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Abstract

We present the analysis of multiwavelength observations of seven extragalactic radio sources, listed as unidentified
in the Third Cambridge Revised Catalog (3CR). X-ray observations, performed during Chandra Cycle 21, were
compared to Very Large Array (VLA), Wide-field Infrared Survey Explorer, and Pan-STARRS observations in the
radio, infrared, and optical bands, respectively. All sources in this sample lack a clear optical counterpart, and are
thus missing their redshift and optical classification. In order to confirm the X-ray and infrared radio counterparts
of core and extended components, here we present for the first time radio maps obtained manually reducing VLA
archival data. As in previous papers on the Chandra X-ray snapshot campaign, we report X-ray detections of radio
cores and two sources, out of the seven presented here, are found to be members of galaxy clusters. For these two
cluster sources (namely, 3CR 409 and 3CR 454.2), we derived surface brightness profiles in four directions. For all
seven sources, we measured X-ray intensities of the radio sources and we also performed standard X-ray spectral
analysis for the four sources (namely, 3CR 91, 3CR 390, 3CR 409, and 3CR 428) with the brightest nuclei (more
than 400 photons in the 2″ nuclear region). We also detected extended X-ray emission around 3CR 390 and
extended X-ray emission associated with the northern jet of 3CR 158. This paper represents the first attempt to give
a multiwavelength view of the unidentified radio sources listed in the 3CR catalog.

Unified Astronomy Thesaurus concepts: X-ray astronomy (1810); Active galaxies (17); Radio continuum
emission (1340)

1. Introduction

The Third Cambridge Catalog of radio sources (3C; Edge
et al. 1959) performed at 159 MHz, and its revised releases at
178 MHz (3CR, Bennett 1962; 3CRR, Laing et al. 1983; and
the Spinrad et al. 1985 update) are paramount low-frequency
radio catalogs for studying radio-loud, active galactic nuclei
(AGNs) and their environments at all scales (see, e.g.,
Fabian 2012; Kraft et al. 2012; Liu et al. 2020). To a great
degree, the success of this catalog is due to the fact that its
latest revision (3CRR) has a flux limit of 9 Jy at 178 MHz and
it represents a statistically complete sample of the most
powerful radio galaxies, including a variety of extended radio
morphologies, optical classes, and environmental properties.

On the basis of the 3CR radio observations at 178 MHz,
Fanaroff & Riley (1974) proposed a classification for radio
sources based on the relative position of regions of high and
low surface brightness in their extended structures, distinguish-
ing between FRI, i.e., edge-darkened, and FRII, i.e., edge-
brightened, types. Since 1974, a lot more has been learned on
the FRI/FRII dichotomy, as reported in Bridle (1984), Baum

et al. (1995), Chiaberge et al. (2000), and Mingo et al. (2019).
Between the 1980s and 1990s, an additional classification was
proposed, on the basis of the relative intensity of high- and
low-excitation lines in the optical spectra (Hine & Long-
air 1979; Laing et al. 1994). Two populations of radio galaxies
were then defined: high-excitation radio galaxies (HERGs), and
low-excitation radio galaxies (LERGs). These two classes are
believed to represent intrinsically different types of objects,
since they show different accretion rates (Chiaberge et al. 2002;
Hardcastle et al. 2009; Best & Heckman 2012), host galaxies,
and redshift evolution (Pracy et al. 2016).
In the past three decades, several photometric and spectro-

scopic surveys of 3CR radio sources have been carried out. For
example, using the Hubble Space Telescope (HST), the 3CR
catalog has been observed in the near-ultraviolet (Allen et al.
2002), optical (de Koff et al. 1996; McCarthy et al. 1997;
Martel et al. 1999; Privon et al. 2008; Tremblay et al. 2009;
Ramírez et al. 2017), and near-infrared (Madrid et al. 2006;
Baldi et al. 2010). Buttiglione et al. (2009) carried out an
optical spectroscopic survey of 3CR radio galaxies with the
Telescopio Nazionale Galileo. More recently, Balmaverde et al.
(2019) presented Very Large Telescope/Multi Unit Spectro-
scopic Explorer (VLT/MUSE) observations of 20 low-z 3CR
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radio galaxies. Finally, Very Long Baseline Array (VLBA)
data for several 3CR objects at redshifts z< 0.2 were also
obtained (see, e.g., Giovannini et al. 2001; Liuzzo et al. 2009,
and references therein).

In X-rays, most of the 3CR extragalactic radio sources were
observed with Chandra, XMM-Newton, and Swift (see, e.g.,
Worrall et al. 2001; Hardcastle et al. 2005; Kraft et al. 2007).
Until Cycle 9 the Chandra archive covered only ∼60% of the
3CR extragalactic sample, while the other X-ray telescopes,
such as XMM-Newton, had obtained data for less than one-
third of the entire catalog.

In 2008, the 3C Chandra snapshot campaign began, aiming
to detect X-ray emission in extragalactic radio sources arising
from jets and hotspots, to determine their X-ray emission
processes on a firm statistical basis, and to study the nuclear
emission of the host galaxies (Massaro et al. 2010). In the
Chandra archive, 150 out of 298 3CR extragalactic sources
were already present before the beginning of the survey. We
observed 123 3CR sources, and X-ray emission has been
detected in 119 out of 122 radio cores, in addition to the
discovery of the X-ray counterpart for eight jet knots, 23
hotspots, with marginal detection for another 9, and 17 radio
lobes (see Jimenez-Gallardo et al. 2020 for the latest run of
Chandra observations). Diffuse X-ray emission was also
detected around several 3C radio sources, potentially associated
with either their radio lobes or radiation arising from the
intergalactic medium (IGM) when harbored in galaxy clusters/
groups (see, e.g., 3C 17, 3C 196.1, 3C 89, and 3C 187; Dasadia
et al. 2016; Madrid et al. 2018; Ricci et al. 2018; Paggi et al.
2021, respectively). Some of the most interesting 3CR sources
have been investigated in more detail with Chandra follow-up
observations, such as 3C 171, 3C 105, and 3C 305 to name a
few (see, e.g., Hardcastle et al. 2010, 2012; Orienti et al. 2012,
respectively). Additional Chandra X-ray observations,
restricted to the 3CRR catalog, also have been carried out in
parallel during the past decade (see, e.g., Wilkes et al. 2013).

During our campaign, we determined that 25 3CR sources
out of 298 were optically unidentified, that is, lacking an
optical counterpart of their core, and therefore have neither
optical classification nor redshift (see Massaro et al. 2013).
This means that there is no detected emission from the host
galaxy in the optical band, and this could be due to multiple
reasons. These sources might, in fact, be either high-redshift
quasars/radio galaxies, or highly absorbed/obscured lower-z
active galaxies, or optically faint LERGs, that lack radiatively
efficient AGN signatures in the optical emission. (See Section 3
for more information on individual sources properties.)

This warranted follow-up observations.
Maselli et al. (2016) carried out an optical-to-X-ray

campaign that includes data from the Swift Observatory. These
authors found that a total of 21 out of the 25 unidentified
sources observed by Swift have an National Radio Astronomy
Observatory (NRAO) Very Large Array (VLA) Sky Survey
(NVSS; Condon et al. 1998) counterpart. Thirteen of them also
show mid-infrared (IR) emission as detected in the AllWISE
(Wide-field Infrared Survey Explorer mission; Wright et al.
2010) Source Catalog, and 9 out of these 21 sources have an
X-ray counterpart detected in the 0.5–10 keV energy range,
above 5σ level of confidence.

In this paper, we present the results of Chandra follow-up
observations for seven of the nine unidentified 3C sources with
the Swift X-ray counterpart, all observed in 2020. The two

remaining sources are expected to be observed in 2021 April,
according to the Chandra long-term schedule,14 and their
analysis will be presented in a forthcoming paper (V. Missaglia
et al. 2021, in preparation).
Here, we also present, for the first time, radio observations

available for the selected sample in the historical VLA archive.
Both radio and X-ray observations are also compared with data
collected with the Panoramic Survey Telescope & Rapid
Response System (Pan-STARRS; Chambers & Pan-STARRS
Team 2016) and Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010).
The paper is organized as follows. A brief overview of the

data reduction procedures, both for the radio and X-ray band, is
given in Section 2, while results on single sources are discussed
in Section 3. In Section 4 we present our summary and
conclusions. In the Appendix, we show all the radio maps we
obtained from the historical VLA archive.15

Unless otherwise stated, we adopt cgs units for numerical
results and we also assume a flat cosmology with H0 = 69.6 km
s−1 Mpc−1, ΩM= 0.286, and ΩΛ= 0.714 (Bennett et al. 2014).
Spectral indices, αX, are defined by flux density, nµn

a-S X .
WISE magnitudes in the nominal bands at 3.4 (W1), 4.6 (W2),
12 (W3), and 22 (W4) μm are in the Vega system, while
Pan-STARRS1 adopts the AB magnitude system (Oke &
Gunn 1983).

