
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

6-2021

On Conditional Cryptocurrency With Privacy On Conditional Cryptocurrency With Privacy

Rabimba Karanjai

Lei Xu
The University of Texas Rio Grande Valley, lei.xu@utrgv.edu

Zhimin Gao

Lin Chen

Mudabbir Kaleem

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

Recommended Citation Recommended Citation
R. Karanjai, L. Xu, Z. Gao, L. Chen, M. Kaleem and W. Shi, "On Conditional Cryptocurrency With Privacy,"
2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1-3, doi: 10.1109/
ICBC51069.2021.9461133.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Rabimba Karanjai, Lei Xu, Zhimin Gao, Lin Chen, Mudabbir Kaleem, and Weidong Shi

This conference proceeding is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/69

https://scholarworks.utrgv.edu/cs_fac/69

On Conditional Cryptocurrency With Privacy

ABSTRACT
In this paper, we present the design and implementation of a condi-
tional cryptocurrency system with privacy protection. Unlike the
existing approaches that often depend on smart contracts where
cryptocurrencies are first locked in a vault, and then released ac-
cording to event triggers, the conditional cryptocurrency system
encodes event outcome as part of a cryptocurrency note in a UTXO
based system. Without relying on any triggering mechanism, the
proposed system separates event processing from conditional coin
transaction processing where conditional cryptocurrency notes
can be transferred freely in an asynchronous manner, only with
their asset values conditional to the linked event outcomes. The
main advantage of such design is that it enables free trade of condi-
tional assets and prevents assets from being locked. In this work, we
demonstrate a method of confidential conditional coin by extending
the Zerocoin data model and protocol. The system is implemented
and evaluated using xJsnark.

1 INTRODUCTION
The primary objective of this work is to enable cryptocurrency
notes (e.g., UTXO based coins) with conditional values, specifically
for pri-vacy coins (e.g., Zcash [22]). Although connecting
cryptocurrency transactions with events [24] (such as issuing
transactions based on event triggers) is not new, the proposed
approach distinguishes from the prior efforts in several aspects.
First, it associates event conditions with UTXO based privacy
coins, demonstrated using Zcash as a targeted system, which is
named as conditional privacy coins. Second, the links between
events and conditional coins are confidential to achieve condition
privacy. Using a zero-knowledge based protocol, a conditional
coin can be validated against the as-sociated event outcome
without disclosing which event that it has been linked to. Third,
conditional coins can be transferred and traded freely in the
system before the associated event has occurred or its outcome has
been declared (asynchronous). There is no lock-up period of
assets. Coins with conditions can be exchanged and transferred,
just like regular UTXO notes. It is the value of a con-ditional
coin, not a transaction of the coin, that is conditional to event
outcome. This has significant benefits over some existing or
alternative designs that freeze assets in a vault or smart contract

before event result is published. Fourth, the system decouples event
processing and transaction processing. This mechanism facilitates
conditional coin processing and allows transactions of conditional
coins to be validated in an asynchronous manner from the event
handling by the system. Such separation potentially can support
rich and more complex event processing like event combination,
event reasoning, and proposition logic over event conditions, to
mention just a few.

To summarize, the main contributions of the paper are: (i) We
propose a conditional privacy cryptocurrency system design where
confidential event conditions are associated with privacy coins.
(ii) The proposed design allows conditional coins to be transferred,
exchanged, and traded freely in an asynchronous manner from
event processing logic. There is no asset lock-up or freeze of condi-
tional coins in a vault that a release is triggered in accordance with
event results. It is the value of the coins that is conditional to event
outcome. (iii) We implement the conditional privacy coin protocol
in xJsnark with Zcash as a reference model.

2 OVERVIEW

Problem statement: To enable private and transferable condi-
tional coins, the system needs to meet the following requirements:
• Privacy coins (e.g., use Zcash as a base model and initial tar-
get) are associated with event conditions. Conditional coins
can be validated against event outcomes. However, links be-
tween conditional coins and events (both event definitions
and event outcome announcements) are hidden from the
validators.
• The system should support complete transferability of con-
ditional coins where a conditional coin after its creation can
be transferred unfettered by its current owner using the de-
fault privacy coin transaction protocol regardless if the event
outcome has been declared or not.
• Event processing and transaction processing are decoupled.
There is a separation between event processing and con-
ditional coin transactions. Event processing includes regis-
tration of events and event outcome announcements/decla-
rations. Updates to each part of the decoupled system are
asynchronous.
• All the coins in the system, regardless if they have event con-
ditions attached or not, are indistinguishable. The system
does not treat privacy coins with event conditions differ-
ently from the coins without event conditions. Transactions
involving privacy coins with event conditions are indistin-
guishable from the transactions of the coins without event
conditions.

It is worth mentioning that certain things are outside the scope
of this paper. These include:
• Validation of real-world event outcome which can be done
with several approaches described in the literature such as
using TEEs, zero-knowledge proof, multi-party computation,
etc;

• Oracle service, which is an orthogonal topic (Oracle service
can be integrated with event processing and our system can
be made to support any type of Oracle service design);
• Design of sophisticated event logic - a subject related to
event processing and a possible direction of future research.

In addition, to make things simple, we assume in this paper that
all event conditions are binary. The design can be easily extended to
non-binary event conditions. The system can support a wide range
of application scenarios in decentralized finance, logisitcs, supply
chains, prediction markets, risk management, insurance, to name
just a few. For instance, events can be defined such as “Bitcoin
price increases by 5%”, “Interests rate is lowered by more than
2% in the coming month”, “Goods shipped with tracking number
1Z54F78A0450293517 is delivered”, “Australia qualifies for semi-
final of world cup 2023”, “Gold index rose more than 1%”.
System overview: To meet these requirements, first, we adopt
a system, where event processing is decoupled from the transac-
tion processing. There are separate logical chains of records for
registering event definitions, announcements of event outcomes,
and conditional privacy coin transactions 1. In this paper, we as-
sume that there is a global distributed ledger for supporting all the
three types of data records. In addition, the system defines constant
events and constant event outcomes in the genesis block.
Transaction examples: Figure 1 provides an example of associ-
ation between event definitions, event outcome announcements,
and commitments of the conditional coins. Each type of data has its
own logical chain and the corresponding Merkle hash tree. All the
event definitions and event outcome announcements are in public.
They are validated before appended to the ledger. In this work, we
assume that event outcomes are declared by the same parties who
register the events to the ledger (verified through a secure digital
signature scheme). Verification of the event outcome itself (e.g.,
status of a tracked shipment) is a separate question, which could be
supported through a variety of approaches such as Oracle service,
a group of event validators (with tolerance of Byzantine failures),
multi-party computation, or zero-knowledge proof based claim ver-
ification scheme (e.g., [26]). We assume that event outcomes are
verified as part of the event processing before they are appended
to the shared ledger.

All privacy coins in the system are conditional coins. A privacy
coin without a real condition is configured to use one of the de-
fault constant events as its condition. This way, all the transactions
involving conditional coins in the system (payments using condi-
tional coins or transferring of conditional coins) follow the same
validation steps in zero-knowledge protocol when deciding whether
the transactions should be accepted by the participating distributed
ledger nodes.

When a privacy coinwith a default constant event as its condition
is transferred or spent, the output coins may maintain the same
constant event as conditions. To associate a privacy coins with
an event outcome, an input privacy coin with a satisfied event
condition can be split into two output coins with outcomes of a new
event as conditions. The two output coins must have opposite event
1These separate chains of records (event definitions, event announcements, conditional
coin transactions) can be implemented either as one distributed ledger or as sub-ledgers
of one global ledger.We leave such option as specific implementation issue independent
from the data models and conditional coin protocol design.

