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Abstract: In this study, a fast gradient-based compressive sensing (FGB-CS) for noise image and video is proposed. Given a noise
image or video, the authors first make it sparse by orthogonal transformation, and then reconstruct it by solving a convex
optimisation problem with a novel gradient-based method. The main contribution is twofold. Firstly, they deal with the noise
signal reconstruction as a convex minimisation problem, and propose a new compressive sensing based on gradient-based
method for noise image and video. Secondly, to improve the computational efficiency of gradient-based compressive sensing,
they formulate the convex optimisation of noise signal reconstruction under Lipschitz gradient and replace the iteration
parameter by the Lipschitz constant. With this strategy, the convergence of our FGB-CS is reduced from O(1/k) to O(1/k2).
Experimental results indicate that their FGB-CS method is able to achieve better performance than several classical algorithms.

1 Introduction

The well-known Nyquist/Shannon sampling theorem that the
sampling rate must be at least twice the maximum frequency of
the signal is a golden rule used in visual and audio electronics,
medical imaging devices and so on. Compressive sensing (CS) is a
sampling paradigm that provides the signal compression at a rate
significantly lower than the Nyquist rate [1, 2].

CS has successfully been applied in a wide variety of applications
in recent years, including photography [3], shortwave infrared
cameras, optical system research [4], audio and music processing
[5], MRI [6, 7] and so on. For example, Jorgensen et al. [8]
developed an iterative image reconstruction method in X-ray
computed tomography based on CS. Bhattacharya et al. [9]
proposed a fast encoding method for synthetic aperture radar raw
data compressing and reconstruction based on CS theory. Although
CS achieves good application in most cases, there are still many
difficulties for a noise signal processing based on CS theory [10, 11].

In this paper, we develop a fast gradient-based CS (FGB-CS)
method for noise images and videos. Specially, we consider the
CS for noise image and video as a convex optimisation problem,
and present a gradient-based CS method to solve it. Moreover, to
reduce the computational cost, we replace the traditional iteration
parameter by Lipschitz constant. Experimental results show that
our method outperforms several classical algorithms both in
computational cost and performance.

The rest of this paper is organised as follows. In Section 2, we
introduce some related works on CS. CS theory and gradient-based
methods for convex optimisation problems are described in Section
3. In Section 4, we present the FGB-CS method for noise images
and videos reconstruction. Experimental results are shown in
Section 5. Finally, we conclude our paper in Section 6.

2 Related work

The major challenge in CS is to approximate a signal given a vector
of samples. In recent years, many methods have been proposed
which can be roughly divided into six categories:

(i) Convex optimisation algorithms: These techniques solve a convex
problem which is used to approximate the target signal, including

basis pursuit [12], greedy basis pursuit [13], basis pursuit
de-noising [14], projected gradient method [15], least absolute
shrinkage and selection operator [16] and least angle regression
[17]. This type of algorithms solves a convex optimisation
problem through linear programming to obtain reconstruction. The
number of measurements in these algorithms required for exact
reconstruction is small but the algorithms are complex in calculation.
(ii) Greedy iterative algorithms: These methods build up an
approximation by making locally optimal choices step by step. The
main advantages of these methods contain low implementation cost
and high precision recovery. However, when the signal is not very
sparse, recovery becomes costly. Examples include matching pursuit
(MP), orthogonal matching pursuit (OMP) [18], regularised OMP
[19], stagewise OMP [4], compressive sampling matching pursuit
(CoSaMP) [20] and subspace pursuit (SP) [21].
(iii) Iterative thresholding algorithms: Iterative approaches for CS
recovery problem are faster than the convex optimisation method.
For this type of algorithms, correct measurements are recovered by
soft or hard thresholding [16, 22] starting from noise measurements
given the signal is sparse. The thresholding function depends upon
the number of iterations and the problem configurations. Message
passing (MP) algorithm [23] is an important modification of
iterative thresholding algorithms in which basic variables (messages)
are associated with directed graph edges. Expander matching
pursuits [24], sparse matching pursuit [25] and sequential sparse
matching pursuits [26], belief propagation [27] belong to this type.
These approaches have many advantages such as low computational
complexity and easy implementation in parallel or distributed manner.
(iv) Combinatorial/sublinear algorithms: This type of algorithms
recovers sparse signal through group testing. They are extremely
fast and efficient, as compared to convex relaxation or greedy
algorithms but require specific pattern in the measurements.
Representative algorithms are Fourier sampling algorithm,
chaining pursuits, heavy hitters on steroids [28] and so on.
(v) Non-convex minimisation algorithms: Non-convex local
minimisation techniques recover CS signals from far less
measurements by replacing l1-norm and lp-norm, where p≤ 1 [29].
There are many algorithms proposed in the literature that use this
techniques such as focal underdetermined system solution [30],
iterative re-weighted least squares [31], Monte-Carlo-based
algorithms [5], sparse Bayesian learning algorithms [32] and so
on. Non-convex optimisation is mostly utilised in medical imaging
tomography, network state inference and streaming data reduction.
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(vi) Bregman iterative algorithms: When is applied to CS problems,
the iterative approach using Bregman distance regularisation
achieves reconstruction in four to six iterations [33]. These
algorithms provide a simple and efficient way of solving l1
minimisation problem. The computational speed of these
algorithms is particularly appealing compared to that available
with other existing algorithms.

