenic risk. We were able to directly compare
monogenic and polygenic risk for each condition, and also assess
the additional contribution of polygenic risk to expressivity for
carriers of monogenic variants.

We applied the current gold standard ACMG/AMP clinical
variant classification criteria8 to ensure relevance to current

clinical practice and demonstrated resultant improvement in risk
stratification (Supplementary Data 3, 4). Gene variant curation
was blinded to participant phenotypes and assessed variants
expected to cause multiple metabolic conditions in 77,184 exomes
of adults (age ≥ 40 years) from the AMP-T2D-GENES con-
sortium and the UK Biobank. Our current analysis adds to a
growing set of studies aimed at re-evaluating penetrance estimates
using population-based studies6,8,13–16,38, with our study notable
for its large sample size, use of clinical standard-of-care ACMG/
AMP criteria to curate genetic variants, and investigation of
multiple monogenic metabolic conditions.

Carriers of the highly curated clinically significant variants for
monogenic dyslipidemias and MODY had significantly more
extreme trait effect sizes compared to non-carriers (betas
16.5–130.0 mg/dL for dyslipidemias, OR > 7 for diabetes risk, P <
10−4, Table 1). Despite differences in study populations and
designs, the effect estimates for rare monogenic variation for all
conditions aside from monogenic diabetes (which was subject to
ascertainment bias in AMP-T2D-GENES) were remarkably
consistent between the two studies, supporting the integrity of
our variant curation. We also assessed the impact of common
genetic variation with polygenic scores. There has recently been a
great deal of interest around the potential clinical contribution of
such scores, especially gePS, and particularly in comparison to
monogenic variant risk5. We show here that with the exception of
monogenic obesity, polygenic risk at the top 1% of the risk dis-
tribution is not equivalent to monogenic risk, consistent with
recent observations,6 but in contrast with others5. In their current
state and for the conditions we studied, the risk conferred by
polygenic scores on their own was still substantially less than
clinically significant monogenic variants; the only exception to
this was MC4R obesity variants, which are known to have low
predictive value for obesity risk39. There will likely be further
development of polygenic scores with improved disease predic-
tion in the coming years and with improved capture of SNP-

Fig. 4 Ascertainment bias significantly impacts expressivity of clinically significant variants for LDL cholesterol conditions. LDL cholesterol levels are
shown for carriers and non-carriers of LDL cholesterol raising (top panels) or lowering (bottom panels) clinically significant variants in AMP-T2D-GENES.
The variants carriers are stratified by whether they were identified in individuals phenotypically ascertained for extreme serum LDL cholesterol levels (Yes,
Red) or in a separate unascertained population (No, Blue) (see “Methods”). The left panels show all clinically significant variant carriers. The right panels
show carriers of the single variants that were present in both ascertained and unascertained individuals. Top left, LDL-raising variant Non-carriers N=
19,131, Carriers not ascertained on LDL cholesterol level N= 55, Carriers ascertained on LDL cholesterol level N= 18. Bottom left, LDL-lowering variant
Non-carriers N= 19,151, Carriers not ascertained N= 35, Carriers ascertained N= 15. Mean and 95% CI are represented by the black circle and black lines,
respectively. LDL cholesterol values are adjusted for lipid-lowering medication use as per methods. See also Supplementary Table 4.
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based heritability, it may well be possible to identify monogenic
risk equivalents. For example, we estimate that using a polygenic
score for HDL cholesterol capturing 15.7% heritability (a max-
imum SNP-based heritability predicted by various analyses40–42),
0.13% of the population with the highest polygenic scores would
have mean HDL cholesterol values equivalent to the mean HDL
cholesterol value we observed in carriers of monogenic high HDL
in this study.