Constant
event def

Event
def

Event
def …………

Event outcome
true …………

Event outcome
true

Event outcome
false

5
coins

Always true
event (system

defined)

true

5
coins

Event
definition Ex

true

5
coins

Event
definition Ex

false

5
coins

Event
definition Ey

false

5
coins

Event
definition Ey

true

Event
def

Event
def

Event
def …………

3
coins

Event
definition Ex

false

2
coins

Event
definition Ex

false

…………

Constant event
true

…………

tx1
input: cc1
output: cc2, cc3

conditional coin note (cc3)

conditional coin note (cc2)

conditional coin note (cc1)

conditional coin note (cc4)

conditional coin note (cc5)

conditional coin note (cc6)

conditional coin note (cc7)

tx2
input: cc3
output: cc4, cc5

tx3
input: cc2
output: cc6, cc7

Figure 1: Illustration of conditional coin transactions.

Event 1 def:
E1

Event 2 def:
E2

Event 3 def:
E3

Event 4 def:
E4

Event 5 def: E5
= E1 and E2

Event 6 def: E6
= E3 or E4

Event 7 def: E7
= E5 and E6

Leaf event definitions

Event Logic

Figure 2: Support for complex event logic and processing.

outcomes as their conditions, as illustrated by the two transactions
tx1 and tx3 in Figure 1. Each output coin has the same total value
as the input coins.

Conditional coins can be transferred as demonstrated by tx2 in
Figure 1. To remove the condition, the coin needs to be spent with
a matched event outcome, see tx3. Validation is done using zero-
knowledge proof without leaking the associated event definition
and event outcome. After the condition is removed, a conditional
coin can either have a different event condition attached, or switch
back to one of the default events as its condition.

Under this framework, it is possible to support complex event
processing and event reasoning. A calculus system of events can
be defined; and new complex events can be created based on the
existing events as shown in Fig 2. In addition, event processing can
be augmented with smart contract support to enable more diverse
means for validating event outcomes.
Applications: Privacy preserving conditional coins may enable
and facilitate a wide range of applications including but not limited
to, transferable confidential assets with valuation based on event
outcomes, bill of exchange based on crypto-assets, future contracts,
prediction market, and use case areas such as logistics, FinTech,
insurance (such as enable secondary market), etc.

3 DATA MODELS
The data models are based on extending the notations of Zcash [8,
17]. In this paper, for simplification, we apply zk-SNARK and the
original Zcash design [8, 17] to achieve an exemplary implementa-
tion. However, it is worthwhile pointing out that it is plausible to re-
alize the described data models and protocol using alternative back-
end zero-knowledge proving systems such as zk-STARK [1], bullet-
proof [4]. Discussion leveraging different back-end zero-knowledge
proving systems is orthogonal to the scope of this work, which

Table 1: Data definitions

Event definition attributes
𝑒𝐼𝐷 64-bit unique identifier for event definition
𝑏𝑡 64-bit time threshold of event outcome (block height)
𝑟𝑒𝑝𝑒𝑎𝑡 event definition with repeated outcome announcements
𝑏𝑎 event outcome announced before or after the time limit
𝑝𝑘sig public key of a public/private signature key pair (𝑝𝑘sig , 𝑠𝑘sig) for event

outcome announcement
Event announcement attributes

𝑒𝑎𝐼𝐷 64-bit unique identifier for event outcome announcement
𝑒𝐼𝐷 64-bit identifier for the associated event definition
𝑏ℎ 64-bit time stamp (block height)
𝑣 event outcome value

Conditional coin attributes - extended Zcash coin definition
𝑎𝑝𝑘 public key of payment address pair (𝑎𝑝𝑘 ,𝑎𝑠𝑘) where𝑎𝑠𝑘 is the spending

key
𝑣 value of coin
𝑒𝐼𝐷 64-bit identifier for the associated event definition
𝑐𝑜𝑛𝑑 expected event outcome
𝜌 used to compute nullifier (disclosed to the public after spending)
𝛾 trapdoor
𝑐𝑚 note commitment (comm)

focuses primarily on the front-end protocol design of a blockchain
based privacy preserving transaction system for conditional coins.

Conditional privacy coin ledger: There is a distributed ledger,
LCPC , which records a sequence of transactions in append-only
mode. The ledger could be implemented as a blockchain where
transactions are recorded as blockchain blocks. The ledger supports
multiple types of transactions designed for event registration and
declaration as well as transferring of conditional coins. The ledger
comprises ordered blocks created from a genesis block under a
consensus mechanism. Each block has a block height. Further, we
assume that blocks are generated with a relatively constant speed.
Details of the consensus mechanism and block generation could
either be based on or follow the Zcash design that adopts Proof-
of-Work for blockchain consensus. Although our data models and
protocol are based on extending Zcash specification, the design can
be adapted to any blockchain based systems, for instance substitut-
ing PoW consensus with Proof-of-Stake (PoS) or different flavors
of BFTs.

There are three main types of data records: (i) records for event
registration and definition; (ii) records for event outcome declara-
tion; and (iii) records for conditional coin payment and transferring.
For simplicity, we assume in this work that all the records are
managed by a single ledger. However, since event processing is
decoupled from the conditional coin transactions, it is plausible
to track these records separately, using sub-chains or sub-ledgers.
For instance, a system can employ a sub-chain for event registra-
tion and event declaration/announcement, and another sub-chain
for conditional coin transactions. A global chain could be used to
coordinate these sub-chains in way similar to the concept of shard-
ing. A key point is that our system does not place restriction on
alternative implementations that optimize for throughput and/or
parallel transaction processing. Event processing and conditional
coin transactions are asynchronous.

The data models are described in Table 1. Note format of the
conditional coins is based on extension over the Zcash note format.

Event definition: The system defines events as tuples of attributes
as shown in Table 1. After an event definition is registered to the

ledger, there could be one or multiple event declarations or an-
nouncements associated with it (based on the single bit attribute
repeat - true or false). Each event definition is uniquely identified
with a 64-bit value eID. Attribute bt is a block height value that
specifies when value of the event (outcome of the event) should
be declared or announced to the system. When ba is true, event
outcome should be announced before the block height set by bt.
Otherwise when ba is false, event outcome should be announced
after block bt.

To allow only authorized parties to declare event outcomes, for
each registered event definition, there is a public/private signature
key pair (𝑝𝑘sig , 𝑠𝑘sig). Public key 𝑝𝑘sig is disclosed during registra-
tion. When outcome of the event is declared sometime later, private
key 𝑠𝑘sig will be used to sign the event transaction that announces
the event outcome. For repetitive event, a new signature key pair
will be created each time there is an event outcome declaration.

In addition, there are default event definitions that serve as con-
stant events (always true and always false), 𝑒𝑑𝑒 𝑓 𝑑𝑓 𝑡𝑡𝑟𝑢𝑒 and 𝑒𝑑𝑒 𝑓

𝑑𝑓 𝑡

𝑓 𝑎𝑙𝑠𝑒
.

These constant events are defined in the genesis block. To prevent
denial-of-service, a fee is charged for event registration.

