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Abstract: The ability of tumor cells to evade the immune system is one of the main challenges we
confront in the fight against cancer. Multiple strategies have been developed to counteract this
situation, including the use of immunostimulant molecules that play a key role in the anti-tumor
immune response. Such a response needs to be tumor-specific to cause as little damage as possible to
healthy cells and also to track and eliminate disseminated tumor cells. Therefore, the combination
of immunostimulant molecules and tumor-associated antigens has been implemented as an anti-
tumor therapy strategy to eliminate the main obstacles confronted in conventional therapies. The
immunostimulant 4-1BBL belongs to the tumor necrosis factor (TNF) family and it has been widely
reported as the most effective member for activating lymphocytes. Hence, we will review the
molecular, pre-clinical, and clinical applications in conjunction with tumor-associated antigens in
antitumor immunotherapy, as well as the main molecular pathways involved in this association.

Keywords: 4-1BBL; cancer immunology; immunotherapy; cancer therapy; cancer vaccination

1. Introduction

Cancer incidence cases continue to rise, registering over 18 million recent cases and
over 9 million deaths in 2018, distributed worldwide [1]. Current therapeutic options
include surgery, radiation therapy, and chemotherapy, which, despite being efficient for
tumor clearance, have significant side effects that affect the patient’s quality of life. They
have also registered a high recurrence rate and the formation of tumor-resistant clones [2,3].
Hence, new therapeutic approaches are essential to counteract such inconveniences and to
ensure full tumor cell eradication.

Gene therapy involves using genetically modified RNA and/or DNA coding homologous
or heterologous proteins to replenish a specific protein deficiency or trigger a specific cell
response. This is the most used strategy to express antigens and immunostimulatory molecules
to induce protective memory immunity against various pathogens and tumor cells [4].

4-1BBL is an immunostimulant molecule that interacts with the 4-1BB high-affinity
receptor during the antigen presentation, providing costimulatory signals to both CD4+
and CD8+ T cells through the activation of NF-kB, c-Jun, and p38 downstream pathways,
triggering pleiotropic effects on the immune system [5]. Thus, it has been proposed to
use it as a complex with epitopes or antigens of pathogens that induces an increase in the
specific immune response of antigen [6].
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Cancer development can result from spontaneous cell mutations or viral oncoproteins
that trigger cell malignancy processes; therefore, on tumor cells, we can detect proteins that can
serve as antigens for cancer therapy. Cancer cells express several tumor antigens. According
to their exclusive expression on tumor cells or tumor and non-tumor cells, they are classified
as tumor-specific antigens (TSAs) or tumor-associated antigens (TAAs), respectively [7].

TAAs are over-expressed in cancer cells, and because of this, they have been used in the
diagnosis, prognosis, and treatment of cancer. Alpha-fetoprotein (AFP), carcinoembryonic
antigen (CEA), cancer antigen (CA), tissue polypeptide-specific antigen (TPS), and prostate-
specific antigen (PSA) are some currently used examples [8].

Particularly, Bruggen et al. identified, three decades earlier, a gene encoding an antigen
expressed in several human melanoma tumors. Cytolytic T lymphocytes recognize this
antigen, which marked a guideline in specific immunotherapy against cancer [9,10]. The
immunogenicity triggered by such antigens is limited because cancer cells can develop
several mechanisms to evade the immune system, such as selecting tumor cell variants that
lose antigen expression and/or decrease the expression of MHC molecules [11]. Focused
on these findings, there are developing strategies with the use of tumor antigens attached
to adjuvant molecules for the improved delivery of in vivo antigens. In this way, they
generate a more efficient antitumor immune response [12–14].

2. 4-1BB/4-1BBL
2.1. Receptor 4-1BB

4-1BB was first identified in mice as an inducible mRNA sequence found in cytotoxic
T-lymphocytes and a helper T-lymphocyte clone by a modified differential screening
procedure during the isolation of putative T cell-specific expression genes [15]. Sequence
analysis of the 4-1BB gene exhibited similarity to members of the TNF family [16]. This
murine 4-1BB (m4-1BB) maps in chromosome 4 close to the p80 form of the tumor necrosis
factor receptor and the gene for CD30 [17]. The human homolog of 4-1BB (h4-1BB) (CD137)
was cloned from activated human T-cell leukemia virus type 1-transformed human T-
lymphocytes library [17], and comprises 255 a.a. maps to chromosome 1p36, sharing a 60%
identity with murine 4-1BB [18].

