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ABSTRACT
In this paper, we present the globally conservative solutions to the Cauchy problem for the modified Camassa–Holm (MOCH) equation. First,
we transform the equation into an equivalent semi-linear system under new variables. Second, according to the standard ordinary differential
equation theory with the aid of the conservation law, we give the global solutions of the semi-linear system. Finally, returning to the original
variables, we obtain the globally conservative solutions to the MOCH equation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048245

I. INTRODUCTION
It has been known that the celebrated Camassa–Holm (CH) equation for λ = 0 has quadratic nonlinearity and is utilized to describe a

shallow water wave model.10,11 It is completely integrable6,10 and has a bi-Hamiltonian structure.4,17 It has peakon solutions in the form of
ce−∣x−ct∣ with the wave speed c, which is orbitally stable.13 The local well-posedness for the Cauchy problem of the CH equation in Sobolev
spaces and Besov spaces was presented in Refs. 1, 7, 8, 15, 16, 20, and 22. It admits not only blow-up strong solutions in a finite time but also
globally strong solutions.5,7–9 Recently, norm inflation and ill-posedness for the CH equation in the critical Sobolev Space and Besov spaces
were proved in Ref. 18. The existence and uniqueness of globally weak solutions were studied in Refs. 12 and 24. The globally conservative,
dissipative solutions, and algebro-geometric solutions were presented in Refs. 2, 3, and 21.

The well-known CH equation also describes pseudo-spherical surfaces, and therefore, its integrability properties can be studied by means
of the geometrical approach.14 A nonlinear differential equation is geometrically integrable if it describes a nontrivial one-parameter family
of pseudo-spherical surfaces. Apparently, the CH equation is geometrically integrable.23 Hence, it turns out from the viewpoint of differential
geometry that the study of the geodesics determined by these surfaces allows one to define a Miura transform and the modified Camassa–Holm
(MOCH) equation.19 In this paper, we consider the Cauchy problem for the MOCH equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γt = λ(ux − γ −
1
λ

uγ)
x
, t > 0, x ∈ R,

uxx − u = γx +
γ2

2λ
, t ≥ 0, x ∈ R,

γ(0, x) = γ̄(x), x ∈ R,

(1.1)
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where λ is a real constant. In order to define weak solutions for Eq. (1.1), let us rewrite (1.1) as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

γt + (γ∂xG−1γ +
1

2λ
γG−1γ2

)
x
=
γ2

2
+ λ∂xG−1γ +

1
2

G−1γ2, t > 0, x ∈ R,

γ(0, x) = γ̄(x), x ∈ R.
(1.2)

Let G = ∂2
x − 1 and m = (∂x + 1)G−1γ = (∂x − 1)−1γ. Then, we have γ = (∂x − 1)m and ∥γ∥L2 = ∥m∥H1 , and therefore, Eq. (1.1) is changed to

mt + umx = mu −G−1
(umx − um) − ∂xG−1

(umx − um) +
1
2
(−m2

+G−1m2
x + ∂xG−1m2

x)

+ λ∂xG−1m +
1
2
((∂x − 1)−1G−1m2

x −G−1m2
), (1.3)

where u = m − ∂xG−1m +G−1m + 1
2λ(G

−1m2
x +G−1m2

− ∂xG−1m2
). For the initial data, we have

m(0, x) = m̄(x) = (∂x − 1)−1γ̄(x). (1.4)

In Refs. 14 and 23, Eq. (1.1) was first investigated by the geometric approach. Pseudo-spherical surfaces, conservation laws, and the
existence and uniqueness of weak solutions to the MOCH equation were studied in Ref. 19. Equation (1.1) is able to be regarded as a modified
Camassa–Holm equation for the reason that if we solve Eq. (1.1), then u will formally satisfy the following shallow water wave form of the
Camassa–Holm equation:10

ut − utxx + 3uux = 2uxuxx + uuxxx − λux.

As far as we know, the globally conservative solutions of the MOCH model (1.1) have not been investigated yet. Therefore, in this paper,
we aim to study the globally conservative solutions of (1.3) based on the idea of Bressan and Constantin3 in proving the globally conservative
solutions to the Camassa–Holm equation.

Before providing our main results in this paper, let us first introduce some definitions of the globally conservative solutions for
(1.1) and (1.3).

Definition 1.1. Let γ̄ ∈ L2
(R). We say γ(t, x) ∈ L∞(R+; L2

(R)) is a globally conservative solution to the Cauchy problem (1.1) if γ(t, x)
satisfies the following equality:

∫R+∫R
(γψt + (γ∂xG−1γ +

1
2λ
γG−1γ2

)ψx)(t, x)dxdt = −∫R+∫R
((

γ2

2
+ λ∂xG−1γ +

1
2

G−1γ2
)ψ)(t, x)dxdt − ∫R

γ̄(x)ψ(0, x)dx

for all ψ ∈ C∞0 (R+;D(R)). Moreover, quantities ∥γ∥L2 are conserved in time.