We observed a wide range of expressivity among clinically sig-
nificant monogenic variant carriers across all traits (Fig. 2A), and
consequently estimates of penetrance were 60% or lower for all
conditions except APOB low LDL cholesterol and monogenic dia-
betes. Given the dependence of penetrance estimates for continuous
traits on a chosen threshold and the great degree of variability
between studies observed for penetrance estimates, the most
important message from our findings is not an exact penetrance
estimate per se, but rather the wide range of expressivity observed
for carriers of highly curated monogenic variants. We observed
particularly low penetrance of MC4R for obesity (<55% for BMI ≥
30 kg/m2), consistent with previous findings6,39,43 (Fig. 2B) and

particularly high penetrance for GCK-MODY (100% for diabetes or
prediabetes in both studies, 95% CI’s 59–100% in AMP-T2D-
GENES, 69–100% in UKB). The range of penetrance estimates
across genes and conditions may relate to ability to measure the
direct biomarker(s) impacted by a given gene, the extent to which
there are redundant mechanisms available in a given pathway to
overcome a genetic defect44, and the extent to which additional
factors, such as other genetic and environmental factors (e.g., diet),
impact the trait11. The finding of 100% penetrance for diabetes or
prediabetes seen in the 17 carriers of GCK-MODY across both
datasets is particularly intriguing. GCK encodes glucokinase, which
acts as the cell’s glucose sensor as it facilitates phosphorylation of
glucose to glucose-6-phosphate in the pancreatic beta cell, which is
the first and rate-limiting step in glucose metabolism45. The com-
plete penetrance we have observed may be due to the ability to
directly measure glucose as a relevant biomarker, as well as the
essential role of GCK in glucose homeostasis, with suspected non-
redundancy in functioning as a glucose sensor45.

We also characterized the impact of phenotypic ascertainment
bias on expressivity of clinically significant variants, showing that
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Fig. 5 The combination of clinically significant monogenic variants and corresponding polygenic scores significantly improves prediction for high HDL
cholesterol and high triglyceride conditions. In all plots, an empirical cumulative distribution function (CDF) of each phenotype is shown for clinically
significant variant carriers and non-carriers in the UKB for each monogenic condition stratified by bottom/top quartiles of the corresponding gePS. The
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B), however, the inverse of the gePS was used for (A) to illustrate that higher gePS indicates risk of lower LDL cholesterol. The impact of higher gePS was
testing in carrier-only linear regression analysis; asterisks indicate two-sided P < 0.05 unadjusted for multiple testing (High HDL P= 0.012, High
Triglycerides P= 0.014). See also Supplementary Table 5.
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in individuals with the same LDL cholesterol-raising or -lowering
variants there were significant differences in biomarker levels
depending on the mode of ascertainment (genetic vs phenotypic)
(Fig. 3) and that the magnitude of this difference on LDL cho-
lesterol levels (29–129mg/dL) was similar or greater than the
mean effect size of such variants (31.5–65.3 mg/dL, Table 1). This
substantial impact of ascertainment bias was seen at the indivi-
dual variant level, consistent with other similar observations of
LDL cholesterol levels in LDLR and APOB carriers in a different
study population35,46 and HNF4A p.Arg114Trp in diabetes risk13

(HNF4A p.Arg114Trp was present in the present datasets, but
filtered out due to its designation as a variant of uncertain sig-
nificant (VUS), reflecting its known low penetrance). The extent
of ascertainment bias that we and others have identified high-
lights an important genetic counseling consideration, particularly
with respect to interpretations of genomic sequencing data with
limited clinical context available: interpretation of the same test
result will likely have different prognostic implications depending
on whether the individual tested or family members carry the
phenotype of interest (e.g., hyperlipidemia) vs if a variant is
identified secondarily; a Bayesian framework that takes into
account pre-test probability might therefore be useful47. In
addition, the variable expressivity seen at the single-variant level
in multiple instances further supports additional risk factor
modulation from other genetic and environmental exposures.

With regard to additional genetic factors impacting expres-
sivity, we assessed the impact of more common polygenic var-
iation on carriers of monogenic variants and found significant
contributions for both high HDL cholesterol and high triglyceride
levels (P < 0.05). These results add to a growing body of research
supporting a significant polygenic contribution to monogenic risk
across a number of conditions, including height, breast cancer,
and coronary artery disease6,38,48–50. These studies, like ours,
suggest that polygenic scores could be used clinically to improve
risk estimation of monogenic disease carriers; however, power is
limited in population-based studies given how rare carriers
typically are, and it will be important to investigate in even larger
datasets for refining risk estimates. We estimate that for a
monogenic condition with prevalence of 1 in 10,000 individuals,
population-based analyses well-powered to capture the con-
tribution of polygenic risk to individuals with the monogenic
condition would require on the order of one million individuals.