Both m4-1BB and h4-1BB consist of a type I transmembrane receptor with four extracellular
cysteine-rich domains, followed by a short transmembrane domain and a C-terminal cytoplas-
mic domain that is necessary for the binding of adaptor proteins to facilitate signaling [19,20].

4-1BB expression as an inducible receptor depends on the activation of T cells by some
agonists such as plate-bound anti-CD3, concanavalin A, phytohemagglutinin, interleukin
(IL)-2, IL-4, CD28, phorbol myristyl acetate, or ionomycin in the presence of antigen-
presenting cells (APC). It is expressed in CD4+, CD8+, natural killers (NK), NKT, and
constitutively in CD11c+ dendritic cells (DCs) and CD4+ CD25+ regulatory T cells [21].

2.2. 4-1BB Ligand

The presence of a ligand for 4-1BB was first verified in the EL4 murine cell line through
its attachment with a fusion 4-1BB/Fc protein. The 4-1BBL gene was then cloned through
the screening of an EC1 cDNA expression library [22]. 4-1BBL is expressed in several APCs,
such as B lymphocytes, macrophages, and DCs, and activated T cells [23].

Murine 4-1BBL (m4-1BBL) is a type II transmembrane protein composed of an N-
terminal cytoplasmic region and a C-terminal ectodomain separated by a transmembrane
domain. We can divide the ectodomain into a tail region and the TNF homology domain
(THD). The latter handles the interaction with its cognate receptor m4-1BB. m4-1BBL is
self-assembled as a two-fold symmetrical homodimer, in which a disulfide bond covalently
connects both protomers [24].

Human 4-1BBL (h4-1BBL) was first isolated using a fusion protein consisting of the
extracellular portion of h4-1BB coupled to the Fc region of human immunoglobulin (Ig)
G1 to identify and clone the gene for h4-1BBL from an activated CD4+ T-cell clone using
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a direct expression cloning strategy. Sequence analysis revealed that h4-1BBL comprised
254 a.a. and shared a 36% identity with murine 4-1BBL [18].

h4-1BBL exists both in soluble form and as a cell-bound type II transmembrane protein
that comprises a short N-terminal cytoplasmic region, followed by a transmembrane
domain, and extracellular TNF THD, which binds to 4-1BB. The THD region of h4-1BBL
shares just 20–25% of sequence identity with other recognized TNF ligands. However, the
overall structure of h4-1BBL is like other non-covalent homotrimeric TNF ligands [20].

2.3. 4-1BB/41BBL Complex

All the characterized conventional human or murine TNF ligands organize into a
symmetrical trimeric bell-shape to form a functional biological unit [19]. The structure
of h4-1BBL also assembles as a trimeric bell-shape despite its low-sequence similarity
with conventional members [25]; however, m4-1BBL, although it contains most of the
characteristic features required for packing into a bell-shape, is assembled in an atypical
dimeric structure [24].

m4-1BBL and h4-1BBL protomers are structurally similar and share structural de-
tails with members of the conventional TNF family. The major difference occurs in the
oligomeric assembly of the ligand because human 4-1BBL forms a hexameric functional
unit, and m4-1BBL forms a tetrameric signaling unit [24]. Such structures supply insights
into the structural differences that drive the species-specific receptor–ligand interactions.
Since multimerization and clustering is a precondition requirement for TNFR intracellular
signaling, the presentation of differential functional signaling units in human and mouse
supports a unique mechanism of 4-1BB signaling in both species [26].

Comparable to other TNF members, the association with 4-1BBL oligomerizes 4-1BB,
recruiting intracellular trimeric TRAFs (TRAF1 and TRAF2), which lead to stimulation
of NF-κB and phosphatidylinositol 3-kinase/Akt-mediated proinflammatory signaling
pathways [27] (Figure 1).
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Figure 1. Activation of the non-canonical NF-κB pathway by SA-4-1BBL through the tumor necrosis
factor receptor (TNFR) includes the slow and persistent activation of the NF-κB-inducing kinase
(NIK), phosphorylation of NIK-mediated p100, and subsequent nuclear processing and translocation
of p100 from p52 and RELB, with the consequent production of interferon (IFN), which triggers
pleiotropic effects on the immune response.

