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Tunable Non-Hermitian Acoustic Filter
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We propose, design, and experimentally test a non-Hermitian acoustic superlattice that acts as a tunable
precise filter. The superlattice is composed of two concatenated sublattices. The first sublattice is Hermi-
tian, while the other can be adjusted to be Hermitian or non-Hermitian. The existence of non-Hermiticity,
in terms of an induced loss in the second sublattice, results in the generation of absorption resonances that
appear in the reflected spectrum. This provides us with a powerful knob to absorb or reflect several fre-
quencies at will with high accuracy. The number of filtered frequencies can be controlled by designing the
resonances in the first sublattice. Our proposed tunable acoustic filter can be extended to higher-frequency

ranges, such as ultrasound, and other areas, such as photonics.

DOI: 10.1103/PhysRevApplied.16.014012

I. INTRODUCTION

The existence of complete band gaps makes phononic
crystals attractive for many potential applications, such
as vibration isolation, noise suppression, acoustic barri-
ers, filters, waveguides, and transducers, to name a few
[1-4]. However, practical frequency and band-gap tun-
ability of phononic crystals is a major stumbling block to
application in real-world devices in different technolog-
ical domains [5,6]. To achieve tunability, several ideas,
including thermal tuning [7], application of an external
magnetic field [8—11], piezoelectric shunting [12], elec-
tromechanical tuning [13], embedded electromagnets [14],
static loading [15], nonlinear effects [16—18], and acoustic
trapping [19], have been proposed. The main parameters
affecting the frequency and width of the band gaps, namely,
lattice geometry, density, and sound-velocity contrast of
the component materials constituting the phononic lattice,
have been the focus of these works.

More recently, another viewpoint has emerged that
embraces non-Hermiticity to propose interesting physics
and control sound propagation in acoustic media [20,21].
The degree of non-Hermiticity is induced by means of
an effective complex mass density and bulk modulus syn-
thesized via loss and gain mechanisms embedded in the
phononic structure. The effect of losses on acoustic wave
propagation has been studied in numerous works [22-27].
However, their ubiquitous presence is neglected or mini-
mized due to the conventionally accepted adverse effects
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that they have on the performance of an acoustic material
under study [28]. Recent fascinating and peculiar achieve-
ments obtained in non-Hermitian systems and specifically
parity-time symmetric systems with intentionally and judi-
ciously introduced balanced amplification and absorption
mechanisms (see [29] and references within), inspire us
to incorporate the degree of non-Hermiticity in acous-
tic systems. To date, several noticeable theoretical and
experimental parity-time symmetric acoustic structures
have been proposed [30—37]. Moreover, non-Hermiticity,
specifically in terms of losses [38,39], is used to achieve,
for instance, an extreme asymmetric acoustic response
[40], experimental demonstration of acoustic asymmet-
ric diffraction grating [41], unidirectional wave-vector
manipulation in two-dimensional space [42], experimental
realization of a higher-order topology in an acoustic crys-
tal [43], a topologically protected exceptional point [44],
asymmetric loss-induced perfect sound absorption [45],
perfect absorption through a subwavelength medium [46],
loss-induced angle-dependent absorption [47], anomalous
energy transport with exceptional points [48], stabiliza-
tion of acoustic modes using Helmholtz and quarter-wave
resonators tuned to exceptional points, [49], conditional
simultaneous unidirectional zero reflection, and extraordi-
narily high transmission [50].

Here, we theoretically propose and experimentally
demonstrate another application of non-Hermiticity (losses
in a phononic lattice): a tunable acoustic filter. Our pro-
posed phononic lattice is composed of two sublattices: one
is a Hermitian sublattice, which we refer to as the first
sublattice, and another one with tunable non-Hermiticity,
which we refer to it as the second sublattice. This

© 2021 American Physical Society
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construction results in a tunable filter that works based on
reflection, in which undesired frequencies are absorbed by
the losses and the desired signal is reflected back. Alter-
ing the degree of non-Hermiticity provides an effective
tuning parameter to absorb the frequencies that are going
to be eliminated. Notably, here the contrast between the
resonances of the two sublattices results in rich dynamics.