Definition 1.2. Let m̄ ∈ H1
(R). We say that m(t, x) ∈ L∞(R+; H1

(R)) is a globally conservative solution to the Cauchy problem (1.3) if
the map t → m(t, ⋅) is Lipschitz continuous from [t1, t2] to L2

(R) for any [t1, t2] ⊂ R+ and m(t, x) satisfies the following equality:

mt = −umx +mu −G−1
(umx − um) − ∂xG−1

(umx − um) +
1
2
(−m2

+G−1m2
x + ∂xG−1m2

x)

+ λ∂xG−1m +
1
2
((∂x − 1)−1G−1m2

x −G−1m2
) (1.5)

in L2
(R) for almost every t ∈ R+ together with the initial data (1.4). Moreover, quantities ∥m∥H1 are conserved in time.

The main theorem of this paper is as follows.

Theorem 1.3. Let m̄(x) ∈ H1
(R). Then, equation (1.3) has a globally conservative solution in the sense of Definition 1.2.

Corollary 1.4. Let γ̄(x) ∈ L2
(R). Then, problem (1.1) has a globally conservative solution in the sense of Definition 1.1.

The rest of our paper is organized as follows. In Sec. II, we present conservation laws for the original equation, which is derived from the
MOCH equation. In Sec. III, we introduce some new variables and deduce an equivalent semi-linear system under new variables. Then, we
establish the global solutions to the semi-linear system. Finally, back to the original variables, we construct globally conservative solutions m
to the original equation (1.3). We can easily deduce that γ = (∂x − 1)m is a globally conservative solution to Eq. (1.1).
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II. THE ORIGINAL EQUATION
Let us rewrite Eq. (1.3) as follows:

mt + umx = F, (2.1)

F = mu − P4 − P4x +
1
2
(−m2

+ P3 + P3x) + λP1x +
1
2
(P5 + P5x − P2), (2.2)

where Pi (i = 1, . . . , 5) are defined by the following convolutions:

P1 = G−1m = p ∗m, P2 = p ∗m2, P3 = p ∗m2
x,

u = m − P1x + P1 +
1

2λ
(P2 + P3 − P2x),

P4 = p ∗ (umx − um), P5 = p ∗ P3,

with p(x) = − 1
2 e−∣x∣. For smooth solutions γ ∈ C∞0 (R), we first present conservation law for Eq. (1.1). Due to uxx − u = γx +

γ2

2λ , multiplying
(1.1) by γ, and integrating by parts, we arrive at

1
2

d
dt∫R

γ2dx = ∫R
λγ(uxx − γx) − γγxu − γ2uxdx

= ∫R
− λγxux − γ2ux − γγxudx

= ∫R
uux − uxuxx −

1
2
γ2ux − γγxudx

= 0.

If m ∈ C∞0 (R), then we have γ ∈ C∞0 (R). Using the fact that ∥γ∥L2 = ∥m∥H1 yields the following quantity:

E(t) ∶= ∫R
m2
(t, x) +m2

x(t, x)dx, (2.3)

which are not dependent on time.
Since Pi and Pix (1 ≤ i ≤ 5) are given by convolutions and p(x) ∈ L1

∩ L∞, the conservation of the total energy (2.3) leads to

∥Pi∥L∞ , ∥Pix∥L∞ ≤ C(E(0)).

III. AN EQUIVALENT SEMI-LINEAR SYSTEM AND GLOBAL SOLUTIONS OF THE SYSTEM
A. An equivalent semi-linear system

Let m̄ ∈ H1
(R). We introduce a new variable ξ ∈ R and define the nondecreasing map ξ ↦ ȳ(ξ) via the following equation:

∫

ȳ(ξ)

0
(1 + m̄2

x)dx = ξ. (3.1)

For t ∈ [0, T], we assume that the solution m to (2.1) is Lipschitz continuous. Under the new variable (t, ξ), let us now derive a system
equivalent to Eq. (2.1). We define the characteristic y(t, ⋅) as

yt(t, ξ) = u(t, y(t, ξ)), y(0, ξ) = ȳ(ξ). (3.2)

Introduce the new variables

m(t, ξ) = m(t, y(t, ξ)), v(t, ξ) = 2 arctan mx, q(t, ξ) = (1 +m2
x)yξ ,

Pi(t, ξ) = Pi(t, y(t, ξ)), Pix(t, ξ) = Pix(t, y(t, ξ)), 1 ≤ i ≤ 5,
u(t, ξ) = u(t, y(t, ξ)), F(t, ξ) = F(t, y(t, ξ)),

with mx = mx(t, y(t, ξ)). From (3.1), we have
q(0, ξ) ≡ 1.