2.4. SA-4-1BBL

4-1BBL as a soluble trimeric molecule displayed the absence of biological activity [28];
thus, a soluble chimeric SA-4-1BBL was generated that consists in the fusion of the extracel-
lular domain of 4-1BBL to the C-terminus of a changed form of core streptavidin (SA). Such
a molecule exists as tetramers and oligomers owing to the structural features of SA and
can cross-link 4-1BB receptors, which are capable of inducing potent activation of CD4+
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and CD8+ T cell activation [29] (Figure 1). The soluble form of the 4-1BB ligand has proved
to be a better immunostimulant with fewer adverse effects than 4-1BB receptor agonistic
monoclonal antibodies [30].

An unexpected feature of SA-4-1BBL has recently been demonstrated; moreover, the
known effect in CD8+ T-effector and memory response, non-specific activation of CD4+ T
and NK cells, exhibited protection against tumor challenge [31], depicting a bridge between
innate and adaptive immune response.

3. Tumor-Associated Antigens (TAAs)

The antigen MZ2-E, identified in melanoma tumor cells by Bruggen et al., was also
expressed in other melanoma cell lines and different histological types, but without expres-
sion in normal tissues. The gene coding this antigen was detected silent or quasi-silent in
most normal tissues and activated in the tumors, even when the gene sequence appeared
identical in normal tissues and tumors. In addition, these antigens were recognized by
killer T lymphocytes [9]. In recent decades, similar antigens have been widely used as
components of antitumor vaccines.

Vaccines that rely on antigen specificity offer the greatest advantage compared to
other non-specific conventional therapies such as tumor resection, radiotherapy, and
antitumor chemotherapy [32]. However, given the existence of resistance mechanisms in
tumor development such as a loss or change of epitopes recognized by immune cells, T cell
exhaustion, antigen tolerance, and the infiltration of immunosuppressive cells [11], the need
arises to associate these antigens with molecules that improve the immune response [33].

SA-4-1BBL and TAAs

Four distinct nodes can induce antitumoral immunity: eradicating the immune sup-
pression in the tumor microenvironment, inducing immunogenic cancer cell death, enhanc-
ing the APC function/adjuvanticity, and enhancing T/macrophage effector activity [34].
The combination of the SA-4-1BBL adjuvant with TAA results in the activation of the
previous four mechanisms.

Typically, a subset of ligands of tumor necrosis factor receptor (TNFR) superfamily
members induces the non-canonical NF-κB pathway in immunity and inflammation [35]. In
addition to the recognized functions of this pathway, including the regulation of lymphoid
organ development, B cell survival, and maturation [36,37], an important role in regulating
DC development and maturation has been reported using mice deficient in NF-B members
RELB, cREL, or both cREL and NF-B1, noting that DCs require RELB to induce T cell responses
via both the conventional antigen-presenting pathway and via cross-priming [38–40], which
implies an essential role in the anti-tumor immune response [41].

In contrast to the rapid and transient activation of the canonical NF-κB pathway, the
activation of the non-canonical NF-κB pathway is characteristically slow and persistent [40],
implying major specificity.

In terms of eliminating immune suppression, there has been a significant reduction in
the frequency of Treg cells following vaccination with SA-4-1BBL/MPL as the adjuvant
component of E7 TAA-based vaccine against TC-1 tumors in a C57BL/6 cancer mice model
compared to PBS or E7 alone controls [42]. Regarding the induction of immunogenic
cancer cell death, it has been reported as vaccines with E7 plus SA-4-1BBL that generate a
CTL and Th1 response by augmented memory pool for both CD4+ and CD8+ T cells and
improved T cell proliferative, killing, and Th1 cytokine responses in long-term surviving
mice [13,42–44]. Adjuvants that promote APC function are well-known to enhance Th1 cell
or M1 macrophage effector pathways, activating both nodes 3 and 4 [34]. Immunization
with a DNA vaccine encoding SP-SA-E7-4-1BBL in vivo showed an increase in antigen-
specific interferon (IFN) levels associated with the therapeutic efficacy as Th1-mediated
response to tumor eradication [43]. To improve the administration of SP-SA-E7-4-1BBL, we
constructed an oncolytic adenovirus that encodes the previous construction and showed a
specific antitumor effect in an established tumor mouse model [45].
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4. Tumor Microenvironment

Tumor microenvironment regulation has a key role in the success of antitumor ther-
apies. Composed of proliferating tumor cells, tumor stroma, blood vessels, infiltrating
inflammatory cells, and a variety of associated tissue and molecules cells, it emerges
dynamically in the process of tumor growth because of its interactions with the host [46].