2. Data Reduction and Analysis

To search for optical and infrared counterparts of our
selected targets, we first retrieved all radio observations from
the historical VLA archive, aiming at detecting their radio
cores. After data reduction, we overlaid radio contours on
optical, IR, and X-ray images. In Table 1 we report (1) 3C
designation, (2)–(3) coordinates in J2000 Equinox, (4) Galactic
absorption as reported in Kalberla et al. (2005), (6) Chandra
observation ID and date, (7) flux at 178 MHz retrieved from
Spinrad et al. (1985), and (8)–(11) remarks on the sources from
this work.

2.1. Radio Archival Observations

All radio data presented in this paper were retrieved from the
historical VLA Archive managed by the NRAO. A summary of
all radio observations is presented in Table 2 where we report
(1) 3C designation, (2) NRAO observing project identification,
(3) observing band, (4) spectral windows, (5) telescope
configuration in which the observation was performed, (6)
clean beam size, (7) total flux of the source, (8) peak flux of the
radio image, (9) observation time on source, (10) rms noise of
the clean image, and (11) contour levels used in the radio maps.
Calibration and imaging were performed in CASA16 v5.1.1-5

(McMullin et al. 2007) adopting manual standard procedures.
For each source, whenever possible, we reduced observations
in the L, C, and X radio bands (at 1.5, 6, and 10 GHz nominal
frequencies, respectively). For all bands, after inspecting the
observation log, we manually flagged antennas with bad data.
Then, we performed the calibration adopting the following
steps: (1) we provided a flux density value for the amplitude
calibrator, (2) we derived corrections for the complex antenna
gains, (3) we used the flux calibrator to determine the system

14 https://cxc.harvard.edu/target_lists/longsched.html
15 https://science.nrao.edu/facilities/vla/archive/index
16 https://casa.nrao.edu/
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response to a source of known flux density, and finally (4) we
applied the calibrations to our calibrators and our target.
Bandpass correction is not necessary given that all observations
are performed in single channel mode. As a last step, we
performed self-calibration, changing the weight parameter in
every step of the cleaning process to recover all the extended
emission, and setting manual boxes.

2.2. X-Ray Observations

Chandra data reduction and analysis have been carried with
the Chandra Interactive Analysis of Observations (CIAO,
v4.11; Fruscione et al. 2006) following the standard procedures
and threads.17 We also used the Chandra Calibration Database
v4.8.2, according to the same method adopted in our previous
investigations of the 3CR snapshot observations (see, e.g.,
Massaro et al. 2010, 2011 for additional information). Only a
brief overview of the reduction process is reported below.

We performed the astrometric registration between radio and
X-ray images by aligning the X-ray position of each core with
that of the radio images, as in previous papers on the 3CR
Chandra Snapshot Survey (see Massaro et al. 2011, 2012,
2018; Stuardi et al. 2018). In Table 3, we report the radio/X-
ray shift, which for all sources is less than 2″, corresponding to
∼90% of the Chandra point-spread function (PSF). 3CR 409 is
the only source out of the seven presented in this work that
could not be registered due to the lack of a radio core detection.
WISE and Pan-STARRS data sets are not registered to the
radio position, as done for the X-ray data; thus small shifts (i.e.,
less than ∼1″) may be seen when overlaying radio contours on
IR and optical images, consistent with their astrometric
uncertainty18 and seeing in the Pan-STARRS case (Magnier
et al. 2020). However this does not affect associations of
radio and X-ray nuclei with their mid-IR and optical counter-
parts since below ∼1″ the chance probability of a spurious
association is less than 0.1% (see, e.g., Massaro et al. 2014;
D’Abrusco et al. 2019 for details).

2.2.1. X-Ray Photometry

We used unbinned and unsmoothed X-ray images restricted
to the 0.5–7 keV band to search for the X-ray nuclei. X-ray
detection significance, reported as Gaussian equivalent stan-
dard deviation (σ), was estimated measuring the number of
photons in both the nuclear region, if present, and a background
region. The background region was chosen to be a circular
aperture with a radius of 10″, i.e., 5 times larger in radius than
the one used for the X-ray detection of nuclei, and located far
enough from the radio galaxy (i.e., at least a few tens of
arcseconds) to avoid the off-axis degradation of the PSF on
charge coupled device borders and contamination from the
source, if extended. Adopting a Poisson distribution for the
number of photons in the background, we computed the level
of significance for X-ray excesses associated with the position
of radio cores, if any. For 3CR 409, where no registration was
possible, we centered the nuclear regions at the position
corresponding to the emission peak in the 4–7 keV band.

We also created flux maps in the X-ray energy ranges
0.5–1 keV (soft), 1–2 keV (medium), and 2–7 keV (hard),
taking into account both exposure maps and effective areas. To

this end, we used monochromatic exposure maps set to the
nominal energies of 0.75, 1.4, and 4 keV for the soft, medium,
and hard bands, respectively. All flux maps were converted
from units of counts cm−2 s−1 to cgs units by multiplying each
map pixel by the nominal energy of each band. We made the
necessary correction to recover the observed erg cm−2 s−1,
when performing X-ray photometry (see, e.g., Hardcastle et al.
2012; Madrid et al. 2018 for details). This is the same
procedure adopted for X-ray photometry in all previous
analyses of our 3CR Chandra Snapshot Survey (see, e.g.,
Massaro et al. 2015; Stuardi et al. 2018; Jimenez-Gallardo et al.
2020).
Flux maps were then used to measure observed fluxes for all

the X-ray detected nuclei and extended components associated
with radio structures. Uncertainties are computed assuming
Poisson statistics (i.e., square root of the number of counts) in
the source and background regions. X-ray fluxes for the cores
are not corrected for the Galactic absorption, and are reported
in Table 4.

2.2.2. X-Ray Surface Brightness Profiles

For 3CR 409 and 3CR 454.2, we detected significant diffuse
X-ray emission in the 0.5–7 keV band, extending beyond the
radio structure. Thus, to estimate the extension of this X-ray
emission, we derived its surface brightness profiles, reported in
Section 3).
First, we detected and removed X-ray pointlike sources

(including the X-ray nuclei of the radio galaxies) in the
0.5–7 keV images using the WAVDETECT task, available in
CIAO. We adopted a sequence of 2 wavelet scales, from 1 to
16 to cover different sized sources, and a false-positive
probability threshold set to the value of 10−6, which is the
value recommended for a 1024× 1024 image in the CIAO
threads.19 This value was chosen to ensure that we do not
oversubtract point sources. We generated the corresponding
source regions using the ROI task.20

We computed the 0.5–7 keV, exposure-corrected X-ray
surface brightness profiles in four quadrants (north, south,
east, and west). The background was estimated as a circular
region of ∼80″ radius, far from the source, and free of detected
sources. A similar procedure was used in Jimenez-Gallardo
et al. (2021) to search for X-ray counterparts of radio hotspots.

2.2.3. X-Ray Spectral Analysis

We performed spectral analysis for the X-ray counterparts of
radio cores of four sources having more than 400 photons (as
reported in Table 4) within a circular region of 2″, centered on
the radio core position (namely, 3CR 91, 3CR 390, 3CR 409,
and 3CR 428) and in more extended regions corresponding to
X-ray diffuse emission. This analysis was carried out to
determine X-ray spectral indices αX, the presence of significant
intrinsic absorption, if any, and to estimate the temperature,
abundances, and density for the intracluster medium (ICM) of
the two galaxy clusters detected (namely, 3CR 409 and
3CR 454.2).
The spectral data for the X-ray cores were extracted from a

2″ aperture, as for photometric measurements, using the CIAO
routine SPECEXTRACT, thereby automating the creation of

17 http://cxc.harvard.edu/ciao/threads/
18 https://wise2.ipac.caltech.edu/docs/release/allwise/ and https://panstarrs.
stsci.edu.