Different from all the above methods, we propose a FGB-CS
method for noise images and videos.

3 CS and gradient-based method

3.1 CS for noise signal

CS is based on the assumption of the sparse property of signal and
incoherency between the bases of sparse domain and the bases of
measurement vectors. It has three major steps: the construction of
k-sparse representation, the compression and the reconstruction.
The first step is the construction of k-sparse representation, where
k is the number of the non-zero entries of sparse signal. Most
natural signal can be made sparse by applying orthogonal
transforms such as wavelet transform, fast Fourier transform and
discrete cosine transform (DCT) [11]. This step is represented as

s = CTx (1)

where x is an N-dimensional non-sparse signal; s is a weighted
N-dimensional vector (sparse signal with k non-zero elements) and
Ψ is an N × N orthogonal basis matrix. The second step is
compression. In this step, the random measurement matrix is
applied to the sparse signal according to the following equation

y = Fs = FCTx (2)

where Φ is anM ×N random measurement matrix (M <N ). LetM be
the number of measurements (the row dimension of y) sufficient for
high probability of successful reconstruction, and M is determined
by

M ≥= Cu2(F, C)k logN (3)

For some positive constant C, u2(Φ, Ψ) is the coherence between Φ
and Ψ, and defined by

u(F, C) =
���
N

√
max
i,j

|kfi, cjl| (4)

If the elements in f and c are correlated, the coherence is large.
Otherwise, it is small. From linear algebra, it is known that
u(F, C) [ [1,

���
N

√
].

In the measurement process, the noise may occur. The noise is
added into the compressed measurement vector as follows

y = Fs+ noise (5)

where noise is an M-dimensional vector. As expected, signal x in (2)
may be estimated from noise measurement y by solving the
following minimisation problem

minimise ‖x‖1
subject to ‖FCTx− y‖2 ≤ 1

(6)

where ε is a bound of the amount of noise in the data. The robustness

of the CS heavily relies on a notion called restricted isometry
property (RIP) [11]. RIP is defined as follows

(1− dk ) ‖s‖22 ≤‖ Fs ‖22 ≤ (1+ dk )‖s‖22 (7)

where ‖ ‖22 defines the l2 norm, and δk is the k-restricted isometry
constant of a matrix. RIP is used to ensure that all subsets of k
columns taken from Φ are nearly orthogonal. It should be noted
that Φ has more column than rows; thus Φ cannot be exactly
orthogonal.

3.2 Gradient-based method for convex optimisation
problems

The convex optimisation problem we want to deal with is one of the
form

min{g(x):x [ Rn} (8)

One of the simplest methods for solving (8) is the gradient-based
algorithm which generates a sequence xk via

x0 [ Rn, xk = xk−1 − tk∇g(xk−1) (9)

where tk > 0 is a suitable step size. It is very well known that the
gradient iteration (9) can be viewed as a proximal regularisation
[34] of the linearised function g at xk−1, and written equivalently as

xk = argmin
x

g(xk−1)+ k(x− xk−1), ∇g(xk−1)l+
1

2tk
‖ x− xk−1 ‖22

}{

(10)

Applying the same idea to the l1 regularised problem

min {g(xk−1)+ l ‖ x ‖1:x [ Rn} (11)

leads to the iterative scheme (see (12))

Ignoring constant terms yields

xk = argmin
x

1

2tk
‖x− (xk−1 ‖22 −tk∇(xk−1))‖22 +l ‖x‖1

{ }
(13)

For (13), the convergence property has been developed and analysed
by many researches through various techniques. But unfortunately,
those computations are complex and the convergence for xk is O
(1/k) [34]. Next, we focus on using gradient-based method to
solve the problem of noise signal reconstruction, and improving
the non-asymptotic global rate of convergence.