The cross-talking orchestrated by tumor cells and their microenvironment includes
contacts such as cell to cell, cell-free structures, and soluble mediators. Therefore, tumor
cells can control the microenvironment, making the non-malignant cells present to work
for their advantage, leading to immune evasion and tumor progression [47,48].

To achieve effective antitumor immunity, first, DCs must take antigens released from
the tumor simultaneously with antigen uptake, and DCs must also receive an activation
signal from factors released from dying tumor cells. Next, DCs loaded with tumor anti-
gens must migrate to the lymphoid organs to generate antigen-specific CD8+ cytotoxic
effector cells. Finally, specific antigen cancer T cells must infiltrate the immunosuppressive
microenvironment [49].

The immunosuppression state is produced by downregulating major histocompatibility
complex class I (MHC I) or expressing cell surface molecules such as programmed cell death
protein 1 ligand 1 (PDL1) by tumor cells and the release of immunosuppressive molecules
such as transforming growth factor-β (TGFβ), indoleamine 2,3-dioxygenase (IDO), arginase,
and nitric oxide synthase as a consequence of a hypoxic environment [49,50].

5. Delivery Technologies for 4-1BBL

The delivery system is a crucial point for the success of antitumor therapy, since access
to the tumor tissue will depend on it. Therefore, a thorough analysis of the treatment used,
the type of tumor, and the administration route are necessary to ensure the best possible
delivery. Herein, we review five dominant strategies used in the 4-1BBL adjuvant delivery
in the preclinical and clinical trials reviewed.

5.1. Fusion Proteins

The design of chimeric fusion proteins that express different genes in a single peptide
offers the advantage of simultaneously targeting several signaling pathways, and this is
a promising alternative to antibody therapy, with minor secondary adverse effects. In
recent years, fusion proteins have increased in cancer immunotherapy [51–53]. DSP107 is a
new immunotherapeutic fusion protein, termed Dual Signaling Protein 107. It combines
innate and adaptive immune response activation by blocking CD47/SIRPα interaction
and activating 4-1BB. This fusion protein contains the extracellular domains of SIRPα and
41BBL. 41BBL allows protein trimerization, which is essential for 4-1BB receptor activation.
DSP107 binds to CD47 with subsequent removal of the inhibitory signal delivered to
phagocytes on tumor cells. CD47 binding of DSP107 allows the delivery of the 4-1BBL
costimulatory signal to tumor local T-cells [54].

Another example of employing such technology is a preclinical study that used a
bifunctional fusion protein derived from tumstatin and 4-1BBL (rh4TFP), with the aim of
targeting both angiogenesis and T cell activation. The protein comprises a T7 peptide from
inhibitor tumstatin and the extracellular domain of 4-1BBL, both coupled with different
linkers. rh4TFP-2 exhibits antiangiogenic activity similar to tumstatin by inhibition of
proliferation and migration of human umbilical vein endothelial cells. Additionally, it
exhibits an increase of T lymphocyte activation for the release of IL-2 and IFN-γ, resulting
in T lymphocyte activation by 4-1BBL. It shows tumor growth suppression and prolonged
survival in a B16F10 melanoma-bearing mouse model [53].

