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p-ADIC CELLULAR NEURAL NETWORKS

B. A. ZAMBRANO-LUNA AND W. A. ZÚÑIGA-GALINDO

Abstract. In this article we introduce the p-adic cellular neural networks
which are mathematical generalizations of the classical cellular neural net-

works (CNNs) introduced by Chua and Yang. The new networks have infin-

itely many cells which are organized hierarchically in rooted trees, and also
they have infinitely many hidden layers. Intuitively, the p-adic CNNs occur as

limits of large hierarchical discrete CNNs. More precisely, the new networks
can be very well approximated by hierarchical discrete CNNs. Mathemati-

cally speaking, each of the new networks is modeled by one integro-differential

equation depending on several p-adic spatial variables and the time. We study
the Cauchy problem associated to these integro-differential equations and also

provide numerical methods for solving them.

1. Introduction

In the late 80s Chua and Yang introduced a new natural computing paradigm
called the cellular neural networks (or cellular nonlinear networks) CNN which
includes the cellular automata as a particular case [6], [7], [9]. From the beginning
the CNN paradigm was intended for applications as an integrated circuit. This
paradigm has been extremely successful in various applications in vision, robotics
and remote sensing, see e.g. [8], [25] and the references therein.

In this article we present a mathematical generalization of the CNNs of Chua and
Yang called p-adic cellular neural networks. The p-adic continuous CNNs offer a
theoretical framework to study the emergent patterns of hierarchical discrete CNNs
having arbitrary many hidden layers.

Nowadays, it is widely accepted that the analysis on ultrametric spaces is the
natural tool for formulating models where the hierarchy plays a central role. An
ultrametric space (M,d) is a metric space M with a distance satisfying d(A,B) ≤
max {d (A,C) , d (B,C)} for any three points A, B, C in M . Ultrametricity in
physics means the emergence of ultrametric spaces in physical models. Ultrametric-
ity was discovered in the 80s by Parisi and others in the theory of spin glasses and
by Frauenfelder and others in physics of proteins. In both cases, the space of states
of a complex system has a hierarchical structure which play a central role in the
physical behavior of the system, see e.g. [10], [11], [15], [20], [21], [24], [27], [28]-[30],
and the references therein.

On the other hand, Khrennikov and his collaborators have studied neural net-
work models where p-state neurons take their values in p-adic numbers, see [2],
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[19]. These models are completely different to the ones considered here. In ad-
dition, Khrennikov has developed non-Archimedean models of brain activity and
mental processes, see e.g. [18] and the references therein.

Among the ultrametric spaces, the field of p-adic numbers Qp plays a central
role. A p-adic number is a series of the form

(1.1) x = x−kp
−k + x−k+1p

−k+1 + . . .+ x0 + x1p+ . . . , with x−k 6= 0,

where p is a prime number, the xjs are p-adic digits, i.e. numbers in the set
{0, 1, . . . , p− 1}. The set of all the possible series of form (1.1) constitutes the field
of p-adic numbers Qp. There are natural field operations, sum and multiplication,
on series of form (1.1), see e.g. [16]. There is also a natural norm in Qp defined
as |x|p = pk, for a nonzero p-adic number x of the form (1.1). The field of p-adic

numbers with the distance induced by |·|p is a complete ultrametric space. The

ultrametric property refers to the fact that |x− y|p ≤ max
{
|x− z|p , |z − y|p

}
for

any x, y, z in Qp.
We denote by GM the set all the p-adic numbers of the form i = i−Mp

−M +
i−M+1p

−M+1 + · · ·+i0 + · · ·+iM−1p
M−1, where the ijs belong to {0, 1, . . . , p− 1}.

Then (GM , |·|p) is a finite ultrametric space. Geometrically speaking, GM is a
regular rooted tree with 2M layers, here regular means that exactly p edges emanate
from each vertex. A (1-dimensional) p-adic discrete CNN is a dynamical system of
the form

(1.2)
∂

∂t
X(i, t) = −X(i, t) +

∑
j∈GM

A(i, j)Y (j, t) +
∑

j∈GM

B(i, j)U(j) + Z(i),

i ∈ GM , where Y (j, t) = f (X(j, t)), with f(x) = 1
2 (|x+ 1| − |x− 1|). Here

X(i, t), Y (i, t) ∈ R are the state, respectively the output, of cell i at the time
t. The function U(i) ∈ R is the input of the cell i, Z(i) ∈ R is the threshold of cell
i, and the matrices A,B : GNM×GNM → R are the feedback operator and feedforward
operator, respectively. Notice that matrices A, B are functions on the Cartesian
product of two rooted trees. The Chua-Yang CNNs are a particular case of (1.2).
In this article we study N -dimensional, discrete hierarchical CNNs having arbitrary
many layers. For the seek of simplicity, we focus on space-invariant networks, i.e.
in the case in which

(1.3) A(i, j) = A(|i− j|p), B(i, j) = B(|i− j|p).

In this article we initiate the study of the emergent patterns produced by the p-adic
discrete CNNs. Since we are interested in arbitrary large trees, the description of
these networks requires literally of millions of integro-differential equations, conse-
quently a numerical approach seems not suitable, instead of this, we construct a
p-adic continuous model that can be very well approximated by (1.2).

The study of the qualitative behavior of differential equations on large graphs
is a relevant matter due its applications. In [23] Nakao and Mikhailov proposed
using continuous models to study reaction-diffusion systems on networks and the
corresponding Turing patterns. In [28] the second author showed that p-adic anal-
ysis is the natural tool to carry out this program. Models constructed using energy
landscapes naturally drive to a large systems of differential equations (the master
equation of the system), see e.g. [5], [20], [21]. p-Adic continuous versions of some
of these systems were constructed by Avetisov, Kozyrev and others in connection
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with models of protein folding, see e.g. [20], [21] for a general discussion. Another
relevant system is the Eigen-Schuster model in biology. In [29] a p-adic continuous
version of this model was introduced, this p-adic version allows to explain the Eigen
paradox. Recently Hua and Hovestadt pointed out that the p-adic number system
offers a natural representation of hierarchical organization of complex networks [15].

Intuitively, in the space-invariant case, the continuous model corresponding to
(1.2) is obtained by taking the limit as M tends to infinity:

∂X(x, t)

∂t
= −X(x, t) +

∫
Qp

A(|x− y|p)Y (y, t)dy+(1.4)

∫
Qp

B(|x− y|p)U(y)dy + Z(x),

with Y (x, t) = f(X(x, t)). For the sake of simplicity, in the introduction we dis-
cuss our results in dimension one. We study the case where A(|x|p), B(|x|p) are
integrable, and U , Z are continuous functions vanishing at infinity. Under these
hypotheses the initial value problem attached to (1.4), with initial datumX0 (a con-
tinuous function vanishing at infinity) has a unique solution X(x, t) which is a con-
tinuos function vanishing at infinity in x for any t ≥ 0, satisfying |X(x, t)| ≤ Xmax,
where the constant Xmax is completely determined by A, B, U , Z and f , see The-
orem 2. An analog result is valid for discrete CNNs, see Theorem 3.