Event outcome announcement: For a registered event definition,
its outcome will be declared with an event outcome transaction.
Each outcome announcement includes the attributes described in
Table 1. Attribute eID specifies the associated event ID (as a key
linking to the corresponding event definition). Attribute eaID is a
64-bit value that uniquely identifies an event outcome declaration.
Attribute bh serves as a timestamp value in block height. Event
outcome is encoded in attribute 𝑣 . In this work, we assume binary
event outcome. The system can be extended to more complex event
outcome scenarios, which is a subject of future work. For the default
constant events, their event outcomes are defined in the genesis
block as 𝑒𝑎𝑑𝑓 𝑡

𝑓 𝑎𝑙𝑠𝑒
and 𝑒𝑎𝑑𝑓 𝑡𝑡𝑟𝑢𝑒 .

Payment address and conditional note format: We use the
same Zcash design of payment address pair (𝑎𝑠𝑘 , 𝑎𝑝𝑘) where 𝑎𝑠𝑘
is used as spending key. For receiving shielded payment, a user
needs to scan ledger LCPC using (𝑎𝑝𝑘 , 𝑠𝑘𝑒𝑛𝑐). The algorithm is simi-
lar to the one described in Zcash blockchain scanning. There is a
vpub , similar to the public value in Zcash. Coin values embedded in
conditional notes can be transferred to vpub and vice versa.

A conditional note,𝑛, is similar to the Zcash note with extensions
to support pairing of the note with an event definition and event
outcome. Note attributes including 𝑎𝑝𝑘 , 𝜌 , 𝛾 , and 𝑣 are the same as
defined in Zcash. For each note, attribute eID associates the note
with an event definition where eID serves as the key. Attribute cond
specifies anticipated event outcome. When declared event outcome
matches with the expected event outcome encoded in a conditional
note, the note will maintain its coin value 𝑣 . Otherwise, the note
will lose its value.

A conditional note can be spent or transferred without waiting
for announcement of the anticipated event outcome. This char-
acteristic, transferability of conditional coins/notes before event
occurrence, makes our system distinguishing from other designs
that rely on event triggers. Note that even a conditional coin note
loses its value, it can still be transferred.

Event def Event def Event def
…………

Event
outcome …………

Event
outcome

Event
outcome

Conditional
coin note …………

Conditional
coin note

Conditional
coin note

Commit(crypto note)

Root hash of conditional
coin commit tree

Root hash of event
outcome tree

Root hash of event
definition tree

Records of event defs

Records of event outcomes

Records of conditional coin transaction commits

path

pos

Figure 3: Multiple Merkle hash trees for conditional coins,
event definitions, and event outcomes.

When a note is spent, a nullifier value, nf , will be created using
attribute 𝜌 as input where nf is determined by PRF

𝑛𝑓
𝑎𝑠𝑘
(𝜌). PRF is

a pseudo-random function that can be implemented using SHA2.
The decentralized system enforces that nullifiers must be unique in
order to prevent double-spending.
Multiple Merkle trees: LCPC uses incremental Merkle trees of
fixed depth for event definitions, event outcome announcements,
and note commitments. In this work, for simplicity, we assume that
there are separate Merkle trees,𝑀edef ,𝑀ea, and𝑀 tx for each data
record type. It is plausible to have one unified Merkle tree for all
the data records. Each Merkle tree has its own root, denoted as
𝑟𝑡edef , 𝑟𝑡ea, and 𝑟𝑡 tx respectively. In a Merkle tree, we represent the
location of a data record as (pos, path) where pos is the leaf node
position in the tree, and path is the path ofMerkle hash computation
from the leaf node to the root.
Public parameters: In the case of the experiments in this paper,
the system uses the same set of public parameters pp in Zcash design.
They are generated either by a trusted party at the beginning or
through a Multi-Party Computation ceremony [2, 3]. If the system
is implemented over a proving system that does not require trusted
setup, the public parameters can be based on common public strings
appropriate for the proving system.

Note that in this work, we restrict conditional coin payment
and transferring to cases of two input notes and two output notes.
Payment involving more than two input notes or two output notes
can be reduced to a series of transactions, each only involving two
notes as input and output. Similar to the Zcash design, an input
note or an output note can be a dummy note (without associated
note commitment). In the case of dummy note, the asset value is
zero.

4 PROTOCOL DESIGN FOR CONDITIONAL
PRIVACY COINS WITH TRANSFERABILITY

4.1 Preliminary
The protocol extends the design of zero-knowledge based privacy
payment systemwith Zcash as the baseline. Privacy oriented blockchains
apply zero-knowledge proving system as the underlying building
block to protect privacy. A zero-knowledge proving system is a
cryptography protocol that allows proving a particular claim/s-
tatement, dependent on two input datasets, public and witness,

Setup
λ

𝑝𝑘

χ

ѡ

𝑣𝑘

π

Accept/Reject

Prover Verifier

Run Verify()Run Prove()

λ: security parameter
pk: proving key
vk: verifying key
ѡ: witness
χ: public input
π: proof

Figure 4: Diagram of zero-knowledge proving system.

without disclosing information about the witness input other than
that included in the claim/statement.

A zero-knowledge proving system needs to satisfy the following
security requirements: completeness, succinctness, and proof-of-
knowledge.
Completeness: for security parameter _, a F, arithmetic circuit
C [20], and any (𝜒 , 𝜔) ∈ R (satisfying inputs), honest prover can
convince the verifier with probability 1 − 𝑛𝑒𝑔𝑙 (_).
Succinctness: honestly generated proof𝜋 has𝑂𝑛 (1) bits andVerify(𝑣𝑘 ,
𝜒 , 𝜋) runs in the 𝑂_(|𝜒 |).
Proof-of-knowledge: If the verifier accepts a proof output by
a bounded prover, then the prover knows witness for the given
statement.

4.2 Transaction Algorithms
For completeness, this subsection lists the main algorithms. The
main extensions are related to the JoinSplit transaction. JoinSplit
is extended to support associating a privacy UTXO note with an
event outcome.
SetupCPC: Follows the same Zcash algorithm for constructing pub-
lic parameters. 𝑆𝑒𝑡𝑢𝑝𝐶𝑃𝐶 takes 1_ as security parameter and out-
puts public parameters 𝑝𝑝CPC that includes: 𝑝𝑘JoinSplit, 𝑣𝑘JoinSplit,
𝑝𝑝enc, 𝑝𝑝sig. 𝑝𝑘 𝐽 𝑜𝑖𝑛𝑆𝑝𝑙𝑖𝑡 and 𝑣𝑘 𝐽 𝑜𝑖𝑛𝑆𝑝𝑙𝑖𝑡 are a pair of proving and
verifying keys for JoinSplit transactions. 𝑝𝑝enc is encryption key
and 𝑝𝑝sig is signature key.