We can prove the following equalities:

1
1 +m2

x
= cos2 v

2
,

mx

1 +m2
x
=

1
2

sin v,
m2

x

1 +m2
x
= sin2 v

2
, yξ = q cos2 v

2
. (3.3)

J. Math. Phys. 62, 091506 (2021); doi: 10.1063/5.0048245 62, 091506-3
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Using (3.3), we obtain expressions for Pi and Pix in terms of the new variable ξ, namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = −
1
2∫

+∞

−∞
e−∣∫

ξ
ξ′ q cos2 v

2 ds∣mq cos2 v

2
dξ′,

P1x = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣mq cos2 v

2
dξ′,

P2 = −
1
2∫

∞

−∞
e−∣∫

ξ
ξ′ q cos2 v

2 ds∣m2 q cos2 v

2
dξ′,

P2x = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣m2 q cos2 v

2
dξ′,

P3 = −
1
2∫

+∞

−∞
e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ q sin2 v

2
dξ′,

P3x = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ q sin2 v

2
dξ′,

P4 = −
1
2∫

+∞

−∞
e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ q
2

u sin v −muq cos2 v

2
dξ′,

P4x = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ q
2

u sin v −muq cos2 v

2
dξ′,

P5 = −
1
2∫

+∞

−∞
e−∣∫

ξ
ξ′ q cos2 v

2 ds∣P3q cos2 v

2
dξ′,

P5x = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣P3q cos2 v

2
dξ′,

(3.4)

where u(t, ξ) = (m − P1x + P1 +
1

2λ(P2 + P3 − P2x))(t, ξ). Owing to the characteristic (3.2) and the first equation of (2.1), we can deduce that

mt(t, ξ) = F(t, ξ),

with

F(t, ξ) = (mu − P4 − P4x +
1
2
(−m2

+ P3 + P3x) + λP1x +
1
2
(P5 + P5x − P2))(t, ξ). (3.5)

Similarly, using (3.3) and (3.2) and the definitions of v and q, we obtain

vt(t, ξ) = 2 cos2 v

2
H −N sin v − sin2 v

2
,

qt(t, ξ) =
1
2

q sin v(2H + 1) + qN cos v,

where N(t, ξ) = (−m − P1 − P1x +
1

2λ(−P2 + P3x + P2x −m2
))(t, ξ) and H = F +mN + λu + m2

2 .

B. Global solutions of the semi-linear system
In this section, we turn our attention to the problem of finding a global solution to system (3.6). Let m̄ ∈ H1

(R). We rewrite the
corresponding Cauchy problem for the variables (m, v, q) in the form

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

mt = F,

vt = 2 cos2 v

2
H −N sin v − sin2 v

2
,

qt =
1
2

q sin v(2H + 1) + qN cos v

(3.6)

and
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

m(0, ξ) = m̄(ȳ(ξ)),
v(0, ξ) = 2 arctan m̄x(ȳ(ξ)),
q(0, ξ) = 1.

(3.7)

Here, F, u, N, H are given in Sec. II. We consider (3.6) as an O.D.E. in

X = H1
(R) × L∞(R) ∩ L2

(R) × L∞(R),

J. Math. Phys. 62, 091506 (2021); doi: 10.1063/5.0048245 62, 091506-4
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with ∥(m, v, q)∥X = ∥m∥H1 + ∥v∥L∞ + ∥v∥L2 + ∥q∥L∞ .

Theorem 3.1. Let m̄ ∈ H1
(R). For any t ∈ R, the semi-linear system [(3.6) and (3.7)] has a unique solution.

Proof. Step 1 (Local existence)
It is obvious that the initial data belong to X. According to the theory of O.D.E. in Banach spaces, in order to prove the local well-

posedness, we need to prove that the right-hand side of (3.6) is Lipschitz continuous on Ω, which is defined as

Ω = {(m, v, q) ∈ X : ∥m∥H1 ≤ α, ∥v∥L∞ ≤
3π
2

, ∥v∥L2 ≤ β, q ∈ [q−, q+], a.e.x ∈ R}

for α,β, q−, q+ > 0. According to Ref. 3, we easily get that maps

m2, P2, P2x, P3, P3x

are Lipschitz continuous from Ω to H1. It is easy to check that maps

cos2 v

2
, sin v, sin2 v

2
, q sin v, q cos v

are Lipschitz continuous from Ω to L2
∩ L∞. Then, we are left to prove that the maps

(m, v, q)↦ P1, P1x, P4, P4x, P5, P5x

are Lipschitz continous from Ω to H1. According to Ref. 3, we obtain

meas{ξ ∈ R : ∣
v(ξ)

2
∣ ≥

π
4
} ≤ 18∫

{ξ∈R:18 sin2 v(ξ)
2 ≥1}

sin2 v(ξ)
2

dξ ≤
9
2
β2.