The solution X(x, t) can be very well approximated in the ‖·‖∞-norm as∑
j∈GM

X(j, t)Ω
(
pM |x− j|p

)
.

By using standard techniques of approximation of semilinear evolution equations,
we show that the solution of the Cauchy problem attached to (1.2), under condition
(1.3), is arbitrarily closed in the ‖·‖∞-norm to the solution of the Cauchy problem
attached to (1.4), if M is sufficiently large, see Theorem 4. This implies that
the p-adic continuous CNNs have infinitely many hidden layers, and that they are
continuous versions of suitable p-adic discrete CNNs. It is relevant to mention that
equation (1.4) makes sense over the real numbers, i.e. by replacing Qp by R in
(1.4) we get an equation modeling a continuous network. But, there are no natural
discretizations of the real version of (1.4) that can be interpreted as hierarchical
CNNs, because the real numbers are a completely ordered field, and thus the natural
hierarchy is only the linear one.

In practical applications it is natural to assume that radial functions A, B have
compact support or that they are test functions. Under this hypothesis we study
the patterns produced by p-adic continuous CNNs when U , Z and X0 are test
functions. The hypothesis that X0 is a test functions means that at time t = 0
only certain clusters of cells are excited. Each cluster corresponds to a p-adic ball
centered at some cell with radius, say p−L. The intensity of the excitation is the
same for all cells in a given cluster. The fact that U , Z are test functions can be
interpreted in an analogous way. Let BM0

denote the ball centered at the origin
with radius pM0 , which the smallest ball containing the supports of A, B, U , Z,
X0. Then the solution X(x, t) of the initial value problem attached to (1.4) is a

test function supported in BM0 of the form
∑

j∈GM0
X(j, t)Ω

(
pM0 |x− j|p

)
for

t ≥ 0, with M0 ≥ L, see Theorem 1. This means that a p-adic continuous CNN
3



produces a pattern which is organized in a finite number of disjoint clusters, each
of them supporting a time varying pattern. We also show the existence of two
steady state patterns X+(x), X−(x), which are test functions, such that X−(x) ≤
limt→∞X(x, t) ≤ X+(x), see Theorem 2. We conjecture that for generic p-adic
continuous CNNs, limt→∞X(x, t) is a test function, which means that the steady
state pattern is organized in a finite number of disjoint clusters, each of them
supporting a constant pattern. This is exactly the multistability property reported
in [23], see also [28], for reaction-diffusion networks.

We have conducted a large number of numerical simulations. Such simulations
require solving integro-differential equations on a tree. The numerical study of
p-adic continuous CNNs offers two big challenges. The first, the need of dealing
with matrices having millions of entries, the second, the visualization of functions
depending on p-adic variables. Due to the first problem, we use small trees with
16 to 64 leaves. The p-adic numbers have a fractal nature, then, it is necessary to
visualize real-valuated functions defined on the Cartesian product of a fractal times
the real line. To deal with this problem we us systematically heat maps which
allow us to get a glimpse of the hierarchical nature of the CNNs. Our numerical
simulations show that the solutions of continuous CNNs exhibit a very complex
behavior, including self-similarity and multistability, depending on the interaction
of all the parameters defining the network and initial datum.

2. p-Adic Analysis: Essential Ideas

2.1. The field of p-adic numbers. Along this article p will denote a prime num-
ber. The field of p−adic numbers Qp is defined as the completion of the field of
rational numbers Q with respect to the p−adic norm | · |p, which is defined as

|x|p =

{
0 if x = 0
p−γ if x = pγ ab ,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) :=
+∞, is called the p−adic order of x. We extend the p−adic norm to QNp by taking

||x||p := max
1≤i≤N

|xi|p, for x = (x1, . . . , xN ) ∈ QNp .

We define ord(x) = min1≤i≤N{ord(xi)}, then ||x||p = p−ord(x). The metric space(
QNp , || · ||p

)
is a complete ultrametric space. As a topological space Qp is homeo-

morphic to a Cantor-like subset of the real line, see e.g. [1], [27].
Any p−adic number x 6= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j ,

where xj ∈ {0, 1, . . . , p− 1} and x0 6= 0.

2.2. Topology of QNp . For r ∈ Z, denote by BNr (a) = {x ∈ QNp ; ||x − a||p ≤ pr}
the ball of radius pr with center at a = (a1, . . . , aN ) ∈ QNp , and take BNr (0) := BNr .

Note that BNr (a) = Br(a1)×· · ·×Br(aN ), where Br(ai) := B1
r (ai) = {x ∈ Qp; |xi−

ai|p ≤ pr} is the one-dimensional ball of radius pr with center at ai ∈ Qp. The
ball BN0 equals the product of N copies of B0 = Zp, the ring of p−adic integers.
We also denote by SNr (a) = {x ∈ QNp ; ||x− a||p = pr} the sphere of radius pr with

center at a = (a1, . . . , aN ) ∈ QNp , and take SNr (0) := SNr . We notice that S1
0 = Z×p

4



(the group of units of Zp), but
(
Z×p
)N ( SN0 . The balls and spheres are both open

and closed subsets in QNp . In addition, two balls in QNp are either disjoint or one is
contained in the other.

As a topological space
(
QNp , || · ||p

)
is totally disconnected, i.e. the only con-

nected subsets of QNp are the empty set and the points. A subset of QNp is compact

if and only if it is closed and bounded in QNp , see e.g. [27, Section 1.3], or [1,

Section 1.8]. The balls and spheres are compact subsets. Thus
(
QNp , || · ||p

)
is a

locally compact topological space.
We will use Ω (p−r||x− a||p) to denote the characteristic function of the ball

BNr (a). For more general sets, we will use the notation 1A for the characteristic
function of a set A.

2.3. The Bruhat-Schwartz space. A real-valued function ϕ defined on QNp is

called locally constant if for any x ∈ QNp there exists an integer l(x) ∈ Z such that

(2.1) ϕ(x+ x′) = ϕ(x) for x′ ∈ BNl(x).

A function ϕ : QNp → R is called a Bruhat-Schwartz function (or a test function)
if it is locally constant with compact support. Any test function can be represented
as a linear combination, with real coefficients, of characteristic functions of balls.
The R-vector space of Bruhat-Schwartz functions is denoted by D(QNp ). For ϕ ∈
D(QNp ), the largest number l = l(ϕ) satisfying (2.1) is called the exponent of local
constancy (or the parameter of constancy) of ϕ.

If U is an open subset of QNp , D(U) denotes the space of test functions with
supports contained in U , then D(U) is dense in

Lρ (U) =

ϕ : U → R;

∫
QNp

|ϕ (x)|ρ dNx


1
ρ

<∞

 ,

where dNx is the Haar measure on QNp normalized by the condition vol(BN0 ) = 1,

for 1 ≤ ρ < ∞, see e.g. [1, Section 4.3]. In the case U = QNp , we will use the

notation Lρ instead of Lρ
(
QNp
)
. For an in depth discussion about p-adic analysis

the reader may consult [1], [17], [26], [27].