4-1BBL fused to tumor-associated antigens as peptide-based vaccines also show a
potent activation of the innate, adaptive, and regulatory immune response in established
tumor mice models [44,55].
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5.2. DNA Vaccines

Therapy based on DNA administration offers the advantage of being a simpler process
if we compare it with the elaboration of fusion proteins. To simplify the system of fusion
proteins, a chimeric HPV-16 E7 DNA vaccine (SP-SA-E7-4-1BBL) was generated that
contains the signal peptide (SP) of calreticulin (CRT), the streptavidin (SA) domain of SA-4-
1BBL, HPV-16 E7 double mutant gene, and the extracellular domain of mouse 4-1BBL. It
shows prophylaxis against the TC-1 tumor, a therapeutic effect against an established TC-1
tumor, and an increased frequency of E7-specific T cells producing IFN-γ [43]. However,
because of the local administration of DNA vaccines, transfection is limited to cells adjacent
to the injection site, with the consequent need for multiple immunizations to increase an
effective antitumor effect [56,57].

5.3. Oncolytic Virus

Oncolytic virotherapy is encouraging for antitumor gene therapy as it can selectively
replicate in tumor cells, causing cell lysis. Additionally, tumor cell debris is released and
taken in by immune cells to improve antitumor responses. An oncolytic adenovirus (OAd)
expressing SP-SA-E7-4-1BBL was competent in infecting murine cancer and normal cells,
and the expressed protein was able to target the endoplasmic reticulum (ER). Moreover, this
OAd caused a cell-killing effect specific to cancer cells and generated a specific antitumor
effect in vivo. Administration of OAd in mice with established TC-1 tumors resulted in tumor
growth suppression and 100% survival when contrasted with the reference positive control.
However, additional studies should analyze the safety and biodistribution of recombinant
adenovirus and associate the mechanisms implicated in the antitumor effect [45].

5.4. Antibodies

Specific antibodies against 4-1BB alone or in combination with other agents are being
studied and developed to activate and enhance anti-cancer immune responses. There are
ongoing clinical trials to evaluate the efficacy of agonistic 4-1BB antibodies alone or in combi-
nation with other treatment modalities. However, treatment with 4-1BB agonist antibodies
has resulted in adverse events such as fatal liver toxicity [58,59]. 4-1BB agonist antibodies
such as urelumab (BMS-66513) and utomilumab (PF-05082566) are now being studied at
lower doses as monotherapy and in combination with other anti-cancer agents [60]. Mixture
therapies of anti-CD137 with other antibodies or other reagents have exhibited great poten-
tials in anti-tumor activities and reduced the probability of systemic toxicities. More clinical
advancement is required to fully unlock the use of this antibody [61].

5.5. Cellular Therapy

Early adoptive immunotherapy primarily transfuses autologous or allogeneic tumor-
responsive T cells back into the patient’s body to damage the patient’s tumors. CAR-T
cell therapy and T cell receptor (TCR)-T cell therapy are the most used and most effective
immunotherapy technologies. CAR-T cells are T-cells genetically changed to express a syn-
thetic construct comprising of a synthetic T-cell receptor (TCR) targeted to a programmed
antigen expressed on a tumor [62]. Moreover, by “armoring” these cells with genetic
modifications such as IL-12, CD40L, or 4-1BBL, it produces signaling cascades similar to
their normal counterparts and enhances T cell activation, expansion efficacy, and persis-
tence [63]. Pre-clinical studies with T-cells co-transduced with 4-1BBL and CD80 showed
robust proliferation and increased cytokine production compared with T-cells transduced
with either construct alone [64]. CAR-T cells co-transduced with 4-1BBL have also shown
enhanced in vitro and in vivo efficacy in a mouse systemic tumor model [65]. An alterna-
tive cellular approach involves using induced pluripotent stem (iPS) cell-derived myeloid
lines (iPS-ML). The benefits of using iPS-ML are their infinite proliferative capability and
ease of genetic modification. Kuriyama et al. demonstrated that peritoneal injections of iPS-
ML-41BBL significantly impede the tumor growth of peritoneally disseminated melanoma
and extended survival compared to that of iPS-ML in a mouse melanoma model [66].
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6. 4-1BBL Current Clinical and Preclinical Applications

Cancer therapies that focus on stimulating a specific immune response in combination with
adjuvants that modulate such response could counteract said immunosuppression by seeking
the predominance of a pro-inflammatory state in the tumor microenvironment [34,67–69]. In the
search for potent anti-tumor immunotherapy with minor toxic side effects, advanced materials
and new and more efficient delivery systems are being developed [70–72].

We should note that tumors represent a hard target because modulation of the tumor
immune microenvironment is necessary to achieve successful therapy. Preclinical and
clinical studies explore several strategies that involve different molecular pathways to
reach this.