4 Noise image and video reconstruction based
on CS

4.1 Noise signal optimisation with Lipschitz gradient

For a noise signal in (5), let us think about an objective function
F(x) = g(x) + n(x), which is a composite type convex function. In
our method, (6) is more natural to study the closely related problem

minimise ‖FCTx− y‖22 +l‖x‖1 (14)

In order to improve the efficiency of signal reconstruction, we think

xk = argmin g(xk−1)+ kx− xk−1l, ∇g(xk−1)
x

+ 1

2tk
‖ x− xk−1 ‖22 +l ‖ x ‖1

}{
(12)
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about the Lipschitz gradient [35] is named

‖∇g(x)−∇g(y)‖≤ L(g)‖ x− y‖ for very x, y (15)

where L(g) > 0 is a (Lipschitz) constant and ‖ ‖ denotes the standard
Euclidean norm and L(g) > 0 is the Lipschitz constant of ∇g. At
point xk−1, the function F(x) can be approximated by the following
quadratic function

QL(x, xk−1)= g(y)+ kx− xk−1,∇g(xk−1)l+
L

2

{
‖x− xk−1‖22 +n(x)

}

(16)

which admits a unique minimiser

PL(xk−1) = argmin
x

{QL(x, xk−1), x [ Rn} (17)

Simple algebra shows that (ignoring constant terms)

PL(xk−1) = argmin
x

L

2
‖x− (xk−1 −

1

L
∇g(xk−1))‖22 +n(x)

{ }
(18)

Clearly, the basic step in (9) is replaced by

xk = PL(xk−1) (19)

with L set to 1\tk. Apparently, as long as the constant L in (16) is
taken to be no less than Lipschitz constant, it follows that

g(x)+ n(x) ≤ g(xk−1)+ k∇g(xk−1), x− xk−1l

+ L

2
‖x− xk−1 ‖22 +n(x)

(20)

In our procedure, we replace 1/tk by a constant L which will be
related to the Lipschitz constant L(g). We can find that the
right-hand side of (20) is precisely equal to QL(x, y) in (16). In
other words, QL(x, y) is an easier-to-deal-with convex upper bound
of the objective function F(x) and by minimising the upper bound,
QL(x, y) with xk given by (19) offers a tight upper bound of F(x),
provided that L≥ L( f ).

4.2 CS for noise image and video reconstruction

Let us begin with considering the problem of (14). Assumed (14) is
convex with smooth Lipschitz gradient. For any L > 0, CS for a noise

image and video formulated by (14) becomes

xk = argmin
x

L

2
‖x− xk−1 ‖2 +l‖x‖1

{ }
(21)

where xk = PL(xk−1), so

xk = argmin
x

L

2
‖x− xk−1 −

1

L
∇f (xk−1)

( )
‖22 +l‖x‖1

{ }
(22)

or equivalently

xk = argmin
x

L

2
‖x− dk ‖22 + l‖x‖1

{ }
(23)

where dk = xk−1− 1/L∇f (xk−1). According to (14), this dk can be
rewritten as

dk = xk−1 −
1

L
(FCT)T(FCTxk−1 − y) (24)

as both the l1-norm and square of the l2-norm are separable. And
each of these terms involves only a single (scalar) variable, the
iterate xk in (23) can be computed exactly by a straightforward
shrinkage step [assuming dk in (24) has been calculated] as

xk = GlL(dk ) (25)

where Γα is a shrinkage operator which maps Rn to Rn with the ith
entry of the output vector given by

Ga(d)|i = (|di| − a)+sgn(di) (26)

where (u)+ = max(u, 0).

4.3 FGB-CS algorithm

As per the fact described above, a FGB-CS algorithm for noise
images and videos reconstruction method is proposed, the details
are shown in Algorithm 1 (see Fig. 1).

Compared with other reconstruction algorithms, the proposed
algorithm has several characteristic as follows:

(i) TheCS for a noise signalmay be estimated as a convexminimisation
problem, and gradient-based method is used to solve the problem.
(ii) The problem of noise signal reconstruction is assumed to be the
convex with Lipschitz gradient. A iteration parameter 1/tk is replaced
by a constant 1/L which is related to the Lipschitz constant L( f ).
(iii) As described in [35], we can easily compute that the
convergence of FGB-CS is O(1/k2).

Fig. 1 FGB-CS algorithm
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5 Experimental results

In order to evaluate the quality of the reconstructed results, the mean
square error and peak signal–noise ratio (PSNR) are used for the
comparison. They are defined as

MSE = 1

M × N

∑M
i=1

∑M
j=1

( f̂ (i, j)− f (i, j))2 (27)

PSNR = 10lg
2552

MSE

( )
(28)

whereM andN are the image dimensions, f̂ is the denoised image and f
is the original image. In (28) 255 means the pixel values is 0–255 in an
optical grey image. Many researchers used PSNR to estimate the result
in image processing [3]. In our study, the PSNR is also used to compare
the experiment results. The experiments were implemented on a
Pentium IV with 3.2 GHz CPU and 2048 MB RAM.