2.4. The Spaces X∞, XM . We define X∞(QNp ) := X∞ =
(
D(QNp ), ‖·‖∞

)
, where

‖φ‖∞ = supx∈QNp |φ(x)| and the bar means the completion with respect the metric

induced by ‖·‖∞. Notice that all the functions in X∞ are continuous and that

X∞ ⊂ C0 :=

({
f : QNp → R; f continuous with lim

‖x‖p→∞
f (x) = 0

}
, ‖·‖∞

)
.

On the other hand, since D(QNp ) is dense in C0, cf. [26, Chap. II, Proposition 1.3],
we conclude that X∞ = C0.

For M ≥ 1, we set GNM := BNM/B
N
−M , which is a finite additive group with

#GNM := p2NM elements. Any element i = (i1, . . . , iN ) of GNM can be represented
as

(2.2) ij = ij−Mp
−M + ij−M+1p

−M+1 + . . .+ ij0 + ij1p+ . . .+ ijM−1p
M−1,

5



for j = 1, . . . , N , with ijk ∈ {0, 1, . . . , p− 1}. From now on, we fix a set of represen-
tatives in QNp for GNM of the form (2.2). Notice that

ij = p−M
(
aj0 + aj1p+ · · ·+ aj2M−1p

2M−1
)
,

where aj0 + aj1p+ · · ·+ aj2M−1p
2M−1 ∈ Zp/p2MZp = B0/B−2M .

The functions

(2.3)
{

Ω
(
pM ‖x− i‖p

)}
i∈GNM

are orthogonal with respect to the standard L2 inner product, since

Ω
(
pM ‖x− i‖p

)
Ω
(
pM ‖x− j‖p

)
= 0, for i, j ∈ GNM , i 6= j and for any x ∈ BNM .

We denote by DM
(
QNp
)

:= DM the R-vector space spanned by (2.3). We set

XM :=
(
DM , ‖·‖∞

)
for M ≥ 1.

Notice that XM is isomorphic as a Banach space to
(
R#GNM , ‖·‖R

)
, where∥∥∥(t1, . . . , t#GNM)∥∥∥R = max

1≤j≤#GNM
|tj | .

2.5. Tree-like structures and p-adic numbers. Take N = 1 and fix M ∈
Nr {0}, then G1

M := GM = p−MZp/pMZp is an additive group consisting of ele-
ments of the form

(2.4) i = i−Mp
−M + i−M+1p

−M+1 + · · ·+ i0 + · · ·+ iM−1p
M−1,

where the ijs belong to {0, 1, . . . , p− 1}. Furthermore, the restriction of |·|p to GM

induces an absolute value such that |GM |p =
{

0, p−(M−1), · · · , p−1, 1, · · · , pM
}

.

We endow GM with the metric induced by |·|p, and thus GM becomes a finite
ultrametric space. In addition, GM can be identified with the set of branches
(vertices at the top level) of a rooted tree with 2M + 1 levels and p2M branches.

Any element i ∈ GM can be uniquely written as p−M ĩ, where

ĩ = ĩ0 + ĩ1p+ · · ·+ ĩ2M−1p
2M−1 ∈ Zp/p2MZp,

with the ĩjs belonging to {0, 1, . . . , p− 1}. The elements of the Zp/p2MZp are in
bijection with the vertices at the top level of the above mentioned rooted tree. By
definition the root of the tree is the only vertex at level 0. There are exactly p

vertices at level 1, which correspond with the possible values of the digit ĩ0 in the

p-adic expansion of ĩ. Each of these vertices is connected to the root by a non-
directed edge. At level `, with 1 ≤ ` ≤ 2M , there are exactly p` vertices, each vertex

corresponds to a truncated expansion of ĩ of the form ĩ0+· · ·+ ĩ`−1p
`−1. The vertex

corresponding to ĩ0 + · · · + ĩ`−1p
`−1 is connected to a vertex ĩ

′
0 + · · · + ĩ

′
`−2p

`−2

at the level ` − 1 if and only if
(
ĩ0 + · · ·+ ĩ`−1p

`−1
)
−
(
ĩ
′
0 + · · ·+ ĩ

′
`−2p

`−2
)

is

divisible by p`−1.
In conclusion, Zp/p2MZp is a rooted tree, and Zp is an infinite rooted tree. Now,

the 1-dimensional unit sphere Z×p is the disjoint union of sets of the form j + pZp,
for j ∈ {1, . . . , p− 1}. Each set of the form j+pZp is an infinite rooted tree. Then,
Z×p is a forest formed by the disjoint union of p − 1 infinite rooted trees. On the

other hand, Q×p = Qp r {0} is a countable disjoint union of scaled versions of the
6



forest Z×p , more precisely, Q×p =
⊔k=+∞
k=−∞p

kZ×p . The field of p-adic numbers has a
fractal structure, see e.g. [1], [27].

Figure 1. The rooted tree associated with the group Z2/2
3Z2.

We identify the elements of Z2/2
3Z2 with the set of inte-

gers {0, . . . , 7} with binary representation i = i0 + i12 +
i322, i0, i1, i2 ∈ {0, 1}. Two leaves i, j ∈ Z2/2

3Z2 have a
common ancestor at level 2 if and only if i ≡ j mod 22, i.e.,
i = a0 + a12 + i222 and j = a0 + a12 + j222 with i2, j2 ∈ {0, 1}.
Now, for i, j ∈ Z2/2

3Z2 have a common ancestor at level 1 if and
only if i ≡ j mod 2. Notice that that the p-adic distance satisfies
− log2 |i− j|2 = − (level of the first common ancestor of i, j).

3. p-Adic CNNs: basic definitions

We say that a function f : R → R is called a Lipschitz function if there exists
a real constant L(f) > 0 such that, for all x, y ∈ R, |f(x)− f(y)| ≤ L(f)|x− y|. A
relevant example is

f(x) =
1

2
(|x+ 1| − |x− 1|) .

3.1. p-Adic discrete CNNs. By considering GNM as a subset of QNp ,
(
GNM , ‖·‖p

)
becomes a finite ultrametric space.

Definition 1. An element i of GNM is called a cell. A p-adic discrete CNN is
a dynamical system CNNd(A,B, U, Z) on GNM . The state Xi(t) ∈ R of cell i is
described by the following differential equations:

(i) state equation:

dX(i, t)

dt
= −X(i, t) +

∑
j∈GNM

A(i, j)Y (j, t) +
∑

j∈GNM

B(i, j)U(j) + Z(i), i ∈ GNM ,

(ii) output equation:

Y (j, t) = f(X(j, t)),

where Y (i, t) ∈ R is the output of cell i at the time t, f : R→ R is a bounded
Lipschitz function satisfying f(0) = 0. The function U(i) ∈ R is the input

7



Figure 2. The heat map associated with the p-adic distance func-
tion on Z2/2

3Z2.

of the cell i, Z(i) ∈ R is the threshold of cell i, and A,B : GNM ×GNM → R
are the feedback operator and feedforward operator, respectively.