One limitation of this study is that our selection of variants for
curation did not include all possible missense variants, but rather
was confined to those reported in ClinVar or subject area reviews.
This approach was designed to streamline the variant curation
process and restrict our analyses to highly-confident pathogenic
variants, but also meant that we were unable to generate estimates
of the prevalence of monogenic condition in the two datasets. As
discussed previously, there is also the potential for residual bias
within the datasets. In the case of AMP-T2D-GENES, ascer-
tainment of participants could have impacted penetrance of
monogenic diabetes and expressivity of the metabolic phenotypes
(Supplementary Data 1). In the UKB, a healthy-participant bias51

would be expected to reduce estimates of penetrance. In addition,
the age cut off of 40 years applied to both studies could introduce
a survivor bias, such that carriers of highly penetrant variants
causing lethal conditions could have died before age 40, pre-
cluding their enrollment; such a survivor bias could cause a
downward bias of effect size estimates, but would be expected to
impact a minority of the conditions we studied, such as high LDL
cholesterol and high triglycerides (due to increased risk of early
coronary artery disease). Furthermore, despite our large dataset of
exomes, the likelihood of observing any specific rare pathogenic
variant is still low; this raises the possibility of bias toward lower
penetrance of clinically significant variants, since allele frequency

is a major predictor of pathogenicity52, and rarer variants with
potentially greater penetrance are less likely to be observed. While
the present study includes diverse ancestral representation for
estimates of effect size for clinically significant monogenic var-
iants, analyses involving polygenic scores were limited by avail-
ability of SNP data, and thus restricted to the available UKB
exome data, of which the overwhelming majority were individuals
of European ancestry. It will be important for future research to
extend this work to populations of non-European ancestry.
Finally, analyses to assess penetrance and expressivity were lim-
ited to single phenotypic measures, which are less ideal than
multiple longitudinal measures, and while we attempted to cor-
rect for large factors impacting measures (e.g., use of lipid-
lowering medication for serum lipid measures), there may have
been other relevant factors that were not taken into account.
Strengths of this study include the large number of participants
with both phenotype and exome data, and the strict variant
curation methodology applied. Our analysis of 276 variants
designated by ClinVar as pathogenic or likely pathogenic high-
lights the need for careful curation of variants in clinical practice,
with 57% reclassified to “benign,” “likely benign,” or “variant of
uncertain significance” with application of ACMG/AMP criteria
(Fig. 1). Of note, however, the ClinVar variants we curated
included those submitted to the database before establishment of
current standards for curation8. With time, we can expect that the
ClinVar database will become a more reliable resource for
ascertaining clinically significant variants, as more submitters
utilize standardized curation practices and additionally as
condition-specific standards and curation are provided by
ClinGen Expert Panels, including the Monogenic Diabetes Expert
Panel in which several of the co-authors participate53.

Our study emphasizes the critical need for careful interpreta-
tion of monogenic variation, highlighting the roles of variant
curation, phenotypic ascertainment, and polygenic risk in the
estimates of penetrance and expressivity. In the coming years,
access to larger sequencing studies will allow assessment of
increasingly rare variants; however, deep phenotyping of such
datasets, for example information on medication use and age of
disease onset, will to be needed in parallel to better define genetic
risk estimates. Improved understanding of monogenic variant
expressivity will also likely require broader incorporation of
genetic variation across the allelic frequency spectrum and inte-
gration of environmental factors. Such advances will facilitate
modeling of disease risk and ultimately guide individualized
patient genetic counseling and management recommendations.

Methods
Study populations and phenotype curation
AMP-T2D-GENES. The complete AMP-T2D-GENES cohort consists of 20,791
cases and 24,440 controls selected from multiple distinct multi-ancestry studies17.
The present study includes a subset of 22,875 T2D or prediabetes and 15,743
controls from studies who consented for the data to be used in this analysis, which
included Genetics of Type 2 Diabetes (GoT2D), the Exome Sequencing Project
(ESP), Lundbeck Foundation Centre for Applied Medical Genomics in Persona-
lised Disease Prediction, Prevention and Care (LuCamp), Slim Initiative in
Genomic Medicine for the Americas (SIGMA), and T2D-GENES (Type 2 Diabetes
Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples).
General study characteristics are provided in Supplementary Table 1 with more
details, including exclusion criteria available in Supplementary Data 1, which is
adapted from Flannick et al., 201917. All samples were approved for use by their
home institution’s institutional review board or ethics committee. Analysis of the
data was approved by the Mass General Brigham (formerly Partners) institutional
review board in Boston, Massachusetts (protocol # 2017P000445/PHS) and were
limited to those participants in each cohort with available DNA who consented to
genetic studies.