Algorithm 1: Public parameter generation algorithm.
Input :Security parameter _, proving circuit CJoinSplit
Output :Public parameters 𝑝𝑝CPC

1 Compute CJoinSplit at security parameter _
2 Compute (𝑝𝑘JoinSplit, 𝑣𝑘JoinSplit) = KeyGen(1_ , CJoinSplit)
3 Create 𝑝𝑝𝑒𝑛𝑐 = G𝑒𝑛𝑐 (1_)
4 Create 𝑝𝑝𝑠𝑖𝑔 = G𝑠𝑖𝑔 (1_)
5 Output 𝑝𝑝CPC = (𝑝𝑘JoinSplit, 𝑣𝑘JoinSplit, 𝑝𝑝enc, 𝑝𝑝sig)

CreateAddrCPC: It takes public parameters 𝑝𝑝CPC as input and
creates a pair of transmission key (𝑎𝑝𝑘 , 𝑝𝑘𝑒𝑛𝑐) and receiving key
(𝑎𝑝𝑘 , 𝑠𝑘𝑒𝑛𝑐) where a note sent to a recipient is encrypted using
𝑝𝑘𝑒𝑛𝑐 and it is retrieved by the recipient from the ledger using 𝑠𝑘𝑒𝑛𝑐 .
Similar to the Zcash design, the algorithm creates 𝑠𝑘𝑒𝑛𝑐 and 𝑝𝑘𝑒𝑛𝑐
key pair using Curve25519 key agreement. The value of 𝐾𝐴.𝐵𝑎𝑠𝑒 ,
computation of 𝐾𝐴.𝐹𝑜𝑟𝑚𝑎𝑡𝑃𝑟𝑖𝑣𝑎𝑡𝑒 and 𝐾𝐴.𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐 follow
the Zcash implementation.
MintCPC: It takes public parameters 𝑝𝑝CPC, public address pair
(𝑎𝑝𝑘 , 𝑝𝑘𝑒𝑛𝑐), 𝜋 , value 𝑣 where 𝑣 ∈ (0, ..., 𝑣max), a default constant
event definition. It appends note 𝑛 to the ledger 𝐿CPC, or output ⊥

Algorithm 2: Address generation.
Output :key pairs: (𝑎𝑝𝑘 , 𝑎𝑠𝑘) and (𝑝𝑘𝑒𝑛𝑐 , 𝑠𝑘𝑒𝑛𝑐)

1 Set 𝑎𝑠𝑘 = PRF𝑎𝑠𝑘 (𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒)
2 Set 𝑎𝑝𝑘 = PRF𝑎𝑑𝑑𝑟𝑎𝑠𝑘

(0)
3 Set 𝑠𝑘𝑒𝑛𝑐 = 𝐾𝐴.𝐹𝑜𝑟𝑚𝑎𝑡𝑃𝑟𝑖𝑣𝑎𝑡𝑒 (𝑃𝑅𝐹𝑎𝑑𝑑𝑟𝑎𝑠𝑘

(1))
4 Set 𝑝𝑘𝑒𝑛𝑐 = 𝐾𝐴.𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐 (𝑠𝑘𝑒𝑛𝑐 , 𝐾𝐴.𝑏𝑎𝑠𝑒)
5 Set transmission key as (𝑎𝑝𝑘 , 𝑝𝑘𝑒𝑛𝑐)
6 Set receiving key as (𝑎𝑝𝑘 , 𝑠𝑘𝑒𝑛𝑐)

(reject). This algorithm is used to mint notes based on the public
value and put the notes on 𝐿CPC.
JoinSplitCPC: JoinSplitCPC takes a set of input values and creates
two output notes, 𝑛𝑛𝑒𝑤1 and 𝑛𝑛𝑒𝑤2 , and a transaction 𝑡𝑥JoinSplit . Al-
gorithm 3 lists pseudo-code adapted from the Zcash specification.
With such transactions, conditional coin notes can be created by
spending existing notes and transferred regardless whether the
event outcome has been declared.

Algorithm 3: JoinSplit algorithm for conditional privacy
coins.
Input :Public parameters 𝑝𝑝CPC , ledger 𝐿CPC (including Merkle

tree𝑀 tx and root 𝑟𝑡 tx , Merkle tree𝑀edef and root 𝑟𝑡 edef ,
Merkle tree𝑀ea and root 𝑟𝑡 ea), input note 𝑛𝑜𝑙𝑑1 and 𝑛𝑜𝑙𝑑2 ,
input note spending keys 𝑎old

𝑠𝑘,1 and 𝑎
𝑜𝑙𝑑
𝑠𝑘,2, event outcomes

associated with the input note 𝑒𝑎old1 and 𝑒𝑎old2 , event
definition paired with the new notes 𝑒𝑑𝑒 𝑓 𝑛𝑒𝑤 , output
addresses 𝑎new

𝑝𝑘,1 and 𝑎
new
𝑝𝑘,2, public value 𝑣

old
pub , block height

block𝑛
Output :A transaction 𝑡𝑥join_split with two output conditional coin

notes
1 For each input note, compute nullifier 𝑛𝑓 𝑜𝑙𝑑

𝑖
= PRF

𝑛𝑓old
𝑎old
𝑠𝑘,𝑖

(𝑛𝑜𝑙𝑑
𝑖

.𝜌) =

SHA256(𝑎old
𝑠𝑘,𝑖
∥𝑛old

𝑖
.𝜌)

2 Create signature key pair (𝑝𝑘sig, 𝑠𝑘sig) = ^sig (𝑝𝑝sig) where ^sig
generates a key pair for signature signing

3 Compute ℎsig = CRH(𝑛𝑓 old1 , 𝑛𝑓 old2 , 𝑝𝑘sig) where CRH is a collision
resistant hash function

4 Set 𝜌new
𝑖

= PRF
𝜌
𝜑 (𝑖, ℎ𝑠𝑖𝑔) = SHA256(𝑖 ∥𝜑 ∥ℎ𝑠𝑖𝑔)

5 For each new note, sample a random 𝛾𝑛𝑒𝑤
𝑖

6 Set new conditional note and its attributes as 𝑛new
𝑖

= (𝑎new
𝑝𝑘,𝑖

, 𝑣new
𝑖

,
𝑒𝑑𝑒 𝑓 𝑛𝑒𝑤 , 𝑐𝑜𝑛𝑑𝑛𝑒𝑤

𝑖
, 𝜌𝑛𝑒𝑤

𝑖
, 𝛾new

𝑖
)

7 Compute new note commitment 𝑐𝑚new
𝑖

= NoteCommit (𝑛new
𝑖
) where

NoteCommit is based on SHA256
8 Compute old note spending signature ℎ𝑖= PRF

𝑝𝑘

𝑎𝑜𝑙𝑑
𝑠𝑘,𝑖

(𝑖 | |ℎ𝑠𝑖𝑔)

9 Encrypt new note as 𝑁 𝑒𝑛𝑐,𝑛𝑒𝑤
𝑖

= Eenc (𝑝𝑘𝑛𝑒𝑤𝑒𝑛𝑐,𝑖
, 𝑛𝑛𝑒𝑤

𝑖
)

10 Set public input 𝜒 = (𝑟𝑡 tx , 𝑟𝑡 edef , 𝑟𝑡 ea , 𝑛𝑓 𝑜𝑙𝑑1 , 𝑛𝑓 𝑜𝑙𝑑2 , 𝑐𝑚new
1 , 𝑐𝑚new

2 ,
𝑣oldpub , 𝑣

𝑛𝑒𝑤
𝑝𝑢𝑏

, 𝑏𝑙𝑜𝑐𝑘𝑛 , ℎ𝑠𝑖𝑔 , ℎ1, ℎ2)

11 Set witness 𝜔 = (𝑛old1 , 𝑛old2 , 𝑎old
𝑠𝑘,1, 𝑎

old
𝑠𝑘,2, 𝜑 , 𝑑𝑢𝑚𝑚𝑦

old
1 , dummyold2 ,

𝑝𝑜𝑠old
𝑛,1, 𝑝𝑎𝑡ℎ

old
𝑛,1, 𝑝𝑜𝑠

old
𝑛,2, 𝑝𝑎𝑡ℎ

old
𝑛,2, 𝑒𝑎

old
1 , 𝑒𝑎old2 , 𝑝𝑜𝑠old

𝑒𝑎,1, 𝑝𝑎𝑡ℎ
old
𝑒𝑎,1,

𝑝𝑜𝑠old
𝑒𝑎,2, 𝑝𝑎𝑡ℎ

old
𝑒𝑎,2, 𝑛

new
1 , 𝑛new2 , 𝑒𝑑𝑒 𝑓 new , 𝑝𝑜𝑠newedef , 𝑝𝑎𝑡ℎ

new
𝑒𝑑𝑒𝑓

)