Not all the cells of GNM are active. A cell i is connected with cell j if A(i, j) 6= 0
or B(i, j) 6= 0 for some j ∈ GNM . Then, a p-adic discrete CNN is a dynamical
system on

CN,M :=
{
i ∈ GNM ;A(i, j) 6= 0 or B(i, j) 6= 0 for some j ∈ GNM

}
.

The topology of a p-adic discrete CNN depends on the functions A, B : GNM ×
GNM → R. For general matrices A, B, it is difficult to give a graph-type description
of the topology of the network. Our p-adic CNNs contain as a particular case the
CNNs of Chua and Yang, see e.g. [8], [25]. In this article we focus on p-adic CNNs
satisfying

(3.1) A(i, j) = A(‖i− j‖p), B(i, j) = B(‖i− j‖p),
which are discrete CNNs having the space-invariant property. The fact that A
and B are radial functions of ‖ · ‖p implies that the cells are organized in a tree
like-structure with many layers.

3.2. p-Adic continuous CNNs.

Definition 2. Given A(x, y), B(x, y) ∈ L1(QNp ×QNp ), and U , Z ∈ X∞, a p-adic
continuous CNN, denoted as CNN(A,B,U, Z), is the dynamical system given by
the following differential equations: (i) state equation:

(3.2)
∂X(x, t)

∂t
= −X(x, t) +

∫
QNp

A(x, y)Y (y, t)dNy +

∫
QNp

B(x, y)U(y)dNy + Z(x),

where x ∈ QNp , t ≥ 0, and (ii) output equation: Y (x, t) = f(X(x, t)). We say that
X(x, t) ∈ R is the state of cell x at the time t, Y (x, t) ∈ R is the output of cell x at
the time t. Function A(x, y) is the kernel of the feedback operator, while function
B(x, y) is the kernel of the feedforward operator. Function U is the input of the
CNN, while function Z is the threshold of the CNN.

8



Figure 3. A 1-dimensional discrete 2-adic CNN with 8 cells:
C1,3 = {0, 1, 2, 3, 4, 5, 7} ⊂ Z2/2

3Z2 ⊂ 2−3Z2/2
3Z2. We set B = 0

and A(i, j) = [ai,j ], with ai,j 6= 0 if |i− j|2 = 1/2 and i, j ∈ C1,3;
ai,j = 0 otherwise.

Figure 4. A 1-dimensional 3-adic CNN with 7 cells, C1,2 =
{0, 1, 2, 3, 4, 5, 6} ⊂ Z3/3

2Z3 ⊂ 3−2Z3/3
2Z3. We set B = 0 and

A(i, j) = [ai,j ], with ai,j 6= 0 if |i − j|3 = 1 and i, j ∈ C1,2;
ai,j = 0 otherwise.

We focus mainly in continuous CNNs having the space invariant property, i.e.
A(x, y) = A(‖x− y‖p) and B(x, y) = B(‖x− y‖p) for some A,B ∈ L1, however our
results are valid for general p-adic continuous CNNs. Along this article the function
f(x) = 1

2 (|x+ 1| − |x− 1|) will be fixed, for this reason it does not appear in the
list of parameters of the CNNs.

3.3. Discretization of p-adic continuous CNNs. A central result of the present
work is the fact that p-adic continuous CNNs are ‘continuous versions’ of p-adic dis-
crete CNNs. More precisely, p-adic discrete CNNs are very good approximations of

9



p-adic continuous CNNs for sufficiently large M . We discuss here the discretization
process in an intutive way (a formal theorem will be provided later on).

Intuitively, a discretization of a p-adic continuous CNN(A,B,U, Z) is obtained
assuming that X(·, t), A, Y (·, t), B, U and Z belong to DM , i.e.

X(x, t) =
∑

i∈GNM

X(i, t)Ω
(
pM ‖x− i‖p

)
, Y (x, t) =

∑
i∈GNM

Y (i, t)Ω
(
pM ‖x− i‖p

)
,

U(x) =
∑

i∈GNM

U(i)Ω
(
pM ‖x− i‖p

)
, Z(x) =

∑
i∈GNM

Z(i)Ω
(
pM ‖x− i‖p

)
,

A(x, y) =
∑

i∈GNM

∑
j∈GNM

A(i, j)Ω
(
pM ‖x− i‖p

)
Ω
(
pM ‖y − j‖p

)
,

B(x, y) =
∑

i∈GNM

∑
j∈GNM

B(i, j)Ω
(
pM ‖x− i‖p

)
Ω
(
pM ‖y − j‖p

)
.

Notice that if f : R→ R, then

f (X(x, t)) =
∑

i∈GNM

f(X(i, t))Ω
(
pM ‖x− i‖p

)
= Y (x, t).

Now,
∂

∂t
X(x, t) =

∑
i∈GNM

∂

∂t
X(i, t)Ω

(
pM ‖x− i‖p

)
,

and∫
QNp

A(x, y)f (X(y, t)) dNy

=
∑

i∈GNM


∑

j∈GNM

A(i, j)f(X(j, t))

∫
QNp

Ω
(
pM ‖y − j‖p

)
dNy

Ω
(
pM ‖x− i‖p

)

= p−MN
∑

i∈GNM

 ∑
j∈GNM

A(i, j)Y (j, t))

Ω
(
pM ‖x− i‖p

)
.

Similarly,∫
QNp

B(x, y)U(y)dNy = p−MN
∑

i∈GNM

 ∑
j∈GNM

B(i, j)U(j))

Ω
(
pM ‖x− i‖p

)
.

Therefore,

∂

∂t
X(i, t) = −X(i, t) +

∑
j∈GNM

p−MNA(i, j)Y (j, t)

+
∑

j∈GNM

p−MNB(i, j)U(j) + Z(i), for i ∈ GNM ,

and Y (i, t) = f(X(i, t)), for i ∈ GNM . This is exactly a p-adic discrete CNN with
A(i, j) = p−MNA(i, j), B(i, j) = p−MNB(i, j).

10



Intuitively a p-adic continuous CNN has infinitely many layers, each layer cor-
responds to some M , which are organized in a hierarchical structure. For practical
purposes, a p-adic continuous CNN is realized as a p-adic discrete CNN for M
sufficiently large.

4. Stability of p-adic continuous CNN

Lemma 1. Let f be a Lipschitz functions with f(0) = 0 and let E be a radial
function in L1(QNp ). Then, the mappings

F0 : g →
∫
QNp

E(‖x− y‖p)f(g(y))dNy

F1 : g →
∫
QNp

E(‖x− y‖p)g(y)dNy

are well defined bounded operators from X∞ into itself.