If ξ1 < ξ2, then we have

∫

ξ2

ξ1

q cos2 v

2
dξ ≥ ∫

{ξ∈[ξ1 ,ξ2]:∣
v(ξ)

2 ∣≤
π
4 }

q−

2
dξ ≥ q−[

ξ2 − ξ1

2
−

9
2
β2
].

Let us introduce a function Γ ∈ L1
∩ L∞,

Γ(ξ) = min{1, e−
9
2 β

2q−− ∣ξ∣2 q−
},

with ∥Γ∥L1 = 18β2
+ 4

q− . First, we need to prove that P1, P1x, P4, P4x, P5, P5x ∈ H1. For simplicity, we will concentrate on the estimates for
P1x, P4x, P5x. We can estimate the other terms in the same way. According to (3.4), we have

∣P1x(ξ)∣ ≤
q+

2
Γ ∗ ∣m cos2 v(ξ)

2
∣(ξ),

∣P4x(ξ)∣ ≤
q+

2
Γ ∗ ∣

1
2

sin vu −mu cos2 v(ξ)
2
∣(ξ),

∣P5x(ξ)∣ ≤
q+

2
Γ ∗ ∣P3 cos2 v(ξ)

2
∣(ξ).

Using Young’s inequality, we get

∥P1x(ξ)∥L2 ≤
q+

2
∥Γ∥L1∥m∥L2 <∞,

∥P4x(ξ)∥L2 ≤
q+

2
∥Γ∥L1(∥v∥L2 + ∥m∥L2)∥u∥L∞ ,

∥P5x(ξ)∥L2 ≤
q+

2
∥Γ∥L1∥P3∥L2 <∞.
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We need to prove ∂ξP1,∂ξP1x ∈ L2; then, we have u ∈ H1, which implies u ∈ L∞. For simplicity, we only concentrate on the estimates for ∂ξPix.
From (3.4), we deduce that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξP1x = qm cos2 v

2
+ qP1 cos2 v

2
,

∂ξP4x = qu(
1
2

sin v −m cos2 v

2
) + qP4 cos2 v

2
,

∂ξP5x = qP3 cos2 v

2
+ qP5 cos2 v

2
.

(3.8)

We thus get

∥∂ξP1x(ξ)∥L2 ≤ q+(∥P1∥L2 + ∥m∥L2) <∞,

∥∂ξP4x(ξ)∥L2 ≤ q+(∥P4∥L2 + ∥u∥L2 + ∥u∥L2∥m∥L∞),

∥∂ξP5x(ξ)∥L2 ≤ q+(∥P5∥L2 + ∥P3∥L2) <∞.

Hence, P1x, P5x ∈ H1; then, we obtain that u ∈ L∞. From the above equality, we have P4x ∈ H1.
Second, we need to show that all partial derivatives are uniformly bounded from Ω to H1. In the following, we only consider ∂P1x

∂m ; all the
other cases can be estimated in the same way. More details can refer to Ref. 3.

For (m, v, q) ∈ Ω, we can define the linear operator ∂P1x
∂m : H1

↦ L2 as

[
∂P1x

∂m
⋅ m̂] = −

1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ q cos2 v

2
⋅ m̂dξ′,

with m̂ ∈ H1. We can deduce that

∥
∂P1x

∂m
⋅ m̂∥

L2
≤ ∥Γ∥L1 q+∥m̂∥L2 ,

which implies that

∥
∂P1x

∂m
∥ ≤ ∥Γ∥L1 q+.

Using (3.8), we can define the linear operator ∂(∂ξP1x)

∂m : H1
↦ L2 as

[
∂(∂ξP1x)

∂m
⋅ m̂] = q cos2 v(ξ)

2
(ξ) ⋅ m̂

+
1
2

q cos2 v(ξ)
2
(ξ)(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ q cos2 v

2 ds∣ sign(ξ′ − ξ)q cos2 v

2
⋅ m̂dξ′.

Therefore,

∥
∂(∂ξP1x)

∂m
⋅ m̂∥

L2
≤ q+∥m̂∥L2 + (q+)2

∥Γ∥L1∥m̂∥L2 ,

which implies that

∥
∂(∂ξP1x)

∂m
∥ ≤ q+ + (q+)2

∥Γ∥L1 .

Finally, there exists time T > 0 so that the semi-linear system [(3.6) and (3.7)] has a unique solution in C([0, T]; X).
Step 2 (Extension to a global solution)
We shall extend the local solution constructed above to a global solution if

∥m∥H1 + ∥v∥L2 + ∥v∥L∞ + ∥q∥L∞ + ∥
1
q
∥

L∞
(3.9)

is uniformly bounded [0, T] with any T > 0. The proof is actually relying on the conservation law (2.3) and a contradiction argument. We will
re-derive the conservation law under the new variables. We first claim that

mξ =
q
2

sin v. (3.10)
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In fact, (3.6) yields

(
q
2

sin v)
t
=

qt

2
sin v +

q
2
vt cos v

=
q
4

sin2 v(2H + 1) +
q
2

N cos v sin v +
q
2

cos v(2H cos2 v

2
−N sin v − sin2 v

2
)

= 2H(
q
4

sin2 v +
q
2

cos v cos2 v

2
) +

q
4

sin2 v −
q
2

cos v sin2 v

2

= qH cos2 v

2
+

q
2

sin2 v

2
.