12 Compute proof 𝜋JoinSplit = Prove(𝑝𝑘JoinSplit , 𝜒 , 𝜔)
13 Set transaction message𝑚 = (𝜒 , 𝜋JoinSplit , 𝑁

enc,new
1 , 𝑁 𝑒𝑛𝑐,𝑛𝑒𝑤

2)
14 Set message signature 𝛿 = 𝑆sig (𝑠𝑘sig,𝑚)
15 Set 𝑡𝑥join_split = (𝑟𝑡 tx , 𝑛𝑓 old1 , 𝑛𝑓 old2 , 𝑐𝑚new

1 , 𝑐𝑚new
2 , 𝑣newpub , ∗) where * =

(𝑝𝑘sig , ℎ1, ℎ2, 𝜋JoinSplit , 𝑁
enc,new
1 , 𝑁 enc,new

2 , 𝛿)

Table 2: Data fields defined in 𝜔 .

𝑛old1..𝑁 old conditional coin notes, N=1 or 2
𝑎old
𝑠𝑘,1..𝑁 old note spending key, N=1 or 2
𝑝𝑜𝑠old

𝑛,1..𝑁 Merkle tree (𝑀 tx) positions of the old note commitments,
N=1 or 2

𝑝𝑎𝑡ℎold
𝑛,1..𝑁 Merkle tree (𝑀 tx) paths of the old note commitments, N=1

or 2
𝜑 random seed
𝑒𝑎old1..𝑁 event outcome announcements associated with the old con-

ditional coin notes, N=1 or 2
𝑝𝑜𝑠old

𝑒𝑎,1..𝑁 Merkle tree (𝑀ea) positions of the event outcome announce-
ments associated with the old notes, N=1 or 2

𝑝𝑎𝑡ℎold
𝑒𝑎,1..𝑁 Merkle tree (𝑀ea) paths of the event outcome announcements

associated with the old notes, N=1 or 2
𝑑𝑢𝑚𝑚𝑦old1..𝑁 one of the old notes is a dummy note or not, N=1 or 2
𝑛new1..𝑁 new conditional coin notes, N=1 or 2
𝑒𝑑𝑒 𝑓 new event definition associated with the new conditional coin

notes
𝑝𝑜𝑠new

𝑒𝑑𝑒𝑓
Merkle tree (𝑀edef) position of the event definition associated
with the new note

𝑝𝑎𝑡ℎnew
𝑒𝑑𝑒𝑓

Merkle tree (𝑀edef) path of the event definition associated
with the new note

When generating 𝜋JoinSplit , the proving circuit verifies a set of
constraints for the generated transaction, which is applied to gen-
erate a proof to be checked by a verifier.
ReceiveCPC: Given public parameters 𝑝𝑝CPC, Merkle trees and
their roots, recipient key pair (𝑎pk, 𝑠𝑘enc), and the ledger 𝐿CPC, it
outputs received note 𝑛new, or output ⊥. The algorithm follows the
Zcash design. It scans the ledger and outputs received note for each
JoinSplit transaction.
VerifyCPC: It takes a set of inputs as described in Algorithm 5. It
appends 𝑡𝑥JoinSplit, 𝑛new1 and 𝑛new2 to the ledger, or output ⊥.

4.3 Event transactions
Algorithm 6 creates a new transaction 𝑡𝑥ea for an event outcome
given public parameters 𝑝𝑝CPC, ledger 𝐿CPC, and the corresponding
event definition 𝑒𝑑𝑒 𝑓 .

After 𝑡𝑥ea is received by the blockchain nodes, it will be validated.
If the event outcome can be accepted, it will be appended to the
ledger 𝐿CPC including update of Merkle tree𝑀ea and its root 𝑟𝑡ea.

5 SECURITY ANALYSIS
The conditional privacy coin protocol is based on extending the
data models and transaction design of the original Zcash protocol.
Since the conditional coin algorithms are extensions within the
Zcash framework, most of the security properties that are proven
in the Zcash design and related publications still hold for condi-
tional coins [17][12][7][10]. This means that we can focus on the
properties unique to the conditional coin protocol.

We assume that the underlying blockchain system to support
distributed consensus and network communications is secure and
reliable, which is outside the scope of this work. We further assume
that measures are taken to prevent attacks such as eclipse attack,
51% attack, denial-of-service at network level, side-channel exploits
such as using time delay in transactions as side-channel information,
privacy leakage through network traffic patterns, attack to DNS,
hard forks, quantum attack, and etc. In addition, the system will
ensure that event registration and event outcome declaration are

Algorithm 4: Prove algorithm.
Input :𝑝𝑘JoinSplit , 𝜒,𝜔
Output :𝜋JoinSplit

1 Verify common constraints below:
2 Merkle path validity for old notes: (𝑝𝑜𝑠old

𝑛,𝑖
, 𝑝𝑎𝑡ℎold

𝑛,𝑖
) valid tree path

from 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑛𝑜𝑙𝑑
𝑖
) to the Merkle tree root 𝑟𝑡 tx

3 Nullifier integrity: 𝑛𝑓 old
𝑖

= PRF
𝑛𝑓old
𝑎old
𝑠𝑘,𝑖

(𝑛old
𝑖

.𝜌)

4 Spending key validity: 𝑎old
𝑝𝑘𝑖

= PRF𝑎𝑑𝑑𝑟
𝑎old
𝑠𝑘,𝑖

(0)

5 Uniqueness of 𝜌new
𝑖

: 𝜌new
𝑖

= PRF
𝜌
𝜑 (𝑖, ℎsig)

6 Note commit validity: 𝑐𝑚new
𝑛,𝑖

= NoteCommit (𝑛new
𝑖
)

7 Event definition validity in new notes: 𝑛new1 .𝑒𝐼𝐷 = 𝑛new2 .𝑒𝐼𝐷 =
edef new .𝑒𝐼𝐷

8 Merkle path validity for the event definition associated with the new
notes: (𝑝𝑜𝑠newedef , 𝑝𝑎𝑡ℎ

new
edef) valid tree path from edef new to the Merkle

tree root 𝑟𝑡 edef

9 When (𝑛new
𝑖

.𝑒𝐼𝐷 ≠ 𝑛old
𝑖
.𝑒𝐼𝐷) ∨ (𝑛new

𝑖
.𝑒𝐼𝐷 = 𝑛old

𝑖
.𝑒𝐼𝐷 ∧ 𝑛new

𝑖
.𝑒𝐼𝐷

= (𝑒𝑑𝑒 𝑓 dfttrue .𝑒𝐼𝐷 ∨ 𝑒𝑑𝑒 𝑓
dft
false .𝑒𝐼𝐷)):

10 Event condition validity: 𝑛𝑜𝑙𝑑
𝑖

.𝑐𝑜𝑛𝑑 = 𝑒𝑎𝑜𝑙𝑑
𝑖

.𝑣

11 Merkle path validity for the event announcements associated with the
old notes: (𝑝𝑜𝑠old

𝑒𝑎,𝑖
, 𝑝𝑎𝑡ℎold

𝑒𝑎,𝑖
) valid tree path from 𝑒𝑎𝑜𝑙𝑑

𝑖
to the

Merkle tree root 𝑟𝑡 ea

12 Sub-circuits to validate constraints for different conditional coin
spending scenarios:

13 Case: (𝑛new
𝑖

.𝑒𝐼𝐷 = 𝑛old
𝑖

.𝑒𝐼𝐷) ∧ (𝑛new
𝑖

.𝑒𝐼𝐷 ≠ (𝑒𝑑𝑒 𝑓 dfttrue .𝑒𝐼𝐷 ∨
𝑒𝑑𝑒 𝑓

dft
false .𝑒𝐼𝐷))