Proof. We first notice that for all g ∈ X∞, F0(g)(x) exists for all x ∈ QNp , since

(4.1) |E(‖y‖p)| |f(g(x− y))| ≤ L(f)‖g‖∞ |E(‖y‖p)| ,

where E(‖y‖p) ∈ L1(QNp ). To show the continuity of F0(g)(x), we take a sequence

{xm}m∈N ⊂ QNp such that xm → x. By using (4.1) and the dominated convergence
theorem, limm→∞ F0(g)(xm) = F0(g)(x). Finally, we show that F0(g) ∈ X∞. By
contradiction, assume that F0(g) 6∈ X∞. Then, there is a sequence {xm}m∈N ⊂ QNp
such that limm→∞ ‖xm‖p = ∞ and ε > 0 such that F0(g)(xm) > ε for all m ∈ N.
By using (4.1) and the dominated convergence theorem, we have

ε ≤ lim
m→∞

|F0(g)(xm)| = lim
m→∞

∣∣∣∣∣
∫
QNp

E(‖y‖p)f(g(xm − y))dNy

∣∣∣∣∣
=

∣∣∣∣∣
∫
QNp

E(‖y‖p)
{

lim
m→∞

f(g(xm − y))
}
dNy

∣∣∣∣∣ = 0

which contradicts the fact ε > 0. The same argument allow us to show that F1(g) ∈
X∞ for any g ∈ X∞. �

Lemma 2. Assume A,B ∈ L1(QNp ) are radial functions and that U , Z ∈ X∞. For
g ∈ X∞, set

H(g) :=

∫
QNp

A(‖x− y‖p)f (g(y)) dNy +

∫
QNp

B(‖x− y‖p)U(y)dNy + Z(x).

Then H : X∞ → X∞ is a well-defined operator satisfying

‖H(g)−H(g′)‖∞ ≤ L(f)‖A‖1‖g − g′‖∞, for g, g′ ∈ X∞,

where L(f) is the Lipschitz constant of f .
11



Proof. By Lemma 1, H : X∞ → X∞ is a well-defined operator. Take g, g′ ∈ X∞,
then

|H(g)(x)−H(g′)(x)| =

∣∣∣∣∣∣∣
∫
QNp

A(‖x− y‖p)
(
f (g(y))− f

(
g′(y)

))
dNy

∣∣∣∣∣∣∣
≤
∫
QNp

|A(‖x− y‖p)||f (g(y))− f
(
g′(y)

)
|dNy ≤ L(f)‖g − g′‖∞

∫
QNp

|A(‖x− y‖p)|dNy

= L(f)‖A‖1‖g − g′‖∞.

�

Remark 1. (i) Lemma 1 remains valid if we replace the condition E is radial and
integrable by the condition E(x, y) is a continuous function with compact support.
(ii) Under the hypothesis of part (i), Lemma 2 is valid for operators of the form

Lg =

∫
QNp

A(x, y)f (g(y)) dNy +

∫
QNp

B(x, y)U(y)dNy + Z(x),

for g ∈ X∞.

Proposition 1. Assume that A, B, f satisfy hypotheses of Lemma 2 and that U ,
Z ∈ X∞. Let τ be a fixed positive real number. Then for each X0 ∈ X∞ there exists
a unique X ∈ C([0, τ ],X∞) which satisfies

(4.2) X(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(X(x, s))ds

where

(4.3) HX(x, t) =

∫
QNp

A(‖x− y‖p)f(X(y, t))dNy+

∫
QNp

B(‖x− y‖p)U(y)dNy+Z(x).

The function X(x, t) is differentiable in t for all x, and it is a solution of equation
(3.2) with initial datum X0.

Proof. The result follows from Lemma 2, by using standard techniques in PDEs,
see e.g. [22, Theorem 5.1.2]. To make the treatment comprehensive to a general
audience, we provide some details here. First, define

T (Y ) = X0e
−t +

∫ t

0

e−(t−s)H(Y (x, s))ds,

and Y = C([0, τ ],X∞) which is a Banach space with the norm ‖ · ‖∞. By Lemma
2, T : Y → Y. If Y , Y1 ∈ Y, then

‖T (Y )(t)− T (Y1)(t)‖∞ =

∥∥∥∥∫ t

0

e−(t−s) {H(Y )(s)−H(Y1)(s)} ds
∥∥∥∥
∞

≤
∫ t

0

e−(t−s)‖H(Y )(s)−H(Y1)(s)‖∞ ds ≤ L(f)‖A‖1
∫ t

0

‖Y − Y1‖∞ds.

And hence,

‖TM (Y )(t)− TM (Y1)(t)‖∞ ≤
τML(f)M‖A‖M1

M !
‖Y − Y1‖∞,
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for M ≥ 1. By the contraction mapping theorem, there is a unique unique X ∈ Y
which T (X) = X. Moreover, since the right-hand side of (4.2) is differentiable in
t, X is a solution of (3.2) with initial condition X0. �

Remark 2. The contraction mapping theorem provides an iterative formula for
X(x, t). Set X1(x, t) = X0 (x) and

XL+1(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(XL(x, s))ds, for L = 1, 2, . . . ,

then limL→∞ ‖XL (·, t) − X (·, t) ‖∞ = 0 for each t ≤ τ , see e.g. [22, Theorem
5.2.2].

Theorem 1. Assume A, B ∈ L1(p−M0ZNp ) are radial functions, for some M0 ∈ N,
and that U , Z, X0 ∈ XM0

. We also assume that f is a Lipschitz functions with
f(0) = 0. Then there is a unique X ∈ C([0, τ ],XM0

) ∩ C1([0, τ ],XM0
) satisfying

(4.2), which is a solution of equation (3.2) with initial datum X0.

Remark 3. This theorem remains valid if A(x, y), B(x, y) are continuous functions
with compact support, see Remark 1.

Proof. Since XM0 is a subspace of X∞, by applying Proposition 1, there exists a
uniqueX ∈ C([0, τ ],X∞)∩C1([0, τ ],X∞) that satisfies all the announced properties.
By Remark 2, limL→∞ ‖XL (·, t)−X (·, t) ‖∞ = 0, where

XL+1(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(XL(x, s))ds, for L = 1, 2, . . . .