II. MODEL

The schematic of the lattice that we use in our simula-
tions is depicted in Fig. 1. We assume that the lattice con-
tains 20 hollow cuboids, which are concatenated to each
other in the direction of propagation of the acoustic pres-
sure field, x. Furthermore, they are either square cuboid,
five with 7 x 7 x 7 cm?® volume in the first sublattice and
five with 9.3 x 9.3 x 9.3 cm® volume in the second sublat-
tice, or rectangular cuboid with 7 x 2.3 x 2.3 cm?® volume
that connects the square cuboids. In our simulations, we
consider that all cuboids are made from polylactic acid
(PLA), are hollow, and are filled with air. The density of air
throughout the volume is p = 1.4 kg/m>. Furthermore, we
assume that the bulk modulus in the rectangular cuboids of
both first and second sublattices and the square cuboids of
the first sublattice is given by € = 1.01 x 10° Pa, while
the effective bulk modulus of the square cuboids in the
second sublattice is given by € = 1.01 x 10°(1 + ia) Pa.
The complex bulk modulus effectively describes the intrin-
sic or induced material loss, and « represents the effective
loss parameter. In practice, a is a function of frequency,

\/’_\/_
¢ -/l) 0 (7/l)(~r/l) 0 (a/l)(-7/l) 0 (7/l)
Wave number (rad/m)

FIG. 1. (a) Schematic of the superlattice made of two sublat-
tices and operating as a tunable acoustic filter. (b) Band structure
of the first sublattice. (c) Band structure of the second sublattice
with @ = 0 and (d) band structure of the second sublattice with
a = 0.2. Superlattice is composed of two sublattices. We observe
that the difference between the band structures in (c),(d) is not
considerable.

so we start our study by assuming that ¢ remains constant
within a range of frequencies that we consider. We will
show in Sec. III that an induced loss in our model can be
created using side holes, the magnitude of which can be
controlled by adjusting the hole dimensions, which effec-
tively describes the value of parameter a. In this way, we
capture the frequency dependence of a as well. The experi-
mental results will show that our choice of effective model
has an acceptable accuracy.

In our simulations, all boundary conditions, except input
and output ports, are a sound hard boundary or a wall,
which means that in a constant fluid density p. the normal
derivative of pressure is zero at the boundary, dp;/on = 0.
The input and output ports [see Fig. 1(a)] are radiation
boundary conditions for a plane wave.

The unit cell of each sublattice is made of two types
of cuboids: square and rectangular cuboids. Thus, the first
five unit cells create a periodic passive or Hermitian sub-
lattice, while for a # 0 the second five unit cells make
a non-Hermitian sublattice. The non-Hermitian sublattice
here does not have any gain component and is only com-
posed of passive and loss components. While there are
no natural acoustic gain materials, in recent years, there
have been a few proposals to achieve acoustic gain using
feedback systems and electronic circuits [21,32,33],
which, in general, are not convenient for most applications.
Thus, we use a passive-loss structure and reflection in our
designed tunable filter to avoid such problems.

Each of the sublattices in our system have a band struc-
ture with passbands and gaps. Due to the geometrical
differences in the two sublattices, generally, the band gaps
of the sublattices, irrespective of the value of a, are not
identical. However, in the gaps of both sublattices, field
propagation is prohibited and the incident field is reflected
with zero transmission. In the passbands, the transmission
amplitude of the passive lattice is not zero. However, in
the passbands of the second sublattice and for nonzero
values of a, the transmission might be attenuated due to
dissipation. The level of dissipation depends on the value
of a.

It is shown that the value of non-Hermiticity alters
the width of the band gaps [51,52]. Specifically, at the
so-called exceptional point, the gap between two bands
becomes zero. Thus, theoretically, one could claim that
field propagation in our structure could be engineered only
by tuning loss in the second sublattice. This would be a
consequence of changes in the gap width resulting from
non-Hermiticity. Unfortunately, altering the band structure
using non-Hermiticity requires a huge loss that, in practice,
is not feasible. Our experimental data show that the largest
value of loss we can achieve is in the order of @ = 0.2. As
shown in Figs. 1(c) and 1(d), such a small amount of a
has a tiny effect on the band structure of the second sublat-
tice, and this cannot be considered as an important factor
in engineering the band structure of the phononic lattice.
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Consequently, one might naively claim that the addition
of loss will not affect the dynamics in the system and the
only observation might be the addition of trivial absorption
in the reflected or transmitted signal. Here, we show that,
surprisingly, this picture is not true and the addition of loss
can result in the generation of additional “absorption” reso-
nances. While we use the generated resonances to develop
a tunable filter, one might potentially use these resonances
to design tunable modulators based on non-Hermiticity.