Phenotype information related to diabetes status was collected by each case-
control or cohort study, as previously described in Flannick et al17. In addition, we
defined prediabetes as any individual with HbA1c ≥ 5.7%, fasting blood glucose ≥
100 mg/dL, or oral glucose tolerance test (OGTT) 2 h blood glucose ≥ 140 mg/dL.
In individuals who were reported to be on lipid-lowering medication, serum LDL

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23556-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3505 | https://doi.org/10.1038/s41467-021-23556-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cholesterol and triglyceride levels were adjusted for statin use based on previous
studies estimating the impact54,55: we divided LDL by 0.7 and triglycerides by 0.85
as has been previously been implemented56. Self-reported ancestry was used, as this
was previously shown to correlate well with principal component analysis (PCA)
defined ancestry and specific exceptions were dropped from analyses17. Analyses
described below used a dataset restricted to individuals in the “unrelated analysis
set” (see Flannick et al.17 methods). To provide consistency with the UKB dataset,
individuals younger than age 40 were also excluded. Individuals recruited to the
Pakistan Genomic Resource cohort were excluded for all analyses involving lipid
levels or BMI.

UK Biobank. UK Biobank (UKB) is a prospective cohort of ~500,000 recruited
individuals from the general population aged 40–69 years in 2006–2010 from
across the United Kingdom, with genotype, phenotype, and linked healthcare
record data57. All participants provided electronic informed consent at their initial
visit. Analysis of the data was approved by the Mass General Brigham (formerly
Partners) institutional review board in Boston, Massachusetts, and was performed
under UK Biobank application 27892.

Direct LDL cholesterol (mmol/L), direct HDL cholesterol (mmol/L), triglyceride
(mmol/L), BMI (kg/m2) (field codes: 30780, 30760, 30870, 21001) data were
extracted for all individuals. Lipid measurements were converted from mmol/L to
mg/dL. The mean for all visits was used in subsequent analyses. The “Medication
for cholesterol, blood pressure, diabetes, or take exogenous hormones” fields (6177
and 6153) was used to determine lipid-lowering medication, where an individual
was considered to be on lipid-lowering medication if it was recorded at any of the
visits. LDL and triglyceride values were adjusted for use of lipid-lowering
medication, as described above.

Glycated hemoglobin (HbA1c; field code 30750) was taken as the maximum
observed across visits. Since monogenic diabetes may be misdiagnosed as type 1 or
type 2 diabetes, we used an inclusive definition of diabetes: possible and probable
type 1 or type 2 diabetes was determined in a manner similar to previously
described methods58. We also considered individuals as having diabetes if they had
ICD10 codes E10-E14 (fields: 41202), and recorded diabetes medication use (fields:
6177, 6153), diabetes ever diagnosed by a doctor (field: 2443), nurse interview
codes indicating diabetes (fields: 1220—any diabetes, 1222—T1D, 1223—T2D), or
HbA1c ≥ 6.5%. Prediabetes was defined as any individual with HbA1c ≥5.7%. We
also extracted data for the first recorded age of diabetes diagnosis (fields: 20009,
2976), age, and sex.

This dataset was filtered to only unrelated individuals with European ancestry
to facilitate comparisons of biomarkers in analyses using polygenic risk scores.
Filtering to unrelated individuals was done using the column “used.in.pca.
calculation” in the UKB genotype data sample QC document (ukb_sqc_v2.txt) as a
proxy. This column indicates samples which UKB used in a principal component
analysis (PCA), and this analysis was only performed on unrelated, high quality
samples. To filter to European ancestry only, samples were first projected onto
1000 Genomes phase 359 PCA coordinate space. Then Aberrant R package60

clustering was used to identify individuals falling within 1000 Genomes project
EUR PC1 and PC2 limits (lambda= 4.5). Individuals that self-reported as non-
European ethnicity were also filtered. There were 38,566 individuals remaining
after all filtering and intersection with individuals that also have exome sequence
data released in the first tranche (Category 170).