By induction on L, if XL(·, s) ∈ XM0
, i.e. if

XL(x, s) =
∑

i∈GNM0

XL(i, s)Ω
(
pM0 ‖x− i‖p

)
,

f(XL(x, s)) =
∑

i∈GNM0

YL(i, s)Ω
(
pM0 ‖x− i‖p

)

by using that∫ t

0

e−(t−s)H(XL(x, s))ds

=
∑

i∈GNM0

(∫ t

0

e−(t−s)YL(i, s)ds

)∫
QNp

A(‖x− y‖p)Ω
(
pM0 ‖y − i‖p

)
dNy


+
∑

i∈GNM0

U(i)(1− e−t)
∫
QNp

B(‖x− y‖p)Ω
(
pM0 ‖y − i‖p

)
dNy

+
∑

i∈GNM0

(1− e−t)Z(i)Ω
(
pM0 ‖x− i‖p

)
,
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and that for any E ∈ L1(p−M0ZNp ) are radial function, with the convention that

the support of E is the ball p−M0ZNp ,∫
QNp

E(‖x− y‖p)Ω
(
pM0 ‖y − i‖p

)
dNy =

∫
i+pM0ZNp

E(‖x− y‖p)dNy

=


0 if x /∈ p−M0ZNp∫
pM0ZNp

E(‖z‖p)dNz if x ∈ i + pM0ZNp

p−M0NE(‖i− j‖p) if x ∈ j + pM0ZNp , i 6= j,

we conclude that

XL+1(x, t) = e−tX0 (x) +(4.4)

∑
j∈GNM0


∑

i∈GNM0
i 6=j

a (i, t) p−M0NA(‖i− j‖p)

Ω
(
pM0 ‖y − j‖p

)
+

∑
j∈GNM0

a (j, t)

 ∫
pM0ZNp

A(‖z‖p)dNz

Ω
(
pM0 ‖y − j‖p

)
+

∑
i∈GNM0


∑

i∈GNM0
i 6=j

U(i)(1− e−t)B(‖i− j‖p)

Ω
(
pM0 ‖y − j‖p

)
+

∑
i∈GNM0

U (j) (1− e−t)

 ∫
pM0ZNp

B(‖z‖p)dNz

Ω
(
pM0 ‖y − j‖p

)
+ (1− e−t)Z(i),

i.e. XL+1(·, s) ∈ XM . And consequently, {XL(·, t)}L∈Nr{0} is a sequence in XM .

Since XM is closed in X∞, X (·, t) ∈ XM for any t ≤ τ . �

Remark 4. By using that

pMN

∫
pMZNp

A(‖z‖p)dNz → A(0), pMN

∫
pMZNp

B(‖z‖p)dNz → B(0)

as M → ∞, see e.g. [26, Theorem 1.14], (4.4) provides an explicit approximation
of the continuous CNN described in Theorem 1.

Lemma 3. Let τ be a fixed positive real number, let X(x, t) be the solution given
in Proposition 1, with X(x, 0) = X0. Then, for all x, y ∈ QNp and t ∈ (0, τ),

|X(x, t)−X(y, t)| ≤ |X0(x)−X0(y)|e‖A‖1L(f)t.

Moreover, if X0 is a locally-constant function, i.e. X0(x) = X0(y) for y ∈ Bl(x),
with l = l(x) ∈ Z, for any x ∈ QNp , then X(·, t) is a locally-constant function and

X(x, t) = X(y, t) for y ∈ Bl(x) for any x ∈ QNp .
14



Proof. Fix x, y ∈ QNp , the by Proposition 1 and Lemma 2, for all t ∈ (0, τ ]

|X(x, t)−X(y, t)| ≤ e−t|X0(x)−X0(y)|+
∫ t

0

e−(t−s)|H(X(x, s))−H(X(y, s))|ds

≤ |X0(x)−X0(y)|+ L(f)‖A‖1
∫ t

0

|X(x, s)−X(y, s)|ds.

Thus, by Gronwall theorem, see [22, Theorem 5.1.1],

|X(x, t)−X(y, t)| ≤ |X0(x)−X0(y)|eL(f)‖A‖1t

for all t ∈ (0, τ). �

Definition 3. A function Xstat(x) := Xstat(x;A,B,U, Z) ∈ X∞ is called a sta-
tionary state of a p-adic continuous CNN(A,B,U, Z), if

Xstat(x) =

∫
QNp

A(‖x− y‖p)Y (y)dNy +

∫
QNp

B(‖x− y‖p)U(y)dNy + Z(x),

where Y (x) = f(Xstat(x)) and x ∈ QNp .

Remark 5. If a p-adic continuous CNN(A,B,U, Z) satisfies that ‖A‖1L(f) < 1,
then the CNN(A,B,U, Z) has a unique stationary state. This follows by the fact
that, under this condition, H(X) becomes a contraction map in X∞, cf. Lemmas
1, 2.

Theorem 2. All the states X(x, t) of a p-adic continuous CNN(A,B,U, Z) are
bounded for all time t ≥ 0. More precisely, if

Xmax := ‖X0‖∞ + ‖f‖∞‖A‖1 + ‖U‖∞‖B‖1 + ‖Z‖∞,

then

(4.5) |X(x, t)| ≤ Xmax for all t ≥ 0 and for all x ∈ QNp .

In addition

X− (x) := lim inf
t→∞

X(x, t) ≤ X(x, t) ≤ lim sup
t→∞

X(x, t) =: X+ (x) ,

for x ∈ QNp . If X− (x) = X+ (x) := X∗(x),then X∗(x) is a stationary solution of
the CNN(A,B,U, Z) and

(4.6) X∗(x) ≥ −‖f‖∞ ‖A‖1 − ‖U‖∞‖B‖1 + Z(x).

Remark 6. Condition (4.5) implies that X(x, t) does not blow-up at finite time.
The existence of a stationary state X∗(x) means that the state of each cell of a
p-adic continuous CNN most settle at stable equilibrium point after the transient
has decayed to zero.

Proof. By Proposition 1, see (4.2)-(4.3), by using that |Y (y, t)| = |f (X (x, t))| ≤
‖f‖∞, we have

|H(X (x, t))| ≤
∫
QNp

|A(‖x− y‖p)||Y (y, t)|dNy +

∫
QNp

|B(‖x− y‖p)||U(y)|dNy + |Z(x)|

≤ ‖f‖∞‖A‖1 + ‖B‖1‖U‖∞ + ‖Z‖∞.
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Therefore

‖X (x, t)‖∞ ≤ e
−t‖X0‖∞ +

∫ t

0

e−(t−s) ‖H (X (x, s))‖∞ ds

≤ ‖X0‖∞ + ‖f‖∞‖A‖1 + ‖B‖1‖U‖∞ + ‖Z‖∞.

This bound is valid for any t ∈ [0, τ ], but τ is an arbitrary, the bound is valid
for any t ≥ 0.

The bound (4.5) implies existence of the functions:

X+ (x) = lim sup
t→∞

X(x, t) = lim
M→∞

sup {X(x, t); t > M} ,

X− (x) = lim inf
t→∞

X(x, t) = lim
M→∞

inf {X(x, t); t > M} .

Now assume that limt→∞X(x, t) = X∗(x) exists. By using that∫ t

0

e−(t−s)H(X (x, s))ds =

∫ t

0

e−uH(X (x, t− u))du

=

∫ ∞
0

1[0,t] (u) e−uH(X(x, t− u))du,

and∣∣1[0,t] (u) e−uH(X(x, t− u))
∣∣ ≤ (‖f‖∞‖A‖1 + ‖B‖1‖U‖∞ + ‖Z‖∞) e−u ∈ L1(R),

and the dominated convergence and Lemma 2, it follows from (4.2) that

lim
t→∞

X(x, t) =

∫ ∞
0

e−u lim
t→∞

{
1[0,t] (u)H(X(x, t− u))

}
du =

∫ ∞
0

e−uH(X∗(x, ))du

=

∫
QNp

A(‖x− y‖p)f(X∗(x))dNy +

∫
QNp

B(‖x− y‖p)U(y)dNy + Z(x).