III. THEORETICAL ANALYSIS

To show how our proposed filter works, let us first dis-
cuss the band structure of each sublattice [53]. We plot in
Fig. 1(b) the band structure of an infinitely long lattice with
a unit cell similar to the first sublattice in Fig. 1(a). In con-
trast, Figs. 1(c) and 1(d) show the band structures of an
infinitely long lattice with the same unit cell as that in the
second sublattice in Fig. 1(a) and witha = 0 and a = 0.2,
respectively. A comparison between Figs. 1(b) and 1(c)
shows that, over the frequency range 0265 Hz, there is
an overlap between the first passband of the two lattices.
Thus, we expect that, if the frequency of the incident field
lies in this range of frequency, it will pass through both
sublattices without any absorption, as a is zero in the sec-
ond sublattice. By introducing the nonzero imaginary bulk
modulus, as depicted in Fig. 1(d), the first passband does
not show any significant changes, and thus, the acoustic
pressure can still pass through two sublattices with attenu-
ation in the second sublattice. We plot the reflection of our
lattice in Fig. 2 for @ = 0 (blue curve) and for a = 0.2 (red
curve) using the full-wave simulation, where the reflection
amplitude is R = Wg/W;,, with

|Po — PP
A e S
s 2pC

In Eq. (1), Py, P, p, and ¢ = /p/€ are the amplitude of
the incoming pressure wave, the total pressure wave, den-
sity, and speed of sound, respectively. S is the surface
containing the pressure flux at the input port in Fig. 1(a).

We observe, over the frequency range 0265 Hz, that
the reflection peaks are smaller when a £ 0. Obviously, as
depicted in Fig. 2, at frequency ranges that the two sublat-
tices have band gaps or the first sublattice has a band gap,
we expect complete reflection, irrespective of the value of
a. This matches our simulation in Fig. 2(b).

Now let us focus on the frequency ranges where the first
sublattice has a passband but the second sublattice has a
band gap. For instance, over the frequency range 265410
Hz, the first sublattice has a passband and the second one
has a gap, irrespective of the value of a. Thus, we expect
that, due to the gap of the second sublattice, we have a total
reflection. In Fig. 2 and for a = 0, the blue curve shows
that our intuition is correct and we have a total reflection.
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FIG. 2. Reflection of superlattice in Fig. 1 for a =0 (blue
curve) and @ = 0.2 (red curve). For several frequencies in
different frequency windows, we observe a large contrast in the
reflection when we increase the value of a.

However, for a # 0, see the red curve, there are two reso-
nances and, consequently, we do not have a full reflection.
The same scenario occurs at other frequencies where the
gap of the second sublattice overlaps with the passband of
the first sublattice. The existence of such resonances is the
main ingredient of our proposed filter. By introducing non-
Hermiticity, we can remove specific frequencies from the
reflected field. The benefit of our proposed system is in the
existence of such sharp resonances, which allow for a very
precise filtering process.

To understand the source of the resonances that are
appearing in the reflection curve due to non-Hermiticity,
let us look at the scattering matrix associated with our sys-
tem. The transfer matrices of the first sublattice, A, and
second sublattice, M>, as a function of the reflection and
transmission coefficient of each sublattice are given by

1 b

f_ion , 02 2

M= """ M, = hoon
1= 5 2 = / ’

_n 1 o 1

i | th t

@

where ¢#; and r; are the transmission and reflection coeffi-
cients, respectively, of the first sublattice, and 2, rlz, and
v}, are the transmission, left reflection, and right reflection
coefficients, respectively, of the second sublattice. Notably,
for the second sublattice, 7, might not be equal to 7, when
a # 0. We can multiply these two matrices and find the
total transfer matrix, M = M, M| = < i ), of
myy My
our structure. Specifically, the M matrix is given by

(R=8) (b =8)-rrs 5 (1=r1rd)+n13
M= E)
At 1o
- 515} nt

The transmission (#) and left and right reflection (+, )
coefficients of our one-dimensional lattice are related to
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the elements of the transfer matrix:

1 m m
/ 21 12

t=—, V=——", V=—, 4)
mas ma ma)

and thus, the left reflection in our system will be given by

LB =)+

Vl: 1—1’11"12

®)

We can use Eq. (5) to explain the total reflection on
the left side of our structure for different scenarios of
band structures in the two sublattices. For example, if
the incident field is at the frequency that the first lat-
tice has a gap, then r, = 1,1, = 0 and, consequently,
¥ =[(=r5 + 1)/(1 = r5)] = 1, which means that regard-
less of whether the frequency of the incident field is in the
band or gap of the second sublattice, we get total reflec-
tion. Now, let us consider a case in which the incident-field
frequency is in the passband (gap) of the first (second)
sublattice. To simplify the analysis, let us assume that the
frequency of the incident beam is at the resonance of the
first sublattice, and thus, »; = 0, = 1. In this case, Eq. (5)
simplifies to 7/ = 7). This means that, when a = 0, we get
a total reflection; however, when a # 0, rJ2 would be less
than one due to absorption. For strong absorption, we can
completely remove the reflection at certain resonance fre-
quencies of the first sublattice. Here, it becomes clear why
having the first sublattice is useful: it generates resonances,
and thus, allows us to have accurate filtering of certain fre-
quencies. Furthermore, by engineering the geometry of the
first sublattice, we can design the number of resonances
and their positions.