19 https://cxc.harvard.edu/ciao/threads/wavdetect/
20 https://cxc.cfa.harvard.edu/ciao/ahelp/roi.html
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count-weighted response matrices. In the cases of the sources
hosted in clusters, namely, 3CR 409 and 3CR 454.2, we have
extracted the spectrum from a circular region of ∼1′ excluding
a 2″ aperture covering the nucleus. Background spectra were
extracted in nearby circular regions of radius 80″ free of
detected sources. The source spectra were then filtered in
energy between 0.5 and 7 keV and binned to allow a minimum
number of 20 counts per bin to ensure the use of the χ2 statistic.
We used the SHERPA21 (Freeman et al. 2001) modeling and
fitting package to fit our spectra.

For the nuclear spectra, as performed in all our previous
analyses of sources observed during the 3CR Chandra Snapshot
Survey, we adopted an absorbed power-law model with the
hydrogen column density NH fixed at the Galactic values and a
contribution of intrinsic absorption (xswabs*xszwabs*xspower-
law). In the following section, we report the values obtained by
our best fits. When considering the fitting model, the two main
free parameters—namely, the intrinsic absorption NH,int and the
spectral index αX—were allowed to vary, to quantify the degree
to which NH,int and αX are degenerate. In all cases, we adopted
the photometric redshift obtained from WISE counterpart
magnitudes, as described in Glowacki et al. (2017). These
authors, using the WISE two-color plot (W1–W2 versus W2–
W3), were able to distinguish LERGs (typically associated with
passive elliptical galaxies), HERGs (associated with smaller but
higher star-forming galaxies hosting radiative AGNs), and
QSOs. The method described to estimate the redshift offers,
therefore, also the probability of a radio source to be either a
LERG, or a HERG, or a QSO, using the kernel density
estimation (KDE; for more information about this method see
Section 2.2 in Glowacki et al. 2017). These probabilities are used
to weight the redshift estimation made for each class (see Table 2
in Glowacki et al. 2017). In Table 5 photometric redshifts and
results of the X-ray spectral analysis of the cores are reported.

For 3CR 91, from the pileup map generated through the
CIAO task pileup_map, we estimated the amount of pileup to
be ∼15%. For this reason, before performing the spectral
analysis of the X-ray counterpart of the radio core, we excluded
the pixels most affected by the pileup (five pixels), obtaining a
better fit with respect to the one adopting the jdpileup22 model.

3. Results and Details on Individual Sources

3.1. 3CR 91

From the historical VLA archive, we retrieved radio
observations of 3CR 91 performed at 1.4 and 8 GHz in B and
AB configurations, respectively. In the 8 GHz image (see red
contours in the panels of Figure 1 and right panel of Figure A1)
the radio core is clearly detected (i.e., above 5σ confidence
level), while in the VLA image at 1.4 GHz (see Figure A1, left
panel) the radio core is not visible. 3CR 91 is a double-lobed
radio source in the VLA image at 1.4 GHz. On the other hand, in
the 8 GHz radio map, we did not detect the emission arising
from the southern radio lobe, clearly seen at lower frequencies,
but the northern lobe resembles an FRII radio galaxy.

We found both the IR and the optical counterpart of the radio
core in the Pan-STARRS and WISE images, as shown in the
upper panel of Figure 1. The WISE counterpart to the core,
J033743.02+504547.6, detected in all IR filters, is clearly the

same object found within the Swift-XRT uncertainty circle, at
small angular separation (1 4) from its radio position. This
source, as reported in Maselli et al. (2016), has an associated
NVSS counterpart, J033743+504552. The WISE counterpart is
included in D’Abrusco et al. (2014) all-sky catalog of infrared
selected, radio-loud active galaxies, due to its peculiar infrared
colors, and also in D’Abrusco et al. (2019). Since 3CR 91 has a
WISE counterpart, adopting the method described in Glowacki
et al. (2017), we were able to obtain a photometric redshift
estimate of z= 0.23± 0.18 from the 3.4 μm magnitude, and an
estimate of = -

+z 0.19 0.14
0.18 from the 4.6 μm magnitude, with 82%

probability of being a QSO. In the Chandra image (Figure 1,
lower panel), there is a clear detection of the radio core in the
0.5–7 keV energy range. 3CR 91 also shows extended X-ray
emission up to ∼9″ from the nucleus. We did not detect any
X-ray counterpart for hotspots and lobes.
Since for 3CR 91 the number of photons within a circular

region of 2″ radius, centered on the radio position, is larger than
400, we carried out a nuclear X-ray spectral analysis. We adopted
an absorbed power-law model with the hydrogen column density
NH fixed at the Galactic value (see Table 1, column (4)). As

Figure 1. Upper panel: Pan-STARRS R-band image with WISE 3.4 μm filter
magenta contours of the IR counterpart of the radio source overlaid. IR
contours are drawn at 12.54, 16.91, 22.89, 31.07, and 42.27 in arbitrary flux
scale. In red, 8 GHz VLA contours are shown, the same used in the Chandra
image. The four radio contour levels were computed starting at 0.01 Jy
beam−1, increasing by a factor of 2. The arrow points to the WISE counterpart
of the radio core. Lower panel: 0.5–7 keV Chandra image of 3CR 91 with VLA
8 GHz contours overlaid. The image has not been rebinned, but smoothed with
a 3 pixel (equivalent to 1 48) Gaussian kernel. In the bottom right of the
image, kiloparsec scales measured using the photometric redshifts obtained
using the method described in Glowacki et al. (2017) are indicated.

21 http://cxc.harvard.edu/sherpa
22 https://cxc.cfa.harvard.edu/sherpa/ahelp/jdpileup.html
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reported in Table 5, for both photometric redshifts, we obtained
the best-fit values setting NH,int as free parameter, obtaining a
value ∼1023 cm−2, similar to that of the Galactic NH. Since 3CR
91 is a moderate-z QSO, we did expect a detection of the optical
counterpart, in agreement with our results.

3.2. 3CR 131

For 3CR 131, we reduced VLA data at 8 GHz (see red radio
contours in Figure 2, upper and lower panels) and at 1.4 GHz
(see Figure A2, right panel). In the 8 GHz image, we detected
the emission of both lobes and the nucleus, at 5 times the rms
noise level, and a single radio hotspot in the southern lobe. The
presence of the northern hotspot could suggest that 3CR 131 is
an FRII radio galaxy. Using the method described in Glowacki
et al. (2017), we obtained a photometric redshift estimate of
= -

+z 0.41 0.12
0.13 from the 3.4 μm magnitude value, and an

estimate of z= 0.4± 0.13 the 4.6 μm magnitude, and a 59%
probability for this source to be an LERG.

We found the nuclear counterpart of 3CR 131 only in the
IR image. In WISE W1 filter (3.4μm) image (see Figure 2, upper
panel), there are two nearby objects at angular separation 4″∼ from
the position of NVSS J045323+312924 (Maselli et al. 2016).

Only one object, WISE J045323.34+312928.4 (indicated by an
arrow in Figure 2, upper panel), is within the positional uncertainty
of the Swift-XRT source. This WISE source is cospatial with the
position of the nucleus in the 8GHz radio map, and it is therefore
likely its IR counterpart.
In the Chandra image (Figure 2, lower panel) the core is

clearly detected and associated with the radio core, but the
southern hotspot is not detected in the 0.5–7 keV energy range.

3.3. 3CR 158

3CR 158, at 8 GHz, is a lobe-dominated radio source (see red/
cyan contours in Figure 3). The core is clearly detected in this
band, as well as both the southern and northern lobes (see red and
cyan contours in the upper and lower panels of Figure 3 and upper
left panel of Figure A3). In particular, in the northern side there
are two knots and one hotspot, hint that the source could be
classified as FRII. The two knots in the southern radio structure
are probably part of the same lobe but are not detected in the
4.5 GHz image (see Figure A3, upper right and bottom panels).

Figure 2. Upper panel: WISE 3.4 μm filter image of 3CR 131. The arrow
points to the IR counterpart of the radio nucleus. No optical counterpart has
been detected for this source. The six VLA 8 GHz radio contours levels (red)
start from 0.002 Jy beam−1 and are increased by a factor of 2. Lower panel:
0.5–7 keV Chandra image of 3CR 131, with VLA 8 GHz band contours
overlaid in red. Chandra image is not rebinned, but has been smoothed with a 5
pixel (2 46) Gaussian kernel. In the bottom right of the image, kiloparsec
scales measured using the photometric redshifts obtained using the method
described in Glowacki et al. (2017) are indicated.