To calculate mξt = Fξ , we will give some basic calculations result about Pi, Pix, which is similar to (3.8),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξPi = qPix cos2 v

2
,

∂ξP2x = qP2 cos2 v

2
+ qm2 cos2 v

2
,

∂ξP3x = qP3 cos2 v

2
+ q sin2 v

2
.

(3.11)

Since uξ = mξ + qN cos2 v
2 , then we get

mξt = Fξ

= mξu +mmξ +mqN cos2 v

2
− q cos2 v

2
(P4 + P4x) −

q
2

u sin v +mqu cos2 v

2
−mmξ +

q
2

sin2 v

2

+
q
2

cos2 v

2
(P3 + P3x) + λ(mq cos2 v

2
+ qP1 cos2 v

2
) +

q
2

P5 cos2 v

2
+

q
2

P3 cos2 v

2
−

q
2

P2x cos2 v

2

= qH cos2 v

2
+

q
2

sin2 v

2
+ (mξ −

q
2

sin v)u.

Since (mξ −
q
2 sin v)t = (mξ −

q
2 sin v)u and (mξ −

q
2 sin v)(t, 0) = 0, then we complete the proof of (3.10). Next, we infer that

E(t) = ∫R
(m2 cos2 v

2
+ sin2 v

2
)qdξ = E(0) = E0, (3.12)

which is exactly the expression for the conservation law (2.3) in the new variable. We deduce that u +N = 1
2λ(P3 + P3x −m2

) and
Nξ =

1
2λ(q sin2 v

2 + q cos2 v
2 (P3 + P3x)) −

1
λmmξ −mξ − qN cos2 v

2 . Then, we can prove that

d
dt

E(t) = ∫R
qt(m2 cos2 v

2
+ sin2 v

2
) + 2mqF cos2 v

2
+ qvt(−

m2

2
sin v +

1
2

sin v)dξ

= ∫R
− 2mHξ + 2mqF cos2 v

2
+ qm2 N cos2 v

2
− qN sin2 v

2
+m2mξdξ

= ∫R
− 2mFξ −m2Nξ − 2λmuξ + qm2 N cos2 v

2
− qN sin2 v

2
+ 2mqF cos2 v

2
dξ

= ∫R
− 2mquλ cos2 v

2
− qm3 cos2 v

2
− 2mqNλ cos2 v

2
− qN sin2 v

2
−mq sin2 v

2
−

1
2λ

qm2
(cos2 v

2
(P3 + P3x) + sin2 v

2
)dξ

= ∫R
− (P3 + P3x)mq cos2 v

2
− qN sin2 v

2
−mq sin2 v

2
−

1
2λ

qm2
(cos2 v

2
(P3 + P3x) + sin2 v

2
)dξ

= ∫R
(−P1 + P1x)q sin2 v

2
− qN sin2 v

2
−mq sin2 v

2
+

1
2λ

q sin2 v

2
(−P2 + P2x) −

1
2λ

qm2 sin2 v

2
dξ

= ∫R
−

1
2λ

qP3x sin2 v

2
dξ.

Set I = ∫R −
1

2λqP3x sin2 v
2 dξ. Applying Fubini’s theorem, we have

I = ∫R
−

1
2λ

q(ξ)sin2 v

2
(ξ)∫R

e−∣∫
ξ
ξ′ cos2 v

2 qds∣ q(ξ′)sin2 v

2
(ξ′) sign(ξ′ − ξ)dξ′dξ = −I.
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It means that d
dt E(t) = I = 0; we complete the proof of (3.12). As long as the solution is defined, using (3.10) and (3.12), we have

sup
ξ∈R
∣m2
(t, ξ)∣ ≤ 2∫R

∣mmξ ∣dξ ≤ 2∫R
∣m∥ cos

v

2
sin

v

2
∣qdξ ≤ E0, (3.13)

which implies the uniform boundedness of m. From (3.12), we deduce that

∥P2∥L∞ , ∥P2x∥L∞ , ∥P3∥L∞ , ∥P3x∥L∞ ≤
1
2

E0. (3.14)

However, we cannot get L∞ boundedness of other terms from (3.12), for example, P1. Using variable transformations and contradiction
argument will overcome the difficulty. Here are the variable transformation lemma and corollary, which can be referenced to Ref. 25.