14 Value validity: 𝑣𝑜𝑙𝑑1 + 𝑣𝑜𝑙𝑑2 = 𝑣𝑛𝑒𝑤1 + 𝑣𝑛𝑒𝑤2
15 Event condition validity: 𝑛new1 .𝑐𝑜𝑛𝑑 = 𝑛new2 .𝑐𝑜𝑛𝑑 = 𝑛old

𝑖
.𝑐𝑜𝑛𝑑

where 𝑖 is either 1 and/or 2 for non dummy input note
16 Case: (𝑛𝑛𝑒𝑤

𝑖
.𝑒𝐼𝐷 = 𝑛𝑜𝑙𝑑

𝑖
.𝑒𝐼𝐷) ∧ (𝑛𝑛𝑒𝑤

𝑖
.𝑒𝐼𝐷 = (𝑒𝑑𝑒 𝑓 𝑑𝑓 𝑡

𝑡𝑟𝑢𝑒 .𝑒𝐼𝐷 ∨
𝑒𝑑𝑒 𝑓

dft
false .𝑒𝐼𝐷))

17 Value validity: 𝑣old1 + 𝑣
𝑜𝑙𝑑
2 + 𝑣𝑜𝑙𝑑

𝑝𝑢𝑏
= 𝑣𝑛𝑒𝑤1 + 𝑣𝑛𝑒𝑤2 + 𝑣𝑛𝑒𝑤

𝑝𝑢𝑏

18 Case: (𝑛𝑛𝑒𝑤
𝑖

.𝑒𝐼𝐷 ≠ 𝑛𝑜𝑙𝑑
𝑖

.𝑒𝐼𝐷) ∧ (𝑛𝑛𝑒𝑤
𝑖

.𝑒𝐼𝐷 ≠ (𝑒𝑑𝑒 𝑓 𝑑𝑓 𝑡
𝑡𝑟𝑢𝑒 .𝑒𝐼𝐷 ∨

𝑒𝑑𝑒 𝑓
𝑑𝑓 𝑡

𝑓 𝑎𝑙𝑠𝑒
.𝑒𝐼𝐷))

19 Value validity: (𝑣𝑛𝑒𝑤1 = 𝑣𝑛𝑒𝑤2) ∧
(𝑣𝑜𝑙𝑑1 + 𝑣𝑜𝑙𝑑2 + 𝑣𝑜𝑙𝑑

𝑝𝑢𝑏
= 𝑣𝑛𝑒𝑤1 + 𝑣𝑛𝑒𝑤

𝑝𝑢𝑏
)

20 New note event condition validity: (𝑛𝑛𝑒𝑤1 .𝑐𝑜𝑛𝑑 = 𝑡𝑟𝑢𝑒 ∧
𝑛𝑛𝑒𝑤2 .𝑐𝑜𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒) ∨ (𝑛𝑛𝑒𝑤2 .𝑐𝑜𝑛𝑑 = 𝑡𝑟𝑢𝑒 ∧
𝑛𝑛𝑒𝑤1 .𝑐𝑜𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒)

21 Case: (𝑛𝑛𝑒𝑤
𝑖

.𝑒𝐼𝐷 ≠ 𝑛𝑜𝑙𝑑
𝑖

.𝑒𝐼𝐷) ∧ (𝑛𝑛𝑒𝑤
𝑖

.𝑒𝐼𝐷 = (𝑒𝑑𝑒 𝑓 𝑑𝑓 𝑡
𝑡𝑟𝑢𝑒 .𝑒𝐼𝐷 ∨

𝑒𝑑𝑒 𝑓
𝑑𝑓 𝑡

𝑓 𝑎𝑙𝑠𝑒
.𝑒𝐼𝐷))

22 Value validity: 𝑣𝑜𝑙𝑑1 + 𝑣𝑜𝑙𝑑2 + 𝑣𝑜𝑙𝑑
𝑝𝑢𝑏

= 𝑣𝑛𝑒𝑤1 + 𝑣𝑛𝑒𝑤2 + 𝑣𝑛𝑒𝑤
𝑝𝑢𝑏

properly secured. Event outcome is validated by the participating
nodes of the decentralized ledger using the same consensus mech-
anism for the conditional coin transactions. Only the entity that
registers an event can declare event outcome in an event outcome
transaction. The transaction is protected by a secure SUF-CMA
signature scheme same in the Zcash design, which prevents forgery
of event outcome transactions. Moreover, it is assumed that there
is no denial-of-service for event outcome (event outcome will be
declared within a bounded time); and for each registered event, the

Algorithm 5: Verify algorithm.
Input :Public parameters 𝑝𝑝CPC , ledger 𝐿𝐶𝑃𝐶 , public input 𝜒 , a

JoinSplit transaction 𝑡𝑥join_split , two notes 𝑛𝑛𝑒𝑤1 and 𝑛𝑛𝑒𝑤2
Output :accept or reject

1 Parse 𝑡𝑥join_split
2 Set 𝑏1←Verify (𝑣𝑘JoinSplit , 𝜒, 𝜋JoinSplit)
3 Set 𝑏2←a𝑠𝑖𝑔 (𝑝𝑘𝑠𝑖𝑔,𝑚, 𝛿) where m is transaction message and 𝛿 is
message signature defined in Algorithm 3

4 Output ⊥ if any of the following is true:
• 𝑏1 ∧ 𝑏2 is false
• 𝑛𝑓 𝑜𝑙𝑑1 or 𝑛𝑓 𝑜𝑙𝑑2 appears on 𝐿𝐶𝑃𝐶 - detect double spending
• 𝑛𝑓 𝑜𝑙𝑑1 = 𝑛𝑓 𝑜𝑙𝑑2
• Merkle root 𝑟𝑡 tx not on 𝐿𝐶𝑃𝐶

• Merkle root 𝑟𝑡 edef not on 𝐿𝐶𝑃𝐶

• Merkle root 𝑟𝑡 ea not on 𝐿𝐶𝑃𝐶

• ℎ𝑠𝑖𝑔 does not match with CRH(𝑛𝑓 𝑜𝑙𝑑1 , 𝑛𝑓 𝑜𝑙𝑑2 , 𝑝𝑘𝑠𝑖𝑔)

Algorithm 6: Algorithm for event announcement transac-
tion.
Input :Public parameters 𝑝𝑝CPC , ledger 𝐿CPC , input event

definition 𝑒𝑑𝑒 𝑓 , event outcome value 𝑣, 𝑠𝑘sig , block height
𝑏𝑙𝑜𝑐𝑘𝑛

Output :Event outcome announcements associated with the event
definition 𝑒𝑑𝑒 𝑓

1 Sample a new 𝑒𝑎𝐼𝐷
2 Set 𝑒𝑎 = (𝑒𝑑𝑒 𝑓 .𝑒𝐼𝐷 , 𝑒𝑎𝐼𝐷 , 𝑣, 𝑏𝑙𝑜𝑐𝑘𝑛)
3 When 𝑒𝑑𝑒 𝑓 .𝑟𝑒𝑝𝑒𝑎𝑡 is true
4 Create a new signature key pair (𝑝𝑘𝑛𝑒𝑤