Figure 3. Upper panel: Pan-STARRS R-band image with WISE 3.4 μm filter
magenta contours of the IR counterpart of the radio source overlaid. In red
8 GHz VLA contours are shown, the same used in the Chandra image (in
cyan). VLA contours start from 0.002 Jy beam−1, increasing by a factor of 2 up
to 0.064 Jy beam−1. IR contours are drawn at 13.40, 13.75, 14.21, 14.80 in
arbitrary flux scale. The arrow points to the WISE counterpart of the radio core.
Lower panel: Chandra X-ray image of 3CR 158 in the 0.5–7 keV energy band,
binned to 0 123/pixel and smoothed with a 5 pixel Gaussian kernel
(equivalent to 0 615). The northern radio jet has a clear X-ray counterpart.
In the bottom right of the image, kiloparsec scales measured using the
photometric redshifts obtained using the method described in Glowacki et al.
(2017) are indicated.
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The core is also detected in both optical and IR images (see
Figure 3, bottom panel). Maselli et al. (2016) reported that the
X-ray source XRT J062141.2+143212 matches the NVSS
source J062141+143211, within the 3C positional uncertainty
region of 3CR 158. An infrared counterpart in the AllWISE
Source Catalogue, WISE J062141.01+143212.8, is found at
1 5 from the NVSS source, probably its counterpart (we
remind that at these separations the chance probability of
spurious association is below 0.1%). No infrared/optical
candidate counterpart has been previously reported in the
literature for this radio source. Adopting the procedure
described in Glowacki et al. (2017), using the 3.4 μm WISE
magnitude we obtained a photometric median redshift of
= -

+z 4.57 3.14
0.68 and using the 4.6 μm WISE magnitude, a

photometric median redshift of = -
+z 3.16 2.19

2.09, with a prob-
ability of 82% for this source of being a QSO. This is the
source with the highest predicted photometric redshift of the
sample. Since the Pan-STARRS counterpart is detected, even at
such high redshift, a spectroscopic optical campaign is required
to verify this prediction.

We found X-ray extended emission aligned with the radio jet
structure in the northern side of our Chandra observation (see
Figure 3, upper panel). The flux of of the X-ray counterpart is
(1.51± 0.30)× 10−14 erg cm−2 s−1 in the 0.5–7 keV band.
Given the alignment with the jet rather than the lobe, the jet
is most likely the source of the X-rays.

3.4. 3CR 390

3CR 390 is a lobe-dominated radio source, as shown in the
VLA image at 4.5 GHz (see red/blue contours in the upper and
lower panels of Figure 4 and the upper left panel of Figure A4).
The IR counterpart of the radio core is detected in the WISE
3.4 μm filter image (see Figure 4, upper panel).
In the Pan-STARRS R-band image, there are both an optical

source corresponding to the radio core, in the same position of
the WISE counterpart, and an optical source located on the
position of the western radio knot (see Figure 4, lower panel)
that is likely to be a background source. To verify if the X-ray
emission on the western side of the source is related to the
diffuse radio emission or if it is an optical source, we measured
the p-chance of the hotspot association considering the source
density in a 80″ circular region around 3CR 390, taking into
account the correct distance between the core and tentative
hotspot. We obtained a p-chance <4%. As reported in Maselli
et al. (2016), the whole radio structure is associated with NVSS
J184537+095344 and the X-ray source: XRT J184537.6
+095349. The NVSS source, not well centered with respect
to the 3CR positional uncertainty region, is located within the
XRT positional uncertainty region. The infrared counterpart,

Figure 4. Upper panel: Pan-STARRS R-band image of the field of 3CR 390,
with WISE 3.4 μm filter magenta contours overlaid. IR contours are drawn at
16.64, 19.28, 22.42, and 26.15 in arbitrary flux scale. VLA red contours at
4.5 GHz are overlaid, starting from 0.002 Jy beam−1 and increased by a factor
of 2 up to 0.032 Jy beam−1. The black arrow points to the position of the IR
counterpart of the radio nucleus. Lower panel: Chandra X-ray image of
3CR 390 in the 0.5–7 keV band, binned to 0 246/pixel and smoothed with a 5
pixel Gaussian kernel (equivalent to 1 23). The X-ray image shows extended
emission spatially coincident with the radio bridge in the western direction. In
the bottom right of the image, kiloparsec scales measured using the
photometric redshifts obtained using the method described in Glowacki et al.
(2017) are indicated.

Figure 5. Upper panel: WISE 3.4 μm filter image of 3CR 409. The arrow
points to the IR counterpart of the radio nucleus. No optical counterpart has
been detected for this source. VLA red contours at 4.5 GHz are overlaid,
starting from 0.02 Jy beam−1 increasing by a factor of 2, up to 0.64 Jy beam−1.
Lower panel: Chandra X-ray image of 3CR 409, filtered in the 0.5–7 keV band,
rebinned to 0 123/pixel and smoothed with a 4 92 Gaussian kernel. VLA
contours are the same as used in the upper panel. The dotted black circle has
a 0 5 radius. The black contours trace the X-ray emission at
3 × 10−18 erg cm−2 s−1. The X-ray image shows emission associated with
the radio lobes as well as more extended emission extending to 60″. In the
bottom right of the image, kiloparsec scales measured using the photometric
redshifts obtained using the method described in Glowacki et al. (2017) are
indicated.
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namely, WISE J184537.60+095345.0, was also included in the
all-sky catalog of blazar candidates by D’Abrusco et al. (2014)
due to its peculiar infrared colors, and in D’Abrusco et al.
(2019). Adopting the procedure described in Glowacki et al.
(2017), using the 3.4 μm WISE magnitude, we obtained a
photometric median redshift of = -

+z 0.41 0.32
0.28, and using the

4.6 μm WISE magnitude a photometric median redshift of
= -

+z 0.30 0.25
0.21, with a probability of 57% for the source to be

a QSO.
In the Chandra image the core is clearly detected and we also

found extended X-ray emission spatially coincident with the radio
bridge connecting the two intensity peaks visible at 4.5 GHz
(see Figure 4, lower panel). Given the large number of X-ray
photons measured within the 2″ circular region from the radio
core position (i.e., above our threshold of 400 counts) we
performed the X-ray spectral analysis. Adopting a power-law
model with both Galactic and intrinsic absorption, we obtained the
best-fit results, for both values of the photometric redshifts, setting
NH,int as a free parameter. In these cases, we obtain an NH,int that is
comparable with the Galactic NH (∼1021 cm−2), and this result is
not unexpected given that we were able to detect the optical
counterpart in Pan-STARRS and the moderate z of 3CR 390.

3.5. 3CR 409

For 3CR 409, a lobe-dominated radio source, we merged two
VLA observations, both at 1.4 GHz, obtained in different

Figure 6. Directions used in source 3CR 409 to extract the surface brightness
profiles shown in Figure 7. The four sectors extend up to 60″ from the core
(that we have excluded, starting from a distance of 2″ from the position of the
core, as reported in the NVSS; see Table 1). In blue we show the VLA contours
from Figure 5.

Figure 7. Surface brightness profiles for 3CR 409 extracted in the directions shown in Figure 6. Sectors are divided in bins of 2″ width. The inner and outer radii of the
lobes are indicated with blue vertical dotted lines. In the western profile (upper right panel) we estimated a jump in the surface brightness between the third and fourth
annulus, with 2.8σ.
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configurations (see column (5) of Table 2 and black/blue
contours in Figure 5). This is the only radio source of our
sample to have been previously classified, as an FRII (Massaro
et al. 2013). We manually flagged and calibrated both data sets
separately, and then we performed the self-calibration of both
observations together. In the final radio map (see Figure A5)
the core is not clearly detected, and overlaying radio contours
to the optical image we did not find a plausible counterpart
located between the two lobes. On the other hand there is a
WISE source, namely, J201427.59+233452.6, detected in all
four filters and corresponding to the intensity peak of the
Chandra image.