Lemma 3.2. If g(x) is differentiable on a.e.[a, b], f (x) ∈ L1
[c, d], and g([a, b]) ⊂ [c, d], then we have that F(g(t)) is absolutely

continuous on [a, b] if and only if f (g(t))g′(t) ∈ L1
[c, d] and ∫

g(b)
g(a) f (x)dx = ∫

b
a f (g(t))g′(t)dt, with F(x) = ∫

x
c f (t)dt.

Corollary 3.3. Let g(x) be absolutely continuous on [a, b], f (x) ∈ L1
[c, d], and g([a, b]) ⊂ [c, d]. If g(x) is monotonous or f (x)

∈ L∞[c, d], then we get ∫
g(b)

g(a) f (x)dx = ∫
b

a f (g(t))g′(t)dt.

First, we define yt = u(t, ξ), with y(0, ξ) = ȳ(ξ). From (3.1), we obtain that y(0, ξ) ∈ L∞loc is strictly monotonous and

∣ȳ(ξ1) − ȳ(ξ2)∣ = ∣∫

ȳ(ξ1)

ȳ(ξ2)
1dx∣ ≤ ∣∫

ȳ(ξ1)

ȳ(ξ2)
1 + m̄2

xdx∣ ≤ ∣ξ1 − ξ2∣.

Then, we can know that y(0, ξ) is a local Lipschitz continuous function. From step 1, we have deduced that u(t, ξ) is Lipschitz continuous as
it maps from Ω to H1. Using (3.2), there exists T ∈ (0,∞) such that y(t, ξ) ∈ H1

loc for t ∈ [0, T). It is obvious that y(t, ξ) is a local absolutely
continuous function for t ∈ [0, T). The key point is to prove that T is any positive number.

Second, we claim that

yξ = q cos2 v

2
. (3.15)

According to (3.8) and (3.11), we get

∂tyξ = uξ = mξ + qN cos2 v

2
.

In fact, (3.6) and (3.10) yield

(q cos2 v

2
)

t
= qt cos2 v

2
− qvt cos

v

2
sin

v

2

= (
q
2

sin v(2H + 1) + qN cos v)cos2 v

2
−

q
2

sin v(2H cos2 v

2
−N sin v − sin2 v

2
)

=
q
2

sin v(cos2 v

2
+N sin v + sin2 v

2
) + qN cos v cos2 v

2

= mξ + qN cos2 v

2
.

Since (yξ − q cos2 v
2 )(t, 0) = 0, then (3.15) remains valid for all times t ∈ [0, T).

Third, for t ∈ [0, T) and [a, b] ⊂ R, using corollary (3.3), we have

∥
1
2∫

b

a
e−∣∫

ξ
ξ′ cos2 v

2 qds∣
∣m∣cos2 v

2
qdξ′∥

L∞
≤

1
2
∥m∥L∞∥∫

b

a
e−∣y(ξ)−y(ξ′)∣yξdξ

′
∥

L∞
(3.16)

≤
1
2
∥m∥L∞∫

+∞

−∞
e−∣s∣ds. (3.17)

When a→ −∞ and b→ +∞, the left-hand side of (3.16) is monotonous. According to the monotone convergence theorem, we deduce

that there exists a limit of the left-hand side for (3.16). Then, we know that ∥P1∥L∞ exists and ∥P1∥L∞ ≤
1
2∥m∥L∞∫

+∞

−∞
e−∣s∣ds ≤ CE

1
2
0 .
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The estimate for ∥P1x∥L∞ is similar. Now, we can easily get that ∥u∥L∞ , ∥N∥L∞ ≤ C(E
1
2
0 + E0) and ∥P5∥L∞ , ∥P5x∥L∞ ≤ CE0. Since (3.12), then we

have

∥P4∥L∞ , ∥P4x∥L∞ ≤ C∥u∥L∞∥∫

+∞

−∞
e−∣∫

ξ
ξ′ cos2 v

2 qds∣
(sin2 v

2
q + (∣m∣ + 1)cos2 v

2
q)dξ′∥L∞

≤ C(E
1
2
0 + E0)(E0 + E

1
2
0 + 1)

≤ C(E
1
2
0 + E0 + E

3
2
0 + E2

0).

Therefore, ∥F∥L∞ , ∥H∥L∞ ≤ C(E
1
2
0 + E0 + E

3
2
0 + E2

0). Using (3.6), we get

∣qt ∣ ≤ C(E
1
2
0 + E0 + E

3
2
0 + E2

0)q,

e
−C(E

1
2

0 +E0+E
3
2

0 +E2
0)t
≤ q ≤ e

C(E
1
2

0 +E0+E
3
2

0 +E2
0)t

(3.18)

for t ∈ [0, T). Using (3.15), then we have

∥yξ∥L∞ ≤ ∥q∥L∞ ≤ e
C(E

1
2

0 +E0+E
3
2

0 +E2
0)T

.