As mentioned before, for the purpose of simulations, we
assume an effective and constant imaginary part of the bulk
modulus, a, of air in the system in the second sublattice,
which does not depend on frequency. However, in more
realistic situations, the parameter a is frequency dependent.
To include the effect of frequency-dependent losses and
have a more realistic simulation in our tunable filter, we
introduce square holes with a side length of 4.6 cm on each
facet of the last five square cuboids, see Fig. 3(a). We per-
formed the same simulation as before while this time we
assume that the air in all larger cuboids have real bulk mod-
ulus (¢ = 1.01 x 10° Pa). Figure 3(b) compares reflections
associated with the structure with the holes (red curve) and
effective bulk modulus model when a = 0.2. We observe
that the effective model nicely matches the more realistic
model.

IV. EXPERIMENTAL DEMONSTRATION

To demonstrate experimentally the proposed design of
the tunable acoustic filter, we fabricate a structure with four
square passive hollow cuboids with 7 x 7 x 7 cm® volume
and four hollow cuboids with 9.3 x 9.3 x 9.3 cm? volume.

08 /ﬂﬂ
g ﬂ
= 0.6 H
5]
=
S 0.4
[

02

—_—a =0.2
| = With hole
0.0
0 250 750 1000 1250 1500 1750 2000 2250 2500 3000
Frequency (Hz)
FIG. 3. (a) Schematic of realistic model where we assume

large cuboids in the non-Hermitian (lossy) sublattice have the
same bulk modulus as the first sublattice. We devise square holes
with sides (s = 4.6 cm) in large cuboids to induce loss in the
non-Hermitian sublattice. (b) Comparison of reflection ampli-
tude from the realistic model (structure with embedded holes, red
curve) and effective model with a = 0.2 (blue curve). We observe
that, over most frequency ranges, the realistic model and effective
model match each other.

These cuboids are connected to each other by rectangu-
lar cuboids with 7 x 2.3 x 2.3 cm® volume. The structure
is printed using a Makerbot Replicator Z18 printer with
extruded PLA with a density of p = 1190 kg/m? and a
bulk modulus of € = 3.5 x 10° Pa. We frame square holes
with sides s = 4.6 cm with large cuboids. To introduce
loss, we cover the holes with absorbing polyester foam
material, which adds loss to the system. By removing the
absorbing polyester foam material and covering the holes
with leads made from PLA material, we turn the structure
back to the Hermitian case with a sound-hard-boundary
wall without absorption. We perform our scattering experi-
ment for both the non-Hermitian and Hermitian structures,
where we measure the reflection in a homemade anechoic
chamber. In the experimental setup, a 15-MHz continuous-
wave synthesized-function generator is used to generate
a continuous acoustic signal inside the waveguide. We
capture the acoustic signals using 1/4” omnidirectional
microphones. We connect the microphones to a network
analyzer via a constant-current power supply to send a
low-impedance signal to the network analyzer. We observe
the spectrum of our acoustic wave in the network analyzer
from which we extract our data.
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FIG. 4. Experimental realization of the tunable acoustic filter.
(a) Reflection amplitude for a system with loss embedded in
the system. In the experiment (blue solid curve), absorption is
induced via holes that are covered by absorbing materials, while
in the simulation (red dotted curve) we use the effective model
with loss parameter ¢ = 0.2. (b) Reflection amplitude for a sys-
tem without loss, namely, no hole in the cuboids. We observe
that, in the band gap, two dips appear when loss is induced in the
system.

In Fig. 4, we present the experimental reflection (blue
curve) and the corresponding simulation (red dotted curve)
for the non-Hermitian case, with an effective model and
a = 0.2 in panel (a) and the Hermitian case in panel (b) for
a = 0. Here, for both, we consider 0 dB as our reference
input, which is along the baseline outside of the resonance
dips, where we notice very high reflection. We observe
good agreement between simulation and experimental data
over the frequency range 1.5-2.1 KHz. Experimental data
nicely depict the filtering phenomenon that we predict.
Furthermore, our experimental data agree well with the
effective model over this frequency range. Notably, by
increasing the number of cuboids in the Hermitian part,
one can induce more resonances (as shown in our sim-
ulations), and thus, remove other frequencies from the
reflected field.

V. CONCLUSION

We propose and design a tunable phononic filter based
on the superposition of two sublattices, one passive and
the other with variable loss. The filtering process in our
proposed structure occurs in the reflected field. Apart from
tunability, our filter is based on resonances, and thus, can
accurately filter specific frequencies. Thus, by designing
resonances in the Hermitian lattice and increasing the loss,
one can remove specific frequencies on the reflected wave

at will. Our proposed tunable filter can be easily adapted to
the microwave domain and to photonic structures.
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