𝑠𝑖𝑔
, 𝑠𝑘𝑛𝑒𝑤

𝑠𝑖𝑔
) = ^sig (𝑝𝑝𝑠𝑖𝑔)

where ^sig generates a key pair for signature signing
5 Sample a new 𝑒𝐼𝐷𝑛𝑒𝑤

6 Set 𝑒𝑑𝑒 𝑓 𝑛𝑒𝑤 = (𝑒𝐼𝐷𝑛𝑒𝑤 , 𝑒𝑑𝑒 𝑓 .𝑟𝑒𝑝𝑒𝑎𝑡 , 𝑏𝑡𝑛𝑒𝑤 , 𝑒𝑑𝑒 𝑓 .𝑏𝑎, 𝑝𝑘𝑛𝑒𝑤
𝑠𝑖𝑔

)

7 Set transaction message𝑚 = (𝑒𝑎, 𝑒𝑑𝑒 𝑓 𝑛𝑒𝑤)
8 Set message signature 𝛿 = 𝑆sig (𝑠𝑘sig,𝑚)
9 Set 𝑡𝑥ea = (𝑚, 𝛿)

system accepts only one result 2. Last but not the least, we consider
that the underlying zero-knowledge proving system is secure.

The original Zcash privacy coin defines security as: (i) Ledger
indistinguishability. ledger reveals no information to the adver-
sary A beyond publicly disclosed information; (ii) Transaction
non-malleability. No bounded adversaryA can alter any of the data
stored within a valid transaction. It prevents the adversary from
modifying others’ transactions before they are added to the ledger,
and (iii) Balance. No bounded adversary A can own more notes
than what he minted or received via transactions from others.

In the case of conditional coins, transaction indistinguishability
is extended to cover the requirement that no bounded adversaryA
can distinguish transactions with event conditions and transactions
without event conditions. It is apparent that this property is satisfied
because, in the described conditional coin protocol, every coin in the
system has its associated condition, including the default constant
event outcome (always true or always false). All the transactions
apply the same protocol for proof generation and verification.

2In our system, a repetitive event will create a new inherited event definition each
time after the outcome is declared.

In addition, users should not be able to learn any information
that can connect conditional coin transactions with event defini-
tions or event outcomes. Both are used as witness information by
the provers (private data only accessible to the provers) to generate
zero-knolwedge proofs. The zero-knowledge protocol verifies exis-
tence of the claimed event definition and event outcome against the
two Merkle tree roots. It achieves this goal by verifying a Merkle
tree path from the leaf record to the root for both the event defi-
nition and event outcome embedded in a conditional coin note. If
we assume that security properties hold for the underlying zero-
knowledge proof system, then confidentiality of the association
between a conditional coin and the corresponding event outcome
is guaranteed.

In case of balance, in conditional coin transactions, a coin can
be split into two coins of equal value (equals with the summed
input coin value), conditional to the opposite outcome of the same
event. According to the protocol design, this transaction is allowed
only when the input coins are shown to satisfy event outcomes
(one of the zero-knowledge proof constraints). Because the event
outcome is binary and the decentralized ledger only accepts one
event outcome per event definition, balance is also guaranteed. In
a conditional coin transaction that the total input coin value is not
divided, using zero-knowledge proof, the prover must show that
the two output coins satisfy the constraint that they embed the
opposite outcomes of the same event as conditions. Using proof by
contradiction, if the balance requirement is violated, this means that
either the underlying zero-knowledge proving system is broken, or
the conditional coin transactions are malleable, or the constraint
that one outcome per event is not satisfied. Any one of these contra-
dicts against the assumptions that the underlying zero-knowledge
proof system (zk-SNARK in this work) is secure; the system abides
by the constraints - one outcome per event; and non-malleability of
coin transactions proven in the case of Zcash transaction protocol
design 3. Note that due to the asynchronous nature of conditional
coin transactions, the system allows circulation of worthless coins.

6 IMPLEMENTATION AND EVALUATION
Zero-knowledge proving system allows anyone to verify a transac-
tion without complete information from a prover. It means that the
system does not need to disclose private transaction information
(e.g., event condition, event definition, event outcome, amounts,
and etc.). The verifier can still validate if the transaction instance
satisfies the preset conditions. In common, zero-knowledge proving
system requires a circuit to generate proofs and verifying keys for
the verifiers. There are tools and libraries available to achieve this
goal.
Implementation: In the experiment implementation, we used xJs-
nark [13]. xJsnark is a tool that achieves “program-to circuit” con-
version, i.e., to compile a user-supplied program described in a
Java-like source language into a compact circuit representation that
is recognized by the existing SNARK libraries. It creates circuits [20]
in a libsnark compatible format so that the resulting SNARK can
be executed using the libsnark back end [14]. xJsnark implements
several optimization to improve efficiency of frequent operations
3Our design extends privacy coin note format and applies the same signature scheme
in Zcash to prevent transaction malleability.

Table 3: Key implementation parameters

Attribute Size
All Merkle tree height 64
Time stamp 64 bits
Event ID 64 bit
Event outcome ID 64 bit
Coin value 64 bits

and reduce circuit size. It supports efficient short and long integer
arithmetic and implements global optimizations for integer arith-
metic. The compiler has a built-in optimizer of circuit minimization.
xJsnark has developed a Zcash transaction implementation, which
is used in this study as a baseline. As reported in the xJsnark pa-
per, the Zcash circuit implemented in xJsnark is very efficient. The
compiled circuit under xJsnark is slightly better than the manu-
ally optimized implementation. The reason is due to the low-level
arithmetic optimizations and the circuit minimizer.

We extended the Zcash implementation in xJsnark according to
the described design to support events and conditions. A proving
system is used to generate a proof for each JoinSplit transaction
based on the extended data models with event conditions and algo-
rithms. xJsnark builds on top of libsnark. Note that in libsnark, we
need to generate a key pair of < pk, vk > in a ZK proving system.
Eventually, a verifier just needs the vk, public inputs 𝜒 , and the
proof 𝜋 to verify a conditional coin transaction.

The system implements three Merkle trees, for conditional coins,
event definitions, and event outcomes. In addition to public in-
put, output, and witness defined in Zcash, we extended with the
following input and witness:
• Additional Input: root of event definition Merkle tree, root
of event outcome Merkle tree, and block height;
• Additional Witness: event definitions (input coins, output
coins), event outcomes (input coins).

Some key parameters are listed in Table 3. In the beginning, the
circuit verifies the validity of different transaction scenarios by
checking both input event conditions and output event definitions.
For instance, a conditional coin can be transferred with the event
condition kept intact. In case a new event condition is attached, the
circuit verifies event outcome announcements associated with the
input coins and the event definition for the output coins. In addition,
the proving circuit verifies the conditions that are common for all
the transaction scenarios.

Circuit evaluation: The experiments were conducted using an
Intel Xeon computer that has 8 Xeon cores and 64GB ram and
running on Ubuntu 18.04. Size of the produced circuit wasmeasured,
as well as proving key and verifying key. The total number of
constraints is 11781616 (without optimization) and 8792171 (with
xJsnark optimization), respectively. The degree of corresponding
QAP is 8912896. The size of the proof key is 16767402202 bits, and
the size of the verification key is 29468 bits. The expansion of the
circuit size is primarily due to verification of additional Merkle tree
hash paths (event definitions and event announcements). The circuit
size is dominated by Merkle hash tree path verification. Future
implementation and evaluation could employ k-anonymity and
other zero-knowledge proof system to improve speed and efficiency.