Generation of gene list. We sought to include genes that would be ordered in the
United States in clinical practice to diagnose conditions of monogenic diabetes,
lipodystrophy, obesity, and lipid disorders. We searched the Genetic Testing
Registry (https://www.ncbi.nlm.nih.gov/gtr/) and Concert Genetics (https://app.
concertgenetics.com/), last accessed March 14th, 2018, for lists of available com-
mercial gene panels for clinical genetic testing for these diseases available in the
United States. We filtered this list of genes to those with an autosomal dominant
mode of inheritance, as determined by the Online Mendelian Inheritance in Man®
(OMIM, https://www.omim.org/). For the genes in OMIM where mode of
inheritance was not specified, the genes were researched in ClinVar (https://www.
ncbi.nlm.nih.gov/clinvar/) and related literature. In total there were 26 autosomal
dominant genes across the conditions. We further excluded any gene where there
was no ClinVar submission (April 2019 ClinVar submission summary) of patho-
genic or likely pathogenic for the phenotype of interest that also included clinical
testing as a collection method, leaving 20 genes. We determined phenotype overlap
by manual review of the “SubmittedPhenotypeInfo” and “ReportedPhenotypeInfo”
fields in the submission summary where present and “ExplanationOfInterpreta-
tion” or submitted PubMed articles when phenotype info was not reported in the
other fields. For MODY, most commercial panels available in March, 2018
included HNF1A, HNF4A, GCK, HNF1B, and PDX1, with larger panels less widely
available. We therefore separated the MODY genes into two categories: “MODY”
including those five genes and “MODY extended” including eight additional genes.

Determination of genes with LoF mechanism. The pLoF curation was restricted
to genes alleged to cause disease with a LoF mechanism based on reporting in
ClinVar or a PubMed publication of an LoF variant in an individual with the
phenotype of interest.

Two genes were determined to be related to both high LDL (familial
hypercholesterolemia) and low LDL (familial hypobetalipoproteinemia): APOB and
PCSK9. Gain-of-function missense mutations in both genes result in increased LDL
levels, while LoF mutations cause lower LDL levels61–63. Therefore, only missense
ClinVar variants in APOB and PCSK9 were assessed in the curation process for
high LDL, and LoF variants were considered for low LDL.

Exome data variant filtering and annotation. All filtering and annotation
described below was performed using Hail 0.2.54 (https://hail.is).

AMP-T2D-GENES. Exome sequencing and quality control were described
previously17. We applied additional genotype filters to retain only high-quality
genotypes: genotype quality ≥ 20, depth ≥10, and minor allele balance > 0.25 for
heterozygous genotypes. Variants were annotated using Ensembl’s Variant Effect
Predictor (VEP) v8564 with the Loss-of-function Transcript Effect Estimator
(LOFTEE) plugin65. The dataset was then filtered to only variants with a con-
sequence on any of the genes of interest. The filtered VCF was used in analyses
described below that involve EPACTS.

We determined which variants in our dataset have been submitted to ClinVar
by cross-referencing this filtered variant list with the ClinVar VCF (April 2019)
(further curation described below). A list of predicted loss-of-function (pLoF)
variants, including stop gained, frameshift or essential splice site (splice donor or
splice acceptor), was generated by filtering to variants with a LOFTEE high-
confidence (HC) annotation on any transcript. Finally, we used transcript
expression-aware annotation66 to add pext (proportion expression across
transcripts) values for the worst consequence annotation to each variant for use in
pLoF curation discussed below.

UK Biobank. UKB exome sequencing PLINK files were imported into Hail and all
the same annotation described for AMP-T2D-GENES was added using appropriate
files for genotype reference GRCh38 and VEP v95. In order to compare UKB
variants to AMP-T2D-GENES variants we used Hail’s liftover method to lift data
from GRCh38 to GRCh37. Since the PLINK files do not contain genotype quality
information that we can use for filtering low-quality genotypes, we downloaded the
gVCFs for all variant carriers and determined which individuals genotypes were
not high-quality (genotype quality ≥20, depth ≥10, and minor allele balance > 0.25
for heterozygous genotypes) and set each of these to missing in the VCF. After the
initial analysis was completed, UKB reported that there was an error in the SPB
gVCFs that led to a systematic under-marking of duplicate reads. Therefore, all
genotypes in carriers of clinically significant variants were confirmed in the cor-
rected SPB gVCFs (field: 23176).