�

5. Stability of p-adic discrete CNN and Approximation of
Continuous CNNs

5.1. The operators PM , EM . We now define for M ≥ 1, PM : X∞ → XM as

PMϕ (x) =
∑

i∈GNM

ϕ (i) Ω
(
pM ‖x− i‖p

)
.

Therefore PM is a linear bounded operator, indeed, ‖PM‖ ≤ 1.
We denote by EM , M ≥ 1, the embedding XM → X∞. The following result is a

consequence of the above observations. If Z, Y are real Banach spaces, we denote
by B(Z,Y), the space of all linear bounded operators from Z into Y.

Lemma 4. [30, Lemma 2] With the above notation, the following assertions hold
true:
(i) X∞, XM for M ≥ 1, are real Banach spaces, all with the norm ‖·‖∞;
(ii) PM ∈ B (X∞,XM ) and ‖PMϕ‖∞ ≤ ‖ϕ‖∞ for any M ≥ 1, ϕ ∈ X∞;
(iii) EM ∈ B (XM ,X∞) and ‖EMϕ‖∞ = ‖ϕ‖∞ for any M ≥ 1, ϕ ∈ XM ;
(iv) PMEMϕ = ϕ for M ≥ 1, ϕ ∈ XM ;
(v) limM→∞ ‖ϕ− PMϕ‖∞ = 0 for any ϕ ∈ X∞;
(vi) limM→∞ ‖EMPMφ− φ‖∞ = 0 for all φ ∈ X∞.
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Proposition 2. Assume that A(‖x‖p), B(‖x − y‖p), U(x), Z(x) ∈ XM , M ≥ 1.
Let τ be a fixed positive real number. Consider the initial value problem:

(5.1)



X ∈ C([0, τ ],XM ) ∩ C1([0, τ ],XM )

∂X(x,t)
∂t = −X(x, t) +

∫
QNp

A(‖x− y‖p)f(X(x, t))dNy

+

∫
QNp

B(‖x− y‖p)U(y)dNy + Z(x), x ∈ BNM , t ≥ 0

X(x, 0) = X0 ∈ XM .

There exists a unique X ∈ C([0, τ ],XM ) which satisfies

X(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(X(x, s))ds

where

H(X)(x, t) =

∫
QNp

A(‖x− y‖p)f(X(x, t))dNy +

∫
QNp

B(‖x− y‖p)U(y)dNy + Z(x).

The function X(x, t) is a solution of equation 5.1 with initial datum X0.

Proof. The result is established by using the argument given in the proof of Theo-
rem 1. �

By the discussion presented in section 3.3, (5.1) describes a p-adic discrete CNN.
Furthermore, Theorem 2 is also valid for discrete CNN in XM .

Remark 7. By using the discretization procedure given in Section 3.3 and in the
proof of Theorem 1, Proposition 2 implies that the initial value problem

XM ∈ C([0, τ ],XM ) ∩ C1([0, τ ],XM )

∂XM
∂t = −XM + PMH(EMXM )

XM (0) = PM (X0)

has a unique solution for an arbitrary τ > 0.

Theorem 3. All the states X(i, t), i ∈ GNM , in a p-adic discrete CNN are bounded
for all time t ≥ 0. More precisely, if

Xmax := max
i∈GNM

|X0(i)|+ p−MN

(
max
i∈GNM

|f(i)|

) ∑
i∈GNM

|A (i)|

+ p−MN

(
max
i∈GNM

|U(i)|

) ∑
i∈GNM

|A (i)|+ max
i∈GNM

|Z(i)| ,

then

|X(i, t)| ≤ Xmax for all t ≥ 0 and for all i ∈ GNM .
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In addition

X− (i) := lim inf
t→∞

X(i, t) ≤ X(i, t) ≤ lim sup
t→∞

X(i, t) =: X+ (i) ,

for i ∈ GNM . If X− (i) = X+ (i) := X∗(i), then

X∗(i) =
∑

j∈GNM

p−MNA(‖i− j‖p)f(X∗(i))

+
∑

j∈GNM

p−MNB(‖i− j‖p)U(j) + Z(i), for i ∈ GNM ,

and

X∗(i) ≥ −p−MN

(
max
i∈GNM

|f(i)|

) ∑
i∈GNM

|A (i)|

− p−MN

(
max
i∈GNM

|U(i)|

) ∑
i∈GNM

|A (i)|+ Z(i) , for all i ∈ GNM .

Theorem 4. Let X be the solution of a continuous p-adic CNN given by Theorem
1 with initial condition X0. Let XM be the solution of the Cauchy problem

(5.2)

{
dXM
dt = −XM + PMH(EMXM )

XM (0) = PM (X0),

cf. Proposition 2 and Remark 7. Then

lim
M→∞

sup
0≤t≤τ

‖XM (t)−X(t)‖∞ = 0.

Proof. The result follows from Lemma 4, Propositions 1, 2, by using standard tech-
niques of approximation for evolution equations, see e.g. [22, Theorem 5.4.7]. See
also [30, Section 9.1 and Theorem 7] for an in-depth discussion of similar mat-
ters. �

6. Numerical Simulations of p-Adic Continuous CNNs

In this section we present some numerical simulations of the solutions of several
p-adic continuous CNNs in dimension 1. We give two numerical schemes for the
numerical approximation of the solutions.

6.1. Numerical Scheme A.

Lemma 5. Let H(| · |p) ∈ L1(Qp) and let g ∈ X∞. We set Gk = p−kZp/pkZp,
k ∈ N. Then∫
Qp

H(|x− y|)g(y)dy = lim
k→∞

∑
i∈Gk; i6=x

g(i)p−kH(|x− i|p) + g(x)(1− p−1)

∞∑
l=k

H(p−l)p−l.
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Proof. By Lemma 4-(v), limk→∞
∑

i∈Gk g(i)Ω(pk|x− i|p) = g(x), now by the dom-
inated convergence theorem,∫

Qp

H(|x− y|p)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

H(|x− y|p)Ω(pk|y − i|p)dy

= lim
k→∞

∑
i∈Gk

g(i)

∫
x−i+pkZp

H(|z|p)dz.

Now, if |x− i|p > p−k, i.e. x 6= i in Gk, then∫
x−i+pkZp

H(|z|p)dz = p−kH(|x− i|p).

And if |x− i|p ≤ p−k, i.e. x = i in Gk, then∫
x−i+pkZp

H(|z|p)dz =

∞∑
l=k

H(p−l)(1− p−1)p−l.