Using the uniform bound ∥u∥L∞ ≤ C(E
1
2
0 + E0), we obtain the estimate

ȳ(ξ) − C(E
1
2
0 + E0)t ≤ y(t, ξ) ≤ ȳ(ξ) + C(E

1
2
0 + E0)t. (3.19)

Therefore, y(t, ξ) ∈ L∞loc for t ∈ [0, T]; then, we have y(t, ξ) ∈ H1
loc for t ∈ [0, T].

Finally, using contradiction argument, we can see that T in the above results cannot have a upper bound, which means that the above
results are valid for every t ∈ R.

According to (3.6), we obtain
∥v∥L∞ ≤ eBt ,

for B = B(E0) > 0. Using (3.6), we can easily deduce that

d
dt
∥m∥2

L2 = ∫R
2mFdξ ≤ 2∥m∥L2∥F∥L2 ,

with

∥F∥L2 ≤ C(∥m∥L2∥u∥L∞ + ∥P4 + P4x∥L2 + ∥P3 + P3x∥L2 + ∥P5 + P5x∥L2 + ∥P2∥L2 + ∥P1x∥L2 + ∥m∥L2∥m∥L∞).

To estimate ∥m∥L2 , we need to estimate the L2 norms of Pi and Pix. Let κ be the right-hand side of (3.18). Then, we have κ−1
≤ q(t) ≤ κ and

∥P2∥L2 + ∥P2x∥L2 + ∥P3∥L2 + ∥P3x∥L2 ≤ C∥Γ ∗ (q sin2 v

2
+m2 q cos2 v

2
)∥L2 ≤ C∥Γ∥L2 E0,

∥P1∥L2 + ∥P1x∥L2 ≤ C∥Γ ∗ (mq cos2 v

2
)∥L2 ≤ Cκ∥Γ∥L1∥m∥L2 ,

where
Γ(ξ) = min{1, e18κ−1E0−

∣ξ∣
2 κ
−1

}.

Similar to step 1, we can easily deduce that Γ ∈ L1
∩ L∞. Thus, we have

∥P4∥L2 + ∥P4x∥L2 ≤ C∥Γ ∗ (
q
2

u sin v −muq cos2 v

2
)∥L2 ≤ Cκ∥Γ∥L1∥u∥L2(1 + ∥m∥L∞),

∥P5∥L2 + ∥P5x∥L2 ≤ C∥Γ ∗ (P3q cos2 v

2
)∥L2 ≤ Cκ∥Γ∥L1∥P3∥L2 ,
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with
∥u∥L2 ≤ C∥m∥L2(1 + κ∥Γ∥L1) + C∥Γ∥L2 E0.

In a word, we get
d
dt
∥m∥2

L2 ≤ C(E0, κ)(∥m∥2
L2 + ∥m∥L2).

Appling Gronwall’s inequality, we finally have an estimate on ∥m∥L2 . Hence, we get an estimate on ∥Pi∥L2 , ∥Pix∥L2 , ∥u∥L2 , ∥N∥L2 , ∥F∥L2 , and
∥H∥L2 . By the second equation in (3.6), it is now clear that

d
dt
∥v∥2

L2 ≤ 2∥v∥L2∥2H cos2 v

2
−N sin v − sin2 v

2
∥L2

≤ C(E0, κ)(∥v∥2
L2 + ∥v∥L2).

Appling Gronwall’s inequality, we obtain an estimate on ∥v∥L2 . Finally, we only need to get an estimate on ∥mξ∥L2 ,

∥mξ∥
2
L2 = ∥

q
2

sin v∥2
L2 ≤

κ2

4
∥v∥2

L2 .

We thus complete the Proof of Theorem 3.1. ◻

For future use, we give an important property of the above solutions. Let us introduce the set

Φ = {t ≥ 0 : meas{ξ ∈ R : v(t, ξ) = −π} > 0}. (3.20)

We claim that
meas(Φ) = 0. (3.21)

Indeed, if v(t, ξ) = −π, then we have vt = −1 by (3.6). Since ∥H∥L∞ and ∥N∥L∞ is finite for any t ∈ R+, we get vt < −
1
2 whenever cos2 v

2 , sin v < δ
with δ > 0. Since ∥v(t)∥L2 is finite for any t ∈ R+, then we can prove that the map t → v(t, ξ) is absolute continuous. This implies vt = 0 on
a.e. {v(t, ξ) = −π}. Therefore, we get (3.21) by contradiction argument.

IV. GLOBALLY CONSERVATIVE SOLUTIONS FOR THE ORIGINAL EQUATION
In this section, we use the global solutions of system (3.6) to construct globally conservative weak solution to the original equation (1.3)

in the original variables (t, x).