The source Swift J201427.5+233455, detected with
S/N= 11.6, lies in the field of view of 3CR 409 and matches
the coordinates of NVSS J201427+233452 with an angular
separation of 1 9. The mid-IR counterpart WISE J201427.59
+233452.6 is located at only 0 3 from the NVSS source. This
WISE infrared object is included in the all-sky catalog of
blazar-like radio-loud sources by D’Abrusco et al. (2014) and
in D’Abrusco et al. (2019). As for previous sources, adopting
the procedure described in Glowacki et al. (2017), using the
3.4 μm WISE magnitude we obtained a median redshift of
= -

+z 1.04 0.74
0.71, and using the 4.6 μm WISE magnitude a median

redshift of = -
+z 0.55 0.46

0.38 and a probability of 60% of being
a QSO.

In the Chandra image there is some extended emission
around the core, suggesting the presence of a cluster, that we
investigate in more detail. We have derived the surface
brightness profiles in the directions shown in Figure 6.
Northern and southern directions have been selected to
encompass the radio lobe contours, while eastern and western
directions are those away from the lobes. From these profiles
we have estimated the extension of the diffuse emission that
appears to be symmetrical around the source up to a distance of
∼60″ from the radio core. In the western direction, at a distance
of ∼10″ there is a jump in the surface brightness, and the same
behavior can be observed at the same distance in the eastern
direction (see Figure 7).
Since we detected more than 400 photons in the nuclear

region of the Chandra image, we also performed the spectral
analysis of the X-ray core, adopting an absorbed power-law
model. We obtained the best-fit results with NH,int as a free
parameter, for both choices of redshift. NH,int has a value of
∼1023 cm−2, and this is probably the reason we did not detect
an optical counterpart, under the assumption of a normal gas to
dust ratio.
We also analyzed the extended X-ray emission, adopting a

thermal APEC model with Galactic absorption. As specified in
Section 2.2.3, we have excluded a 2″ circular region where we

Figure 8. Upper panel: WISE 3.4 μm filter image of 3CR 428. VLA contours
(black) at 4.5 GHz are the same used in the Chandra image (red). Radio
contours start from 0.002 Jy beam−1 and increase by a factor of 2. The arrow
points to the IR counterpart of the radio nucleus. No optical counterpart has
been detected for this source. Lower panel: Chandra X-ray image of 3CR 428,
filtered in the 0.5–7 keV band. Image has not been rebinned, but smoothed with
a 6 pixel Gaussian kernel (equivalent to 2 952). In the bottom right of the
image, kiloparsec scales measured using the photometric redshifts obtained
using the method described in Glowacki et al. (2017) are indicated.

Figure 9. Upper panel: WISE 3.4 μm filter image of 3CR 454.2. VLA contours
(black) are the same used in the Chandra image (blue) and start from 0.001 Jy
beam−1 and increase by a factor of 0.001 Jy beam−1 to 0.005 Jy beam−1. The
arrow points to the IR counterpart of the radio nucleus. No optical counterpart
has been detected for this source. Lower panel: Chandra X-ray image of
3CR 454.2, filtered in the 0.5–7 keV band, binned up to 0 246 pixel−1 and
smoothed with a 8 pixel Gaussian kernel (equivalent to 1 968). Cavities are
indicated by arrows. In the bottom right of the image, kiloparsec scales
measured using the photometric redshifts obtained using the method described
in Glowacki et al. (2017) are indicated.
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expect to find most of the nuclear emission and all the detected
point sources. However, we also took into account the
contribution of Chandraʼs PSF wings extending into the region
selected for the spectral extraction that accounts for about ∼2%
of the 0.5–7 keV net counts. We therefore included such a
contribution in the model used to fit the extended emission. We
have tested four models: abundance fixed to 0.25 solar and
redshift z= 1.04 (or z= 0.55), redshift z= 1.04 (or z= 0.55)
and free abundance, abundance fixed to 0.25 solar and free
redshift, and both abundance and redshift free to vary during
the fit. The z= 0.55 models yield the best-fit statistics, with a
poorly constrained temperature 11 keV. Such temperatures
have been reported for clusters at higher redshifts (e.g.,
z= 0.89; Jones et al. 2004), and therefore deeper Chandra
observations are needed to draw firm conclusions on the nature
of this extended X-ray emission.

3.6. 3CR 428

3CR 428 is a lobe-dominated radio source at 4.5 GHz with a
clearly detected core (see black/red contours in Figure 8, upper
and lower panels). There is no optical counterpart in the Pan-
STARRS R-band image of the nucleus, while there is a
detection at IR frequencies associated with WISE J210822.08
+493641.6 located within the XRT positional uncertainty
region at an angular separation of 0 5. The core is also clearly
detected in the Chandra image, but there are no clear
counterparts of radio lobes or hotspots. The X-ray source
XRT J210822.1+493642 also matches the NVSS J210822
+493637 position at an angular separation of 5 6.

As for 3CR 91, 3CR 390, and 3CR 409, the WISE
counterpart has been recently included in the all-sky catalog
of blazar candidates of D’Abrusco et al. (2014). Adopting the
procedure described in Glowacki et al. (2017), using the
3.4 μm WISE magnitude we obtained a photometric redshift of
= -

+z 2.38 1.66
1.62, and using the 4.6 μm WISE magnitude a

photometric redshift of = -
+z 2.27 1.58

1.59, with a probability of
70% for the source being a QSO.

Since we detected more than 400 photons in the nuclear region
of the Chandra image, we also performed a spectral analysis of the
X-ray core, adopting an absorbed power-law model. As in the

case of 3CR 409 we obtained a value of NH,int∼ 1023 cm−2,
explaining our nondetection of an optical counterpart.

3.7. 3CR 454.2

3CR 454.2 is a lobe-dominated radio source in the 8 GHz
VLA image, in which we clearly detected the core and two
lobes and hotspots (see black contours in the upper panel of
Figure 9). In the Pan-STARRS image there is no optical
counterpart located at the radio core position.
In Maselli et al. (2016) a soft X-ray source XRT J225205.2

+644013 was detected, at an angular separation of 4 6 from
the coordinates of NVSS J225205+644010 within its 3CR
positional uncertainty region. At an angular separation of 2.3″
from this NVSS source, the IR source WISE J225205.50
+644011.9 was also found in the AllWISE Catalogue, being its
potential counterpart. It is well detected in all filters but the
22 μm filter. Adopting the procedure described in Glowacki
et al. (2017), using the 3.4 μm WISE magnitude, we obtained a
photometric redshift value of = -

+z 0.35 0.11
0.12, and using the

4.6 μm WISE magnitude a value of = -
+z 0.33 0.10

0.12, with a
probability of 96% for the source of being an LERG.
In the Chandra image, we highlight the presence of extended

X-ray emission and the possible presence of at least two
cavities (reported in the lower panel of Figure 9 and, at a larger
scale, in Figure 10). As in the case of 3CR 409 we have derived
the surface brightness profiles in the directions shown in
Figure 11. Again, northern and southern directions have been
selected to encompass the radio lobes contours, while eastern
and western directions are those away from the lobes. We
found evidence for diffuse emission up to ∼50″ from the core
(see Figure 12). The northwestern cavity has less than 2σ level
significance, while the southeastern one has a significance of
3.4σ. To evaluate the significance of the cavities, we have
estimated the counts in each cavity, using circular regions of
appropriate radii, and the average level of the diffuse emission
at the same distance from the core using several circular
regions with the same radii of the cavity regions. Then, using
Poisson statistics, we evaluated the Gaussian σ equivalent of
the cavities significance. We have performed a spectral analysis

Figure 10. Chandra X-ray image of 3CR 454.2, filtered in the 0.5–3 keV band,
binned up to 0 984 pixel−1 and smoothed with a 4 92 Gaussian kernel. The
black circle has a 0 5 radius. The black contours trace the X-ray emission at 0.1
and 0.2 counts pixel−1. In the bottom right of the image, kiloparsec scales
measured using the photometric redshifts obtained using the method described
in Glowacki et al. (2017) are indicated.

Figure 11. Directions used in source 3CR 454.2 to extract the surface
brightness profiles shown in Figure 12. The four sectors extend up to 60″ from
the core (that we have excluded, starting from a distance of 2″ from the position
of the core, as reported in the NVSS; see Table 1). In blue we show the VLA
contours from Figure 9.
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of the diffuse X-ray emission, adopting a thermal model, in
every possible combination of redshift and abundance values,
fixed or free. As specified in Section 2.2.3, we have excluded a
2″ circular region including the nuclear emission, but since the
contribution of the wings of the PSF was lower than 1%, we
have excluded this contribution in the thermal model of the
extended emission. Due to low count statistics, all fits are
poorly constrained and the uncertainties on the temperature
are large. Also in this case, deeper Chandra observations are
needed to properly constrain the properties of the clus-
ter IGM.