ClinVar variant curation. We identified individuals carrying variants in the genes
of interest that had at least one “pathogenic” or “likely pathogenic” submission in
ClinVar by a clinical testing lab for the relevant trait. To streamline variant
curation we first generated a list of high confidence clinical genetic testing
laboratories. Using the April 2019 release of the ClinVar submission summary, a
lab was considered high confidence if it had submitted >15,000 variants to ClinVar
and had updated its submission after 2017 when the most recent ACMG variant
interpretation guidelines were published8. This resulted in eight labs: Invitae;
GeneDx; Ambry Genetics; EGL Genetic Diagnostics; Eurofins Clinical Diagnostics;
PreventionGenetics; Laboratory of Molecular Medicine, Partners Healthcare Per-
sonalized Medicine; Genetic Services Laboratory, University of Chicago; and
Counsyl. Variants that were reported by any lab on this list since January 1st, 2017
were then accepted as having the pathogenicity reported by the lab.

These labs were further verified through manual curation. First, five variants
from each lab that were also present in our study were chosen to be manually
curated, so that the manual curation could be compared to the lab’s analysis.
Through this, we found no differences in curation results. Then, five variants from
each lab were chosen at random through ClinVar—one Pathogenic, one Likely
Pathogenic, one VUS, one Likely Benign, and one Benign. As PreventionGenetics
only submitted Benign and Likely Benign to ClinVar, their variants were limited to
those categories. These variants were then also manually curated, and the results
were compared. The only difference in curation of the non-study variants involved
University of Chicago, due to internal data initially not available to our study
curator; however, the same conclusion was reached upon inclusion of this internal
data, which was included in their reporting in ClinVar. During the manual
phenotype curation (described below), we discovered Counsyl reported conflicting
phenotypes for the same variant, so we opted to manually curate variants assessed
by Counsyl.

The variants not analyzed by high confidence labs were analyzed separately
using manual curation with the curator blinded to carrier phenotypes. The ClinGen
Variant Curation Interface (https://curation.clinicalgenome.org/) was used to
analyze the variants and assign evidence following the ACMG guidelines8 and
recommendation for interpretation of LoF variants67, with input from gene-specific
rules under development by the Monogenic Diabetes Expert Panel VCEP (https://
clinicalgenome.org/affiliation/50016/) for the MODY variants. Databases and other
resources such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Human Gene
Mutation Database (HGMD) (https://digitalinsights.qiagen.com/products-
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overview/clinical-insights-portfolio/human-gene-mutation-database/), gnomAD
v2.1.1 (https://gnomad.broadinstitute.org/), PubMed (https://pubmed.ncbi.nlm.
nih.gov/), Google Scholar (https://scholar.google.com/), Alamut v.2.11 (https://
www.interactive-biosoftware.com/alamut-visual/), and the UCSC browser (https://
genome.ucsc.edu/) were utilized to collect evidence for curation purposes. The
general guidelines were adjusted slightly for certain criteria such as control
population frequency as shown in Supplementary Table 6. Since most AMP-T2D-
GENES participants are included in gnomAD, AMP-T2D-GENES allele frequency
decisions were made by subtracting the number of AMP-T2D-GENES carriers
from the number of total gnomAD carriers to determine an adjusted gnomAD
allele frequency, which was compared to the cut-offs shown in Supplementary
Table 6.

Three variants within HNF1A were excluded from further analysis because of
poor genotyping quality at this site making it difficult to determine which
individuals are actually carriers (GRCh37: 12-121432114-CG-C, 12-121432116-G-
GC, 12-121432117-G-GC, GRCh38: chr12:120994311-CG-C, chr12:120994313-G-
GC, chr12:120994314-G-GC). As all three are frameshifts, these variants were also
excluded from the pLoF curation described below.

Variants in MODY genes were curated by a second set of reviewers at
University of Maryland School of Medicine, the home institution of the ClinGen
Monogenic Diabetes Expert Panel, to ensure accuracy. All variants were
consistently classified as collectively pathogenic or likely pathogenic
(Supplementary Data 2).

All variants curated for this project, along with their classification and
supporting evidence, were submitted to ClinVar on January 30th, 2020.