�

We now assume that A, B are radial integrable functions, and that U , Z,
X0 ∈ X∞. Based on the continuity of operators A,B : X∞ → X∞ and the formula
given in Lemma 5, we can approximate the solution X(x, t) of a p-adic continuous
CNN(A,B,U, Z) by p2k ODEs, k ≥ 1, of the form

d

dx
X(i, t) = −X(i, t) +

∑
j∈Gk; j 6=i

f(X(j, t))p−kA(|i− j|p)+

f(X(i, t))(1− p−1)

kmax∑
l=k

A(p−l)p−l +
∑

j∈Gk; j 6=i

U(i)p−kB(|i− j|p)

+ U(j)(1− p−1)

kmax∑
l=k

B(p−l)p−l + Z(i), for i ∈ Gk.

In the simulations the parameters k, kmax were chosen by trial and error on a case

by case approach. The sum
∑kmax

l=k A(p−l)p−l can be approximated by A(p−k)p−k

in the cases were A(p−k)p−k is the dominant term in
∑kmax

l=k A(p−l)p−l.

6.2. Numerical Scheme B.

Lemma 6. Let H(x) =
∑m
l=0HlΩ(pkl |x− bl|p) be a test function and let g ∈ X∞.

Take Gk = p−kZp/pkZp, k ∈ N, as before. Then∫
Qp

H(x− y)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)

m∑
l=0

Hl

∫
Qp

Ω(pkl |x− i− bl − y|p)Ω(pk|y|p)dy

= lim
k→∞

∑
i∈Gk

g(i)

m∑
l=0

Hlp
min(−k,−kl)Ω

(
p−max(−k,−kl)|x− i− bl|p

)
= lim
k→∞

∑
i∈Gk

g(i)

m∑
l=0

Hlp
−max(k,kl)Ω

(
pmin(k,kl)|x− i− bl|p

)
.
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Proof. It is sufficient to consider the case where H(x) = Ω(pkH |x− bH |p) for some
kH ∈ Z and bH ∈ Qp. Since g(x) = limk→∞

∑
i∈Gk g(i)Ω(pk|x− a|p), we have∫

Qp

H(x− y)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

Ω(pkH |x− bH − y|p)Ω(pk|y − i|p)dy

= lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

Ω(pkH |(x− bH − i)− y|p)Ω(pk|y|p)dy.

Without loss of generality, we may assume that kH ≤ k, and since any two balls
are disjoint or one contains the other, then B−k ∩B−kH (x− bH − a) = ∅ or B−k ∩
B−kH (x−bH−i) = B−k. The latter case occurs if and only if 0 ∈ B−kH (x−bH−i),
i.e. when |x− bH − a|p ≤ p−kH . Therefore∫

Qp

Ω(pkH |x− bH − i− y|p)Ω(pk|y|p)dy = p−kΩ
(
pkH |x− bH − i|p

)
.

�

We now assume that U , Z, X0 ∈ X∞ and that A, B are test functions of the
form

A(x) =

mA∑
l=0

AlΩ(pkl |x− al|p), B(x) =

mB∑
l=0

BlΩ(pkl |x− bl|p.

Based on the continuity of operators A,B : X∞ → X∞ and the formula given in
Lemma 6, we can approximate the solution X(x, t) of a p-adic continuous CNN by
p2k ODEs, k ≥ 1, of the form

d

dx
X(i, t) = −X(i, t) +

∑
j∈Gk

f(X(j, t))

mA∑
l=0

Alp
−max(k,kl)Ω

(
pmin(k,kl)|i− j − al|p

)
+
∑
j∈Gk

U(j)

mB∑
l=0

Blp
−max(k,kl)Ω

(
pmin(k,kl)|i− j − bl|p

)
+ Z(i), for i ∈ Gk.

It is possible to combine the approximations given in numeric schemes A, B.

6.3. A remark on the visualization of finite rooted trees. The discretizations
of the kernels A, B are functions onGk×Gk, while the input U andX0 are functions
on Gk. We use systematically heat maps to present these functions. We always
include a plot of the tree Gk. By convention we identify the leaves of the tree Gk
with the set of rational numbers {0, 1/pk, 2/pk, . . . , (p2k − 1)/pk}. Furthermore,
we label the levels of Gk with integers from the set {−k,−k + 1, . . . , 0, 1, . . . k − 1}.
The level l consists of the cells i, j such that

− logp(|i− j|p) = (the level of the first common ancestor of i, j) = l.

6.4. First Simulation. In this example, we take k = 2, p = 2, which means that
we use a tree with 24 = 16 leaves and 4 levels. A basic application of the classical
CNNs is image processing, see e.g. [8]. In this example we present a one-dimensional
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edge detector, which is a p-adic, one-dimensional analog of the examples 3.1 and
3.2 in [8]. The input U is a image having three levels:

U(x) =
∑
i∈G2

UiΩ(22|x− i|2), Ui =

 −1 if i = 1, 2, 1/4, 13/4
0 if i = 1/2, 9/4, 5/4
1 otherwise,

x ∈ G2 = 2−2Z2/2
2Z2. As in [8] we take X0(x) = 0, A(x) = 0. To construct

template B, we identify a matrix with a test function. We use

B(x) = 64Ω(22|x|2)− 4
∑

i∈G2; i 6=0

Ω(22|x− i|2), x ∈ G2.

Finally, we take Z(x) = −Ω(2−2|x|2), f(x) = 1
2 (|x+ 1| − |x− 1|). The output

Y (x, t) consists of the edges on the input U , see Figure 7.

Figure 5. Simulation 1. Heat map U(x).
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Figure 6. Simulation 1. Heat map of B (|x− y|2), x, y ∈ G2.

Figure 7. Simulation 1. Step 0.05.

6.5. Second Simulation. In this example, we take k = 2, p = 2, which means
that we use a tree with 24 = 16 leaves and 4 levels. We consider a CNN with the
followin parameters:

A(x) = Ω(22|x− 2−2|2), B(x) = U(x) = Ω(22|x|2), Z(x) = 0, x ∈ G2.

We set X0(x) = 0 and f(x) = 1
2 (|x+ 1| − |x− 1|).

22



Figure 8. Simulation 2. Heat map A(x− y) for x, y ∈ G2.

In this network, we have A(i, j) = A(i − j) = Ω
(
22
∣∣i− j − 2−1

∣∣
2

)
, B(i, j) =

B(|i− j|2) = Ω
(
22 |i− j|2

)
= δi,j , where δi,j denotes the Konecker delta func-

tion. This network does not have the space-invariant property because A(i, j) =
Ω
(
22
∣∣i− j − 2−1

∣∣
2

)
is not a radial function. Due to this fact, A(i, j) is not a

symmetric matrix. For instance:

A(
15

4
, 0) = 0, A(0,

15

4
) = 1, A(

1

4
, 0) = 0, A(0,

1

4
) = 1.

Our interpretation is that there is a connection from cell 15
4 to cell 0, and a

connection from cell 0 to cell 1
4 . This assertion is confirm by the ouput Y (x, t), see

Figure 