4. Summary and Conclusions

In this paper, we present a multiwavelength (radio, infrared,
optical, and X-ray) study of 7 of the 25 extragalactic radio
sources listed in the Third Cambridge Revised Catalog (3CR)
as unidentified by Spinrad et al. (1985). All these sources,
previously, lacked a confirmed optical counterpart and thus
miss redshift and optical classification. The 3CR Chandra
Snapshot Survey, started in 2008, aimed at searching for X-ray
emission from jet knots, hotspots, and lobes, studying the
nuclear emission of their host galaxies and investigating their
environments at all scales.

Adopting the same procedures used in the previous papers of
the Snapshot, we can summarize our results as follows:

1. Six of the seven sources (all but 3CR 409), show a clear
detection of the radio core at 1.5 GHz, 6 GHz, and
10 GHz. These radio images, retrieved from the historical
VLA archive, were all manually reduced and for five
sources we also gave a tentative FRII radio classification.

2. We found IR counterparts to all the radio cores, thanks to
the WISE archival images. This allowed us to estimate the
photometric redshift of the counterparts using the
magnitudes at 3.4 and 4.6 μm as described in Glowacki
et al. (2017). This method allowed us also to give tentative
classifications (LERG/HERG/QSO) of the sources in the
sample. Most of the sources are classified as QSOs with a
probability 60% , while 3CR 131 and 3CR 454.2 are
classified as LERGs, with the same probability.

3. Only three sources (namely, 3CR 91, 3CR 158, and
3CR 390) of the seven with an infrared counterpart are
also detected in the optical band using Pan-STARRS
images. For the other sources we have obtained an NH,int

value of the order of ∼1023 cm−2, and corresponding
levels of dust obscuration are likely the reason for the
nondetection of the optical counterpart.

4. We found Chandra X-ray counterparts for all the radio cores.
Then, for 3CR 91, 3CR 390, 3CR 490, and 3CR 428, we
also estimated the X-ray spectral indices (αX= 0.48–0.80)
and the intrinsic absorption NH,int, via spectral analysis. The

Figure 12. Surface brightness profiles for 3CR 454.2 extracted in the directions shown in Figure 11. Sectors are divided in bins of 2″ width. In the northern and
southern profiles (bottom panels of Figure 12) inner and outer radii of the lobes are indicated with blue vertical dotted lines. In the northern and eastern profiles the
areas occupied by the cavities are included between orange vertical lines.
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spectral indices are compatible with results reported in the
literature for the nuclei of QSOs and LERGs.

5. We detected X-ray emission arising from the X-ray
counterpart of the northern radio jet in 3CR 158 as well as
that associated with the radio bridge in 3CR 390.

6. Our Chandra observations also revealed the presence of
extended X-ray emission, the hallmark of galaxy clusters,
around 3CR 409 and 3CR 454.2. We performed a spectral
analysis, but temperature or spectral parameters are
unconstrained. This demands deeper Chandra observations
to make more conclusive measures of the temperature,
mass, and luminosity of the clusters.

Regarding the tentative classification of the sources in our
sample, our results are:

1. 3CR 91 has an 8 GHz radio structure similar to an FRII
radio galaxy. From the WISE magnitudes of the counter-
part it can be classified as a QSO at z∼ 0.2. The Pan-
STARRS core counterpart is detected, and the intrinsic
absorption value estimated from X-ray spectral fitting is of
the same order of magnitude as the Galactic one. We
therefore classify this source as a QSO at z∼ 0.2.

2. 3CR 131 has an 8 GHz radio structure similar to an FRII
radio galaxy. From the WISE magnitudes of the
counterpart, it can be classified as an LERG at z∼ 0.4.
There is no Pan-STARRS detected counterpart, but there
are not enough nuclear counts in the Chandra image to
perform a spectral analysis. We classify this source as an
FRII–LERG at z∼ 0.4.

3. 3CR 158, at 8 GHz, is similar to an FRII, and we detected
X-ray extended emission aligned with the radio jet
structure. The photometric redshift estimate from WISE
magnitudes is z∼ 4, and the source is classified as a
QSO. The poor statistics do not allow us to perform a
spectral analysis of the source nucleus. The Pan-STARRS
core counterpart is detected with mR= 20.6, the highest
of the sample. From these results, we classify this source
as a high-redshift (4) QSO.

4. 3CR 390 does not have a clear radio morphology, showing
two-sided lobes. From the WISE magnitudes of the
counterpart, this source can be classified as a QSO at
z∼ 0.4. This source has a detected Pan-STARRS nuclear
counterpart, and from the X-ray spectral fitting, we
estimate a nuclear intrinsic absorption comparable to the
Galactic one. We classify this source as a QSO at z∼ 0.4.

5. 3CR 409 shows an FRII radio morphology, and from the
WISE magnitudes this source is classified as a QSO at
z∼ 0.9. This source appears to lie in a cluster of galaxies,
and does not have a detected Pan-STARRS nuclear
counterpart. From the X-ray spectral fitting, we estimate
an intrinsic absorption ∼1023 cm−2. We therefore classify
this source as a highly absorbed QSO at z∼ 0.9.

6. 3CR 428 features an FRII-like radio morphology. The
WISE magnitudes of this source classify it as a QSO at
z∼ 2.3. No Pan-STARRS nuclear counterpart is detected,
and from the X-ray spectral fit we estimate an intrinsic
absorption ∼1023 cm−2. We classify this source as a
highly absorbed QSO at z∼ 2.3.

7. 3CR 454.2 features an FRII-like radio morphology. From
the WISE magnitudes we classify this source as an LERG
at z∼ 0.3. We do not detect a nuclear Pan-STARRS
counterpart. This source appears to lie in a galaxy cluster

with disturbed IGM morphology; however, the available
Chandra data do not allow nuclear spectral analysis and
so no estimate of the intrinsic absorption, or the IGM
temperature. Deeper X-ray observations are needed to
draw firm conclusions on this source.

In conclusion, we have four sources with a predicted low-z
host (z∼ 0.2–0.4), namely, 3CR 91, 3CR 131, 3CR 390, and
3CR 454.2. Three sources are classified as high-z (>0.9),
highly absorbed QSOs, namely, 3CR 158, 3CR 409, and
3CR 428. In the case of 3CR 158, since the estimated
photometric redshift is that of a very high-z source, deeper
Chandra observations are required to verify this estimate.
This paper presents the first attempt to describe in more

detail the unidentified sources in the 3CR Catalog, using new
Chandra X-ray observations and archival observations from
VLA, WISE, and Pan-STARRS observatories, leading to the
discovery of X-ray emission from nuclei, jets, and cluster gas.
This last part of the 3CR Snapshot Survey, devoted to the 3CR
unidentified sources, is still ongoing and we expect to close this
exploratory sample of nine sources–awarded in Chandra
observation Cycle 21–around 2021 April, with additional
sources scheduled for the rest of the year.

Dan Harris passed away 2015 December 6. His career
spanned much of the history of radio and X-ray astronomy. His
passion, insight, and contributions will always be remembered.
A significant fraction of this work is one of his last efforts. We
thank the referee for a careful reading of our manuscript and
many helpful comments that led to improvements in the paper.
This work is supported by the “Departments of Excellence
2018-2022” Grant awarded by the Italian Ministry of
Education, University and Research (MIUR) (L. 232/2016).
This research has made use of resources provided by the
Ministry of Education, Universities and Research for the grant
MASF_FFABR_17_01. This investigation is supported by the
National Aeronautics and Space Administration (NASA) grants
GO9-20083X and GO0-21110X. A.P. acknowledges financial
support from the Consorzio Interuniversitario per la fisica
Spaziale (CIFS) under the agreement related to the grant
MASF_CONTR_FIN_18_02. A.J. acknowledges the financial
support (MASF_CONTR_FIN_18_01) from the Italian
National Institute of Astrophysics under the agreement with
the Instituto de Astrofisica de Canarias for the “Becas
Internacionales para Licenciados y/o Graduados Convocatoria
de 2017.” W.F. and R.K. acknowledge support from the
Smithsonian Institution and the Chandra High Resolution
Camera Project through NASA contract NAS8-03060. C.S.
acknowledges support from the ERC-StG DRANOEL, No.
714245. The National Radio Astronomy Observatory is
operated by Associated Universities, Inc., under contract with
the National Science Foundation. This research has made use
of data obtained from the High-Energy Astrophysics Science
Archive Research Center (HEASARC) provided by NASA’s
Goddard Space Flight Center; the SIMBAD database operated
at CDS, Strasbourg, France; the NASA/IPAC Extragalactic
Database (NED) operated by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration. This publica-
tion makes use of data products from the Wide-field Infrared
Survey Explorer, which is a joint project of the University of
California, Los Angeles, and the Jet Propulsion Laboratory/
California Institute of Technology, funded by the National

11

The Astrophysical Journal Supplement Series, 255:18 (20pp), 2021 July Missaglia et al.