Proof of Theorem 1.3. Given is a global solution (y, m, v, q) to system (3.6). Hence, the map t ↦ y(t, ξ) gives a solution to the following
problem:

yt(t, ξ) = u(t, ξ), y(0, ξ) = ȳ(ξ), (4.1)

where u(t, ξ) = (m − P1x + P1 +
1

2λ(P2 + P3 − P2x))(t, ξ) and Pi, Pix is defined in (3.4). Write

m(t, x) = m(t, ξ) if x = y(t, ξ). (4.2)

We have to explain such that the definition makes sense. Using (3.1) and (3.19), we obtain

lim
ξ→±∞

y(t, ξ) = ±∞.

Since (3.15), we deduce that yξ(t, ξ) ≥ 0 for all t ≥ 0 and a.e. ξ. Therefore, the map ξ ↦ y(t, ξ) is nondecreasing. Moreover, if ξ1 < ξ2 but
y(t, ξ1) = y(t, ξ2), we have

0 = ∫
ξ2

ξ1

yξ(t,η)dη = ∫
ξ2

ξ1

(q cos2 v

2
)(t,η)dη.

Then, we get cos v
2 = 0. By (3.10), we have

m(t, ξ2) −m(t, ξ1) = ∫

ξ2

ξ1

(
q
2

sin v)(t,η)dη = 0.

Hence, the map (t, x)↦m(t, x) is well-defined for any t ≥ 0 and x ∈ R.
From definition (4.2), we give

mx(t, y(t, ξ)) =
sin v(t, ξ)

1 + cos v(t, ξ)
if x = y(t, ξ), cos v(t, ξ) ≠ −1. (4.3)
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Changing the variables and applying (3.12) and (4.3), we find that

E(t) = ∫R
m2
(t, x) +m2

x(t, x)dx = ∫
{cos v≠−1}

(m2
(t, y(t, ξ)) +m2

x(t, y(t, ξ)))yξdξ

= ∫
{cos v≠−1}

(m2 cos2 v

2
+ sin2 v

2
)q(t, ξ)dξ ≤ E0. (4.4)

By H1
↪ C0, 1

2 , we get m(t, ⋅) ∈ C0, 1
2 for any fixed t ∈ R. According to the first equation in (3.6) and the bound for F, it follows that the

map t ↦ m(t, y(t)) is uniformly Lipschitz continuous along every characteristic curve t ↦ y(t). Therefore, m = m(t, x) is globally Hölder
continuous.

Now, we claim that the map t ↦ m(t) is Lipschitz continuous with values in L2. Considering any time interval [τ, τ + h] and given x, we
choose ξ ∈ R such that the function t ↦ y(t, ξ) passes through (τ, x). Using (3.6) and (3.13), we obtain

∣m(τ + h, x) −m(τ, x)∣ ≤ ∣m(τ + h, x) −m(τ + h, y(τ + h, ξ))∣ + ∣m(τ + h, y(τ + h, ξ)) −m(τ, x)∣

≤ sup
∣y−x∣≤E

1
2

0 h

∣m(τ + h, y) −m(τ + h, x)∣ + ∫
τ+h

τ
∣F∣dt.

Integrating over R. By (4.4) and the bound for ∥F(t)∥L2 , we get

∥m(τ + h, x) −m(τ, x)∥2
L2 ≤ 2∫R

⎛

⎝
∫

x+E
1
2

0

x−E
1
2

0

∣mx(τ + h, y)∣dy
⎞

⎠

2

dx + 2h∥q(τ)∥L∞∫

τ+h

τ
∥F(t)∥2

L2 dt

≤ 8E0h2
∥mx(τ + h)∥2

L2 + 2h∥q(τ)∥L∞∫

τ+h

τ
∥F(t)∥2

L2 dt

≤ Ch2.

We thus complete the proof of the claim. Using the fact that L2 is a reflexive space, we know that the left-hand side of (1.5) is a well-defined
function and the right-hand side of (1.5) also lies in L2 for a.e.t ∈ R. By (3.6), we have

d
dt

m(t, y(t, ξ)) = F(t, ξ),

where F is the function defined at (3.5). On the other hand, for every t ∉ Φ, we deduce that the map t ↦ x(t, ξ) is one to one. Using (3.10) and
(3.15), we get

P1x(t, ξ) = −
1
2
(∫

+∞

ξ
− ∫

ξ

−∞
)e−∣∫

ξ
ξ′ cos2 v

2 qds∣m cos2 v

2
qdξ′

=
1
2
(∫

+∞

y(t,ξ)
− ∫

y(t,ξ)

−∞
)e−∣y(t,ξ)−x∣m(t, x)dx

= P1x(t, y(t, ξ))

for every ξ ∈ R. Similarly, we deduce that F(t, ξ) = F(t, y(t, ξ)). According to (3.21), we know that Eq. (1.5) is satisfied for almost every t ∈ R.
Using (3.12) and (4.4), we can present the conservation property. This completes the Proof of Theorem 1.3.
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