Using SA-4-1BBL in preclinical models has shown a protector effect and a therapeutic
effect in mice with established tumors. This effect increases the specific long-term immune
response required by IFN-γ as the mediator of cross-talking between innate and adaptive
immunity [31,43,44] (Table 1). This protective effect also influences the regulatory immunity
system by promoting a favorable intra-tumoral environment determined by the CD8+ T
eff/CD4+ Foxp3+ Treg cell ratio [42].

Table 1. Preclinical studies with the adjuvant SA-4-1BBL.

Approach Findings Immune Signaling Pathway Year, Ref.

Prophylactic and therapeutic
effect of DNA vaccine in a cervical

cancer mouse model.

Prophylaxis against TC-1 tumor.
Therapeutic effect against established

TC-1 tumors.

Increased frequency of E7-specific T cells
producing interferon IFN-γ. 2019 [43]

Tumor protection of subunit
vaccine in three different tumor

types (TC-1, LLC, or
3LL-huMUC1) in a mouse model.

Monotherapy protects mice against
tumor challenge.

A rapid and lengthy window of
protection against the tumor.

Protection is tumor-type-independent
and does not evolve into a

long-lasting immune memory.
Prevents post-surgical tumor

recurrence.

IFN-γ+ producing CD4+ T and NK cells as
predictors of SA-4-1BBL-mediated immune

protection against tumors.
Protection against the tumor requires IFN-γ as

a mediator of crosstalk between NK
and CD4+ T cells.

2019 [31]

Vaccine adjuvant system effect in
a mouse model of human

papilloma virus
(HPV)-induced cancer.

SA-4-1BBL/MPL as the adjuvant
component of the E7 TAA-based

vaccine has robust efficacy in
eradicating established TC-1 tumors.

SA-4-1BBL/MPL controls 3LL
pulmonary metastasis progression.

Therapeutic efficacy of the
SA-4-1BBL/MPL is achieved in the

absence of autoimmunity and
detectable clinical toxicity.

The therapeutic efficacy of SA-4-1BBL/MPL is
associated with a robust effect of SA-4-1BBL

and MPL on the generation of peripheral CD8+
T cell responses.

Vaccination with the SA-4-1BBL/MPL results
in a favorable intra-tumoral CD8+ T eff/CD4+

Foxp3+ Treg cell ratio.
CD8+ T cells and IFN-γ are critical to the

therapeutic efficacy of SA-4-1BBL/MPL while
Treg cells are detrimental to the efficacy of

MPL monotherapy.

2014 [42]

Therapeutic efficacy of subunit
vaccine in 3LL lung carcinoma

in mice.
Eradicating 3LL tumors in mice.

The therapeutic efficacy of the vaccine is
associated with robust CD8+ T cells and NK

cells’ effector responses.
CD8+ T cells play an obligatory role, while NK
cells play a moderate, but significant, role in

the therapeutic efficacy of the vaccine.

2012 [44]

Therapeutic efficacy of a
protein-based vaccine in a mouse

cervical cancer model.

Eradication of established TC-1
tumors and generates long-term

tumor-specific memory response.

Vaccination with E7 protein and SA-4-1BBL
generates primary T cell responses.

Generation of robust T cell proliferative and
effector responses.

Long-term T cell memory pool and enhanced
intra-tumoral CD4+ and CD8+ T cells.

NK cells play a critical role in vaccine efficacy.

2010 [13]

To date there are no records regarding the use of the SA-41BBL adjuvant in clinical
trials; however, there are several currently using 4-1BBL as monotherapy or associated
with different molecules (Table 2).
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Table 2. Current Clinical trials with -4-1BBL.

Intervention Model Year; Phase

An open-label, multicenter, multidose, first-in-human study of
RTX-240 for the treatment of patients with relapsed/refractory

R/R or locally advanced solid tumors. RTX-240 is a cellular
therapy that co-expressed 4-1BBL and IL-15TP, a fusion of IL-15

and IL-15 receptor alpha as monotherapy.

2020; I, II

Study of DSP107 in subjects with advanced solid tumors
including a dose-escalation safety study (part 1) and preliminary

efficacy assessment of DSP107 as monotherapy and in
combination with atezolizumab (part 2). DSP107 (SIRPα–4-1BBL)

is a bi-functional, trimeric, fusion protein.