Aeronautics and Space Administration. This research has made
use of data obtained from the Chandra Data Archive. The Pan-
STARRS1 Surveys (PS1) and the PS1 public science archive
have been made possible through contributions by the Institute
for Astronomy, the University of Hawaii, the Pan-STARRS
Project Office, the Max-Planck Society and its participating
institutes, the Max Planck Institute for Astronomy, Heidelberg
and the Max Planck Institute for Extraterrestrial Physics,
Garching, The Johns Hopkins University, Durham University,
the University of Edinburgh, the Queen’s University Belfast,
the Harvard-Smithsonian Center for Astrophysics, the Las
Cumbres Observatory Global Telescope Network Incorporated,
the National Central University of Taiwan, the Space Telescope
Science Institute, the National Aeronautics and Space Admin-
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Appendix
Radio Contours of the Sources and Tables

For all the 3CR sources in our sample, radio contours are
shown here in Figures A1–A7. For each source, we have
specified the band and configuration at which the observation
was performed: L band (1.5 GHz), C band (6 GHz), and
X band (10 GHz), in A (maximum baseline, Bmax, equal
to 35 km), B (Bmax= 10 km), C (Bmax= 3.5 km), or D
(Bmax= 1 km) configuration. In the bottom left corner, the
clean beam is shown as a black filled ellipse. In Table 1 a
summary of X-ray observations is reported. All the details
about the single radio observations are reported in Table 2. In
Table 3 a summary of optical and IR observations is reported.
In Table 4 we report X-ray fluxes for the cores. In Table 5
we report the results of the spectral analysis performed
on the four sources with cores with more than 400 photons
detected.
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Figure A1. Radio VLA contours of 3CR 91. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean beam
is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2. At the top of each panel, name, band, and
configuration are reported.

Figure A2. Radio VLA contours of 3CR 131. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean
beam is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2.
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Figure A3. Radio VLA contours of 3CR 158. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean
beam is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2.
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Figure A4. Radio VLA contours of 3CR 390. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean
beam is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2.

Figure A5. Radio VLA contours of 3CR 409. This map has been obtained merging two observations in B and BC configurations, respectively, as described in
Section 3. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean beam is shown as a black filled ellipse
in the bottom left of the image. Radio contours are reported in the last column in Table 2.
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Figure A6. Radio VLA contours of 3CR 428. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean
beam is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2.

Figure A7. Radio VLA contours of 3CR 454.2. The name of the source, the observing band, and array configuration are reported at the top of each panel. The clean
beam is shown as a black filled ellipse in the bottom left of the image. Radio contours are reported in the last column in Table 2.

Table 1
Summary of X-Ray Observations

3CR Name R.A. (J2000) Decl. (J2000) NH,Gal Chandra Obs. Date Exposure S178 Counterpart Radio Nucleus Cluster
(hh mm ss) (dd mm ss) (1021 cm−2) Obs. ID (yyyy-mm-dd) (ks) (Jy)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

91 03 37 43.032 +50 45 47.622 4.88 22626 2019-11-18 18.9 14.1 IR, opt yes no
131 04 53 23.337 +31 29 27.826 2.36 22627 2019-12-29 23.8 14.6 IR yes no
158 06 21 41.041 +14 32 13.035 4.95 22629 2020-01-10 23.75 18.1 IR, opt yes no
390 18 45 37.601 +09 53 44.998 3.00 22630 2020-02-28 19.8 21.0 IR, opt yes no
409 20 14 27.74* +23 34 58.4* 2.49 22631 2019-11-29 19.81 76.6 IR no yes
428 21 08 21.985 +49 36 41.820 10.9 22632 2019-12-23 20.79 16.6 IR yes no
454.2 22 52 05.530 +64 40 11.940 7.48 22633 2019-11-17 19.8 8.8 IR yes yes

Note. Column (1): the 3CR name. Columns (2)–(3): the celestial positions obtained from the radio images (the only exception is 3CR 409 where we used the NVSS
counterpart coordinates). Column (4): Galactic neutral hydrogen column densities NH,Gal along the line of sight (Kalberla et al. 2005). Column (5): the Chandra
observation ID. Column (6): the date when the Chandra observation was performed. Column (7): exposure time in ks, as reported in the Chandra Archive. Column (8):
S178 is the flux density at 178 MHz, from Spinrad et al. (1985). Columns (9)–(11): remarks on the results of this work.
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Table 2
Summary of Radio Observations

3CR
Name NRAO ID Obs. Date Frequency Configuration Beam Size Total Flux Peak Flux TOS rms (σ) Contour Levels

(yyyy-mm-dd) (GHz) (arcsec2) (Jy) (Jy beam−1) (s) (10−3 Jy beam−1) (σ)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

91 AH976 2008-10-09 8.44, 8.49 AB 1 × 0.5 0.63 ± 0.06 4.25 × 10−2 70 1.4 6, 8, 16, 32, 64, 72, 74, 78
L AP001 1986-09-15 1.45 B 5.1 × 4.2 3.39 ± 0.17 1.43 150 1.23 9, 27, 81, 243, 729, 1162
131 AH976 2008-10-09 8.44, 8.49 A 0.28 × 0.22 0.36 ± 0.04 1.28 70 0.33 5, 20, 80, 320, 1280, 5120
L AP001 1986-09-15 1.45 B 7 × 6 2.8 ± 0.14 1.3 150 2.8 4, 8, 16, 32, 64, 128, 256, 512
158 AH976 2008-10-09 8.44, 8.49 A 0.22 × 0.20 0.63 ± 0.03 1.28 × 10−1 70 0.44 3, 9, 27, 81, 243
L AR069 1983-10-13 4.84, 4.89 A 0.5 × 0.4 0.58 ± 0.03 1.57 × 10−1 260 0.29 3, 6, 12, 24, 48, 96, 192, 384, 548
L AF156 1989-07-21 4.84, 4.89 BC 5.52 × 4.17 0.58 ± 0.03 3.93 × 10−1 310 0.17 5, 9, 27, 81, 243, 729, 2187, 2258
390 AT147 1993-03-24 4.84, 4.89 B 1.3 × 1.2 1.17 ± 0.06 3.04 × 10−1 370 0.10 10, 40, 160, 640, 2560
L AK100 1984-02-27 1.41, 1.64 B 4.1 × 3.5 4.42 ± 0.22 2.145 400 0.69 8, 16, 32, 64, 128, 256, 512, 1024,

2048, 3110
L AP001 1986-11-28 1.45 C 23.9 × 16.6 4.6 ± 0.23 2.4 × 10−1 210 2.8 6, 12, 24, 48, 96, 192, 384, 768, 1536
409 AP001 1986-09-15 1.45 BC 3.5 × 3.1 12.54 ± 0.63 2.06 × 10−1 190 4 5, 20, 80, 320, 1280
L AC169 1986-08-09 1.39, 1.42, 1.46, 1.51,

1.63, 1.66
B L L L 980 L L

428 AF102 1985-07-30 4.84, 4.89 C 6.4 × 3.5 0.51 ± 0.02 2.06 300 0.26 2, 4, 8, 16, 32, 64, 128, 512, 1024, 8000
L AH147 1984-09-19 1.45, 1.5 D 43.2 × 38 2.16 ± 0.11 1.17 4680 0.45 6, 12, 24, 48, 96, 192, 384, 768,

1536, 3072
454.2 AH976 2008-10-09 8.44, 8.49 A 0.34 × 0.28 0.25 ± 0.02 1.11 × 10−2 80 0.29 3, 6, 12, 24, 38
L AS238 1985-07-14 4.84, 4.89 C 5.7 x 4 0.66 ± 0.03 1.82 × 10−1 270 0.27 6, 12, 24, 48, 96, 192, 384, 674