High confidence loss of function variants. As described above, we used
LOFTEE65 to generate a list of high confidence pLoF variants, restricting to the set
of genes we determined to have a LoF mechanism of pathogenicity. Each pLoF
variant was assessed by manual review of reads by two independent reviewers. The
reads were examined for poor quality, homopolymer artifacts, and multinucleotide
variants (MNVs) causing a synonymous or missense variant instead of the reported
stop codon. Where available, gnomAD data was examined to identify variants that
were flagged as filtered by gnomAD’s random forest variant quality control
method. UCSC genome browser data was assessed to determine the conservation of
the region, the location of the variant, and how many transcripts the variant was
coding. If the variant was present in the last exon or last 50 base pairs of the
penultimate exon, it was deemed not LoF due to a predicted lack of nonsense
mediated decay. However, this was overruled if the variant was predicted to delete
over 25% of the gene. The potential for a splice site rescue was assessed by
examining+ /− 21 bp around the variant. Any inframe splice site within 6 bp was
considered an essential splice site rescue and possible inframe splice site rescues
between 6 and 21 bp were considered a rescue if validated by the alternative splice
site prediction tool Alamut v.2.11. We also used pext values obtained from the
transcript expression-aware annotation66 to indicate variants that fell in exons that
have evidence of poor expression (specific cut-offs are detailed in Supplementary
Data 6). Variants were classified into 5 categories, “LoF”, “likely LoF”, “uncertain”,
“likely not LoF”, or “not LoF” using the guidelines described in Supplementary
Data 6. Any variant that had a discordant assessment between the two reviewers
(“LoF” or “likely LoF” by only one reviewer) was examined by a third reviewer to
determine the final pLoF annotation.

Carrier vs non-carrier effect size analysis. We considered an individual to be a
carrier of a clinically significant variant if they carry a ClinVar variant assessed as
pathogenic or likely pathogenic or a pLoF variant passing manual curation (“LoF”
or “likely LoF” as described above). For AMP-T2D-GENES, as previously
described17, we accounted for the diverse ancestry and different sequencing tech-
nologies by using a modified version of EPACTS v3.2.4 (http://genome.sph.umich.
edu/wiki/EPACTS) that sets specified variants to missing based on QC of sample
subgroups (as described in Flannick et al.17, there are 25 subgroups that were
determined by stratifying samples by cohort of origin, ancestry, and/or sequencing
technology). As covariates in AMP-T2D-GENES analyses, we included sex, age,
PCs 1–10, sample subgroup, and sequencing technology all as previously defined17.
Analyses on UKB used covariates for sex, age, PCs 1–10 and the genotyping array.

For both AMP-T2D-GENES and UKB, we used VCFs produced after filtering
variants as described above and performed the group b.burdenFirth for binary
traits and q.burden test for continuous traits in EPACTS to compare carriers and
non-carriers for the following condition/phenotype pairs: high LDL cholesterol
with LDL cholesterol (mg/dL); low LDL cholesterol with LDL cholesterol (mg/dL);
high HDL cholesterol with HDL cholesterol (mg/dL); high triglycerides with
triglycerides (mg/dL); monogenic obesity with BMI (kg/m2), MODY with diabetes
status, and in diabetes cases only: HDL cholesterol, Triglycerides, and BMI.

In addition, we included T2D or T2D with prediabetes as covariates in all tests
on lipid measurements and BMI. Triglycerides and BMI were log transformed. All
of these analyses were also performed per gene to ensure that we captured possible
gene level differences in phenotype values.

Estimation of penetrance. Unlike diabetes, phenotypes used to assess the possi-
bility that individuals have each monogenic lipid condition or obesity, are

continuous. The following clinical diagnosis cut-offs were used to dichotomize the
phenotypes for estimating penetrance: High LDL cholesterol: LDL cholesterol
≥190 mg/dL68, Low LDL cholesterol (familial hypobetalipoproteinemia): LDL
cholesterol ≤80 mg/dL69, High HDL cholesterol: HDL cholesterol ≥70 mg/dL70,
High triglycerides: triglycerides ≥200 mg/dL68, and Monogenic obesity: BMI ≥30
kg/m2.

Penetrance estimates were calculated as the proportion of individuals carrying a
clinically significant variant that also exhibit the expected condition. To determine
the significance for all penetrance estimates we used the group Firth burden test in
the modified version of EPACTS and the same covariates as described in “Carrier
vs non-carrier enrichment analysis”.