2020; I, II

LOAd703 in combination with atezolizumab in malignant
melanoma. LOAd703 is an oncolytic adenovirus encoding
trimerized membrane-bound (TMZ)-CD40L and 4-1BBL.

2019; I, II

An open-label study to evaluate the safety, pharmacokinetics, and
preliminary antitumor activity of RO7227166 (a CD19-targeted

4-1BB ligand) in combination with obinutuzumab and in
combination with glofitamab following a pre-treatment dose of

obinutuzumab administered in participants with
relapsed/refractory B-cell non-Hodgkin’s lymphoma.

2019; I

Evaluating the effect of LOAd703 in patients with pancreatic
cancer, biliary cancer, ovarian cancer, and colorectal cancer.

LOAd703 is an oncolytic adenovirus serotype 5/35 encoding
immunostimulatory transgenes: TMZ-CD40L and 41BBL.

2017; I, II

A CD19-targeted EGFRt/19-28z/4-1BBL “armored” Chimeric
Antigen Receptor (CAR) modified T cells in patients with
relapsed or refractory CD19+ hematologic malignancies.

2017; I

Evaluating safety of LOAd703, an armed oncolytic adenovirus for
pancreatic cancer. Delolimogene mupadenorepvec oncolytic virus

encoding TMZ-CD40L and 4-1BBL.
2016; I, II

Allogeneic vaccine modified to express HLA A2/4-1BB ligand for
high-risk or low residual disease melanoma patients. 2013; I, II

6.1. DSP107

The most recent, DSP107 (SIRPα–4-1BBL), is a bi-functional, trimeric fusion protein.
This study evaluates the safety, pharmacokinetics (PK), and pharmacodynamics (PD),
as well as the first evaluation of the efficacy of DSP107 as monotherapy or in combina-
tion with atezolizumab. The study was designed in two parts: the first as monotherapy
dose-escalation of DSP107, which comprises intravenous administration in patients with
advanced solid tumors, as long as they are not amenable to any beneficial therapeutic
options. In addition, the study includes a cohort to establish a safe dose when DSP107
is administered in combination with atezolizumab in the second part of the study. This
last part of the study will include participants with non-small-cell lung cancer who have
shown progression after first-line treatment with PD-1- or PD-L1-targeting agents, and
have formerly achieved a better response or stable disease.

Another of the studies posted in clinical trials last year was RTX-240, a cellular therapy
of engineered red cells that co-expressed 4-1BBL and IL-15TP, a fusion of IL-15 and IL-15
receptor alpha that harnesses the innate and adaptive immune systems to treat cancer. This
study is a phase 1/2 multicenter, multidose, first-in-human (FIH) dose-escalation trial and
expansion to determine the safety and tolerability.
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6.2. LOAd703

An oncolytic adenovirus armed with a transgene encoding TMZ-CD40L and 4-1BBL can
selectively lyse tumor cells, showing a capacity to induce anti-tumor cytotoxic T-cell responses,
and reduce myeloid-derived suppressor cell (MDSC) infiltration and tumor regression in
a preclinical study [73]. Subsequently, in a phase I/II trial, patients with unresectable or
metastatic pancreatic ductal adenocarcinoma (PDAC) were treated with LOAd703 intra-
tumoral injections and standard nab-paclitaxel/gemcitabine (nab-P/G) chemotherapy.

Three subjects received dose 1 (5 × 1010 VP), 4 subjects received dose 2 (1 × 1011 VP),
and 6 subjects received dose 3 (5 × 1011 VP). The most frequent adverse events (AEs)
attributed to LOAd703 were fever, chills, nausea, and increased transaminases. Such AEs
have been transient and grade 1–2, except for a grade 3 transaminase elevation in 1 subject
receiving dose 3. Throughout the protocol therapy, circulating MDSCs were reduced
in 8/13 subjects, whereas effector memory T-cells were augmented in 10/13. ELISPOT
analyses exhibited an increase in tumor antigen-specific T-cells in 10/13 subjects. Next to
the lowest dose level, the best response was stable disease, and 6/10 patients who received
higher LOAd703 doses had a partial response. Only 1 patient has had progressive disease
as the best response [74].