Note. Column (1): the 3CR name. Column (2): the NRAO observing project (or proposal) identification. Column (3): date of the observation. Column (4): frequency of the VLA observation. Column (5): array
configuration. Column (6): size of the elliptical clean beam (major axis × minor axis). Column (7): total flux of the source, as obtained from the self-calibration. Column (8): peak flux of the radio image. Column (9):
observation time on source (TOS). Column (10): rms noise of the clean image. Column (11): contour levels in units of rms.
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Table 3
Summary of Optical and IR Observations

3CR Name NVSS Name WISE Name E(B–V ) w1 w2 w3 R Band zw1 zw2 VLA/Chandra
(mag) (mag) (mag) (mag) (mag) (arcsec)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

91 J033743+504552 J033743.02+504547.6 1.05 ± 0.05 11.885 ± 0.022 10.80 ± 0.021 7.936 ± 0.020 20.29 ± 0.05 0.23 ± 0.18 -
+0.19 0.14

0.18 0.43

131 J045323+312924 J045323.34+312928.4 0.83 ± 0.02 14.98 ± 0.041 14.77 ± 0.082 12.306 L -
+0.41 0.12

0.13 0.44 ± 0.13 0.65

158 J062141+143211 J062141.01+143212.8 0.77 ± 0.02 15.133 ± 0.046 13.953 ± 0.043 11.131 ± 0.189 20.62 ± 0.06 -
+4.57 3.14

0.68
-
+3.16 2.19

2.09 0.35

390 J184537+09534 J184537.60+095345.0 0.49 ± 0.01 12.546 ± 0.043 11.575 ± 0.024 9.150 ± 0.029 18.80 ± 0.06 -
+0.41 0.32

0.28
-
+0.30 0.25

0.21 0.02

409 J201427+233452 J201427.59+233452.6 0.57 ± 0.03 13.547 ± 0.050 12.377 ± 0.027 9.005 ± 0.027 L -
+1.04 0.74

0.71
-
+0.55 0.46

0.38 La

428 J210822+493637 J210822.08+493641.6 2.59 ± 0.07 14.559 ± 0.064 13.097 ± 0.035 10.143 ± 0.056 L -
+2.38 1.66

1.62
-
+2.27 1.58

1.59 1.09

454.2 J225205+644010 J225205.50+644011.9 1.26 ± 0.04 14.652 ± 0.030 14.341 ± 0.042 13.121 ± 0.467 L -
+0.35 0.11

0.12
-
+0.33 0.10

0.12 0.72

Notes. Column (1): the 3CR name. Column (2): associated NVSS source. Column (3): associated WISE source. Column (4): extinction, as reported in the NASA/IPAC Infrared Science Archive (IRSA). Column (5):
magnitude in the WISE w1 filter (3.4 μm). Column (6): magnitude in the WISE w2 filter (4.6 μm). Column (7): magnitude in the WISE w3 filter (12 μm). Column (8): magnitude in the Pan-STARRS R band. Column
(9): median redshift value obtained from 3.4 μm filter magnitude. Column (10): median redshift value obtained from 4.6 μm filter magnitude. Column (11): angular separation between the position of the radio core
detected in the VLA maps and that of the associated X-ray counterpart in the Chandra images (see Section 2.2). For the estimate of the photometric redshift we have used dereddened values of the WISE magnitude
corrected for Galactic absorption using reddening estimates from Schlafly & Finkbeiner (2011) and the extinction model from Fitzpatrick & Massa (2007).
a Since we were unable to detect the position of the radio core of 3CR409, the Swift is missing.
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Table 4
X-Ray Emission From Nuclei

3CR Net -F0.5 1 keV* -F1 2 keV* -F2 7 keV* -F0.5 7 keV*
Name Counts (cgs) (cgs) (cgs) (cgs)
(1) (2) (3) (4) (5) (6)

91 1938.5 (44.0) 2.5 (0.5) 21.5 (0.8) 92.4 (2.7) 116.4 (2.8)
131 62.4 (8.0) L 0.2 (0.1) 3.8 (0.5) 3.9 (0.5)
158 288.4 (17.0) 0.5 (0.2) 2.8 (0.3) 9.2 (0.7) 12.5 (0.8)
390 1068.5 (32.7) 4.1(0.6) 12.7 (0.6) 40.2 (1.7) 57.0 (1.9)
409 596.5 (24.4) 0.3 (0.2) 3.6 (0.3) 35.3 (1.6) 39.2 (1.7)
428 557.5 (23.6) 0.2 (0.1) 3.9 (0.3) 28.5 (1.4) 32.6 (1.4)
454.2 33.5 (5.8) L 0.1 (0.1) 2.1 (0.4) 2.2 (0.4)

Note. Column (1): 3CR name. Column (2): background-subtracted number of photons within a circle of radius r = 2″ in the 0.5–7 keV band. Column (3): measured
X-ray flux between 0.5 and 1 keV. Column (4): measured X-ray flux between 1 and 2 keV. Column (5): measured X-ray flux between 2 and 7 keV. Column (6):
measured X-ray flux between 0.5 and 7 keV. Note: (*) fluxes are given in units of 10−14 erg cm−2 s−1 and 1σ uncertainties in the number of photons computed
assuming Poisson statistics are given in parentheses. The uncertainties on the flux measurements are computed as described in Section 2. Fluxes were not corrected for
Galactic absorption and were computed adopting the same X-ray photometric measurements of Massaro et al. (2015).

Table 5
Results of Nuclear X-Ray Spectral Analysis

3CR Name z NH,int αX ν cn
2 Luminosity

(1022 cm−2) (erg s−1)
(1) (2) (3) (4) (5) (6) (7)

91 0.23 -
+0.33 0.23

0.25 0.8* 25 0.91 ´-
+1.37 100.11

0.12 44

91 0.23 0* 0.50 ± 0.12 25 0.77 ´+
+1.23 100.18

0.22 44

91 0.19 -
+0.31 0.21

0.23 0.8* 25 0.91 ´-
+8.87 100.78

0.72 43

91 0.19 0* 0.50 ± 0.12 25 0.77 ´-
+8.07 101.22

1.50 43

390 0.41 -
+0.50 0.20

0.18 0.8* 45 0.86 ´-
+6.03 100.33

0.40 44

390 0.41 0* 0.50 ± 0.08 45 0.75 ´-
+5.45 100.62

0.60 44

390 0.30 -
+0.40 0.15

0.16 0.8* 45 0.86 ´-
+2.89 100.17

0.18 44

390 0.30 0* 0.50 ± 0.08 45 0.75 ´-
+2.62 100.25

0.27 44

409 1.04 -
+14.4 1.56

1.74 0.8* 25 0.71 ´-
+7.51 100.53

0.65 45

409 1.04 -
+11.19 2.77

3.00
-
+0.45 0.27

0.28 24 0.68 ´-
+6.22 102.71

3.28 45

409 0.55 -
+6.80 0.70

0.76 0.8* 25 0.68 ´-
+1.40 100.11

0.10 45

409 0.55 -
+5.66 1.41

1.51
-
+0.53 0.30

0.31 24 0.68 ´-
+1.21 100.52

0.64 45

428 2.38 -
+23.37 5.64

5.96 0.8* 23 0.64 ´-
+4.32 100.39

0.40 46

428 2.38 -
+19.89 14.81

16.65
-
+0.71 0.36

0.38 22 0.67 ´-
+4.09 102.14

2.66 46

428 2.27 -
+21.49 5.20

5.52 0.8* 23 0.63 ´+3.86 100.34
0.34 46

428 2.27 -
+18.37 13.16

14.92
-
+0.71 0.34

0.36 22 0.66 ´-
+3.71 101.94

2.49 46

Note. Column (1): the 3CR name. Column (2): photometric redshifts, obtained from WISE magnitudes in 3.4 and 4.6 μm filters as described in the text, used for the
spectral analysis. Column (3): intrinsic absorption, NH,int , as used in the spectral model. Column (4): X-ray spectral index. Column (5): degree of freedom. Column
(6): reduced statistic. Column (7): luminosity of the nucleus, obtained in SHERPA with the function sample_flux. Parameters fixed in the spectral fitting are indicated
with an asterisk (*).
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