Calculation of global extended polygenic score (gePS)
Body mass index and type 2 diabetes. Global extended polygenic scores for T2D and
BMI were previously calculated on UKB participants using LDpred5,43. The var-
iants and weights used in the calculation were downloaded (http://www.broadcvdi.
org/informational/data). These weights were then applied to the UKB genotype
data from the subset of individuals included in this study to calculate a gePS using
Hail’s equivalent to the—score method in PLINK version 1.9 (https://hail.is/docs/
0.2/guides/genetics.html?highlight=prs). These values were then scaled and cen-
tered around zero with a standard deviation of one for downstream analysis. We
confirmed that plots of T2D prevalence and BMI by respective polygenic scores
converged at the same upper limits as previously published5,43.

Lipid conditions. To estimate a gePS for each lipid phenotype, we filtered UK
Biobank genotype data to only the individuals used in this study (unrelated, EUR
ancestry, and exome sequenced) and excluded SNPs with an imputation INFO <
0.3 and allele frequency <1%. Summary statistics for lipid GWAS were down-
loaded from the European Network for Genetic and Genomic Epidemiology
(ENGAGE) Consortium. This included LDL cholesterol, HDL cholesterol, and
triglyceride GWAS summary stats from a meta-analysis of up to 62,166 indi-
viduals of European ancestry71. We filtered to variants observed in HapMap3
(—only-hm3) and both the summary statistics and genotype data, and then
estimated SNP weights using the Bayesian computational method LDpred
(version 1.0.6) which accounts for local LD patterns72. SNP weight estimates
were obtained using the infinitesimal (inf) model (assumes all genetic variants
impact phenotype) with heritability estimates (TG: 0.1525, LDL: 0.1347, HDL:
0.1572) as previously calculated using LD Score regression42 and displayed on
LD Hub73. We then used PLINK version 1.9 (—score) to calculate polygenic
scores using the SNP weights74. As in the BMI and T2D gePRS, the distribution
was scaled to have a mean of zero and one standard deviation around the mean.
Since there is a single gePS for LDL cholesterol, the scaled gePS was multiplied
by −1 for figures and analyses comparing low LDL cholesterol carrier phenotype
values to phenotypes aggregated by gePS deciles or quantiles.

Statistical analysis. We used generalized linear models (GLM) to examine the gePS
results in a few different ways. We compared the top 1% to the interquartile range
(25–75%) of the gePS and to the clinically significant variant carriers (Supple-
mentary Table 3). For both analyses we restricted the age in controls to >= 60. In
addition, we determine the effect size of gePS on phenotypes in the subset of only
clinically significant variant carriers and assessed the interaction of carrier status
and gePS (Supplementary Table 5). In all GLMs age, sex and 10 PC’s were included
in the model as covariates. A linear regression was performed for all phenotypes
except diabetes where a logistic regression was applied.

All plots were made using R version 3.5.2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data and phenotypes from the AMP-T2D-GENES study are available via the
database of Genotypes and Phenotypes (dbGAP) and/or the European Genome-
phenome Archive, as indicated in Supplementary Data 1. Access to data from the UK
Biobank can be obtained at https://www.ukbiobank.ac.uk/enable-your-research. All
variants curated for this project, along with their classification and supporting evidence,
were submitted to the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) on
January 30th, 2020. The following databases were accessed for this work: ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/), Human Gene Mutation Database (https://
digitalinsights.qiagen.com/products-overview/clinical-insights-portfolio/human-gene-
mutation-database/), gnomAD v2.1.1 (https://gnomad.broadinstitute.org/), PubMed
(https://pubmed.ncbi.nlm.nih.gov/), Google Scholar (https://scholar.google.com/),
Alamut v.2.11 (https://www.interactive-biosoftware.com/alamut-visual/), and the UCSC
browser (https://genome.ucsc.edu/).

Code availability
All software used in the analysis were open source and described in the “Methods”
section of the paper. Existing software packages used were: Plink 1.9, EPACTS v3.2.4,
Rv3.5.2, Hail v0.2.54, Alamut v2.11, LDpred v1.0.6, Ensembl’s Variant Effect Predictor
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(VEP) versions 85 and 95, Aberrant v1.0 R package, and LOFTEE. Code written for
analyses performed in the paper are available in GitHub: https://github.com/
broadinstitute/exome_penetrance.
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