The proof size in bits is 2294. It takes on average 261 seconds to
compute proof, and verification takes on average 0.042 second.

7 RELATED WORK
Main related work can be categorized into: (i) Conditional coin
research before blockchains: The concept of electronic cash with
its value conditional to event outcome can be found in the litera-
ture (e.g., [23]) before Bitcoin [18]. These schemes do not rely on
distributed ledgers in their designs. (ii) Smart contract with event
triggers: Cryptocurrencies can be deposited to a smart contract.
Later, depending on the result of an event based trigger, the locked
crypto-assets can be re-distributed. The work with “mixicles” [9]
shows us that smart contracts whose results are dependent on
the occurrence of the real-world event must employ Oracles as
“triggers” for distribution of the funds. The main distinguishing
property of conditional privacy coins is that coins with event con-
ditions attached can be treated as regular privacy coins, thus can
be transferred, split, and traded (support for transferability and
non-trigger based transaction processing asynchronous to event
handling). There is no trigger in the system and no lockup of assets
unlike the previous work [9] where tumblers are triggered by the
Oracle inputs. (iii) Oracles: Oracles [11] relay authenticated data
from external sources to blockchain-based systems so that the data
can be used by smart contracts, for instance as event triggers. Oracle
can leverage trusted third parties, MPC (e.g. [26], [15]), TEEs (e.g.,
[25], [21]), etc. In the context of conditional coins, Oracle services
mostly relate to event processing and validation of external data.
These research efforts are complementary to the main conditional
coin protocol design in this work. (iv) Contingent payments: In [6],
the authors showed how to perform zero-knowledge contingent
payments (ZKCP) in Bitcoin securely. The focus of conditional coins
and ZKCP is different as the main objective of conditional privacy
coins is to enable privacy preserving and transferable crypto-assets
with their values conditional with respect to event outcomes. It
applies the approach that decouples event processing from crypt-
currency transaction processing, which distinguishes from ZKCP.
It is worth mentioning that conditional coins can support the use
cases of contingent payments. (v) Privacy coins: Last but not the
least, the related work includes implementations of confidential
cryptocurrencies and assets (e.g., [5, 16, 19]). As we have demon-
strated, conditional coins are intended as an extension or to be
integrated with confidential or privacy crypto-currencies to enable
use cases where values of confidential coins are conditional to event
outcomes, and meanwhile the associations between conditional
coins and event registration/event outcomes are kept confidential.

8 CONCLUSION
This paper develops a blockchain based confidential conditional
coin system with privacy protection, which utilizes zero-knowledge
proof technology. Extending the Zcash data model, the conditional
privacy coin encodes event outcome as part of the privacy coin
UTXO notes. A main advantage of such design is that, without
relying on any trigger mechanism, the system separates event pro-
cessing from privacy coin transaction processing. Conditional coins
can be transferred freely with their values conditional to the linked
event outcomes. The designed system is implemented and evaluated
using xJsnark.

REFERENCES
[1] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[2] Sean Bowe, Ariel Gabizon, and Matthew D. Green. 2017. A multi-party protocol
for constructing the public parameters of the Pinocchio zk-SNARK. Cryptology
ePrint Archive, Report 2017/602. https://eprint.iacr.org/2017/602.

[3] Sean Bowe, Ariel Gabizon, and IanMiers. 2017. Scalable Multi-party Computation
for zk-SNARK Parameters in the Random Beacon Model. Cryptology ePrint
Archive, Report 2017/1050. https://eprint.iacr.org/2017/1050.

[4] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy. 315–334.

[5] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2019. Zether:
Towards Privacy in a Smart Contract World. Cryptology ePrint Archive, Report
2019/191. https://eprint.iacr.org/2019/191.

[6] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo.
2017. Zero-knowledge contingent payments revisited: Attacks and payments for
services. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 229–243.

[7] Christina Garman, Matthew Green, and Ian Miers. 2016. Accountable privacy
for decentralized anonymous payments. In International Conference on Financial
Cryptography and Data Security. Springer, 81–98.

[8] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company, Tech.
Rep. (2016).

[9] Ari Juels, Lorenz Breidenbach, Alex Coventry, Sergey Nazarov, Steve Ellis, and
Brendan Magauran. 2019. Mixicles: Simple Private Decentralized Finance.

[10] Kamil Kluczniak and Man Ho Au. 2018. Fine-Tuning Decentralized Anonymous
Payment Systems based on Arguments for Arithmetic Circuit Satisfiability. IACR
Cryptol. ePrint Arch. 2018 (2018), 176.

[11] Petar Kochovski, Sandi Gec, Vlado Stankovski, Marko Bajec, and Pavel D Drobint-
sev. 2019. Trust management in a blockchain based fog computing platform with
trustless smart oracles. Future Generation Computer Systems 101 (2019), 747–759.

[12] A Kosba, A Miller, E Shi, Z Wen, et al. 2015. Hawk: The Blockchain Model
of Cryptography and Privacy-Preserving Smart Contracts, Tech. In 2016 IEEE
Symposium on Security and Privacy (SP). Available at: https://ieeexplore. ieee. org/-
document/7546538.

[13] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark: a frame-
work for efficient verifiable computation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 944–961.

[14] libsnark 2012-2017. libsnark: a C++ library for zkSNARK proofs. https://github.
com/scipr-lab/libsnark.

[15] José María Manzano, JM Nadales, D Muñoz de la Peña, and Daniel Limón. 2019.
Oracle-Based Economic Predictive Control. In 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE, 4246–4251.

[16] Greg Maxwell. 2016. Confidential transactions. https://people.xiph.org/~greg/.
[17] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. 2013. Zerocoin:

Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 397–411.

[18] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. Manubot.

[19] Shen Noether and AdamMackenzie. 2016. Ring Confidential Transactions. Ledger
1 (12 2016), 1–18. https://doi.org/10.5195/LEDGER.2016.34

[20] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:
Nearly Practical Verifiable Computation. Commun. ACM 59, 2 (Jan. 2016), 103–112.
https://doi.org/10.1145/2856449

[21] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57–64.

[22] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459–474.

[23] Larry Shi, Bogdan Carbunar, and Radu Sion. 2007. Conditional E-Cash. In Finan-
cial Cryptography and Data Security, Sven Dietrich and Rachna Dhamija (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 15–28.

[24] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A Fast
and Scalable Cryptocurrency Protocol. IACR Cryptol. ePrint Arch. 2016 (2016),
1159.

[25] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
Crier: An Authenticated Data Feed for Smart Contracts. Cryptology ePrint
Archive, Report 2016/168. https://eprint.iacr.org/2016/168.

[26] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder,
and Ari Juels. 2019. DECO: Liberating Web Data Using Decentralized Oracles for
TLS. arXiv preprint arXiv:1909.00938 (2019).

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2017/602
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/191
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://people.xiph.org/~greg/
https://doi.org/10.5195/LEDGER.2016.34
https://doi.org/10.1145/2856449
https://eprint.iacr.org/2016/168

	On Conditional Cryptocurrency With Privacy
	Recommended Citation
	Authors

	Abstract
	1 Introduction
	2 Overview
	3 Data Models
	4 Protocol Design for Conditional Privacy Coins with Transferability
	4.1 Preliminary
	4.2 Transaction Algorithms
	4.3 Event transactions

	5 Security Analysis
	6 Implementation and Evaluation
	7 Related Work
	8 Conclusion
	References