LOAd703 is also evaluated in a phase I/II trial investigating intra-tumoral treatments
of virus combined with intravenous infusions of atezolizumab in malignant melanoma.

6.3. RO7227166

RO7227166 evaluates the safety, tolerability, and efficacy of a CD19-targeted 4-1BB
ligand in a phase I, open-label, dose-escalation study in subjects with relapsed/refractory
non-Hodgkin’s lymphoma (part I and II), and follicular lymphoma and diffuse large B-
cell lymphoma (part III). This ligand was administered intravenously in combination
with obinutuzumab and glofitamab. This study was divided into three parts, a dose-
escalation stage (part I and II) and a dose-expansion stage (part III). Part I comprised
administering a fixed-dose obinutuzumab seven days prior to the first administration of
RO7227166, followed by an intravenous infusion in a combination of both in a three-weekly
schedule. In part II, subjects received a fixed dose of obinutuzumab seven days before
the administration of RO7227166, followed by a combination of the latter with glofitamab
in a three-weekly schedule. The part III dose-expansion stage participants will receive
RO7227166 combined with glofitamab by intravenous infusion in a three-weekly schedule.

6.4. EGFRt/19-28z/4-1BBL CAR-T Cells

EGFRt/19-28z/4-1BBL CAR-T cells comprise T cell enrichment, activation, and genetic
modification by a retroviral vector encoding a CD19-targeted CAR, the co-stimulatory
ligand 4-1BBL, and the EGFRt safety system (EGFRt/19-28z/4-1BBL) from peripheral blood
of subjects that have relapsed or refractory chronic lymphocytic leukemia (CLL). This phase
I study aims to assess the safety of several dose levels of these prepared cells obtained from
the subjects and to obtain a safe dose of these T cells for patients with this type of condition
that has progressed after traditional therapy. Additionally, they want to discover what
effects these modified T cells show on the patient and cancer. Modified T cell infusions will
be administered for 2–7 days, with the subsequent conclusion of the treating investigator’s
choice of preparing chemotherapy. They will perform subsequent treatment with serial
blood and bone marrow sampling to evaluate toxicity, therapeutic effects, and survival of
the genetically changed T cells. Each cohort of 3–6 patients will be treated with increasing
doses of modified T cells. At a minimum, 3 subjects will be treated at each dose level with
an accumulation of only 2 patients monthly within each dose level. At any rate, two weeks
will pass by from the first T cell infusions before the second patient is treated (on dose level
1) to set a limit for toxicity and safety evaluation. Every patient treated at the previous dose
level will be monitored a minimum of 4 weeks before dose escalation. There are 4 scheduled
dose levels: 1 × 105, 3 × 105, 1 × 106, and 3 × 106 CAR-T cells/kg.
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6.5. HLA A2/4-1BB Ligand

A melanoma vaccine changed to express the HLA A2/4-1BB ligand consists of a cell
line with a high expression level of melanoma molecules and is genetically modified to
generate a robust immune response. The study is based on the hypothesis that stimulation
of the immune response against the tumor can better destroy residual tumor in melanoma
patients with a very high risk for disease recurrence and in patients with a comparatively
low tumor burden who previously received first-line therapy for their disease. Previous
clinical trials have shown that vaccination of subjects with a cell line of tumor cells from
the patient themself, or with a mixture of three cell lines that partly match the patient’s
cell characteristics, could enhance the immune response against the tumor and was linked
with improved disease-free and overall survival.

7. Conclusions

There is still a long way to go in the battle against cancer. However, more knowledge
is available regarding how to defeat it. Stimulating the immune system has historically
proven to be a double-edged sword; therefore, it is imperative to find a balance between
attacking the enemy and causing less damage to the host. According to the results analyzed
in this review, the use of 4-1BBL in preclinical trials has shown an efficient activation of the
innate, adaptive, and regulatory immune system, turning the tumor microenvironment
into a propitious place to generate an efficient, specific, and lasting immune response.
Currently, the efficacy of this response has been shown in clinical trials. Preliminary results
show a safe molecule with minor adverse effects that induces an efficient activation of the
immune system against the tumor. However, further research is needed to establish this
antitumor therapy.
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