5.1 Noise image reconstruction

‘Lena’ (size 256 × 256) is used as a test image in Fig. 2a. It is
degraded by rand noise (σ = 15) in Fig. 2b. The DCT matrix [11]
is used in sparsing image. The noise image reconstruction result
based on different CS algorithms with matrix Rs rows M = 200 is
shown in Figs. 3a–e, and the reconstruction result based on
FGB-CS with l = 20 and K = 40 is shown in Fig. 3f. The
reconstruction result in PSNR and runtime based on different
methods is shown in Table 1.

More experiments are carried out to compare reconstruction
performances with different rows of measurement matrix, and the
results are shown in Fig. 4. We can see from Table 1 and Fig. 4 that

(i) the PSNR in noise image reconstruction raises with the increasing
of measurement matrix rows;
(ii) the method based on FGB-CS can obtain best result than those
other methods, and iterative re-weighted least squares (IRLS),
CoSaMP, SP, greedy basis pursuit (GBP) and OMP are in the
second, third, fourth and fifth;
(iii) FGB-CS also spends the second least runtime than those other
methods, and almost equals what is spent in OMP. IRLS, SP,
CoSaMP and GBP spend more time in noise image reconstruction
with the increase of the measurement matrix rows.

Fig. 3 Noise image reconstruction based on CS

a OMP
b SP
c CoSaMP
d GBP
e IRLS
f FGB-CS

Table 1 Reconstruction result in PSNR and runtime by using the
different methods

Methods PSNR Runtime, s

OMP 24.70 5.625
SP 25.64 49.25
CoSaMP 25.97 92.14
GBP 25.28 108.391
IRLS 27.70 294.08
FGB-CS 28.89 6.128

Fig. 2 Original image and noise image

a Lena
b Noise image (σ = 15)
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5.2 Noise video reconstruction

A video gsalesmang15.avi (total 48 frames) is used as a test data in
Fig. 5. The video is degraded by rand noise (σ = 15). The some

reconstruction results based on CS with the matrix rows M = 230
are shown in Figs. 5b–f. In FGB-CS, l = 20 and K = 40. The
reconstruction result in PSNR and runtime based on different
methods are shown in Table 2 (Fig. 6).

More experiments are carried out to compare noise video
reconstruction performances. The reconstruction average time and
PSNR with different rows of measurement matrix are shown in
Figs. 7a and b.

Fig. 4 Quantisation comparisons in noise image reconstruction

a PSNR comparisons
b Runtime comparisons

Fig. 5 Original video and noise video

a Frame = 10
b Noise frame (σ = 15)

Table 2 Noise video reconstruction results in average PSNR and
runtime by using the different methods

Methods PSNR Runtime, s

OMP 24.70 5.625
SP 25.64 49.25
CoSaMP 25.97 92.14
GBP 25.28 108.391
IRLS 27.70 294.08
FGB-CS 28.89 6.128
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Fig. 6 Noise video reconstruction results by using the different method

a OMP
b SP
c CoSaMP
d GBP
e IRLS
f FGB-CS

Fig. 7 Quantisation comparisons in noise video reconstruction

a Average PSNR comparisons
b Average runtime comparisons
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We can see from Table 2 and Fig. 7 that

(i) the noise video reconstruction accuracy decreases with the
increase of measurement matrix rows. And among those methods,
FGB-CS algorithm can obtain best result than those other
methods, and the second is IRLS algorithm;
(ii) the method based on OMP and FGB-CS algorithm can run the
fastest than other methods in noise video reconstruction, and SP,
CoSaMP, GBP and IRLS are in the third, fourth and fifth. Among
them, the runtime decreases with the increasing of measurement
matrix rows. IRLS method can obtain good reconstruction result,
while spends the most time.

6 Conclusion and future work

In this paper, CS for noise images and video methods based on
gradient-based algorithms (FGB-CS) is proposed. On one hand,
we deal with the noise imagery and video reconstruction as a
convex minimisation problem, and provide a new method based
on gradient-based method. On the other hand, in order to improve
the efficiency, we consider the problem of noise signal
reconstruction assumed to be convex with Lipschitz gradient. The
step size in gradient iteration is replaced by a constant 1/L which
is related to the Lipschitz constant. The experiments have been
shown that

(i) among those methods, the FGB-CS can obtain best reconstruction
result in terms of PSNR comparing with OMP, SP, CoSaMP, GBP
and IRLS;
(ii) the proposed method can run as fast as OMP methods in noise
imagery and video reconstruction, and the fastest than SP,
CoSaMP, GBP and IRLS methods;
(iii) with the increasing measurement matrix rows, the proposed
method can obtain better reconstruction accuracy with only a few
runtime changes.

In future studies, the more relationship between parameters l and
K in FGB-CS will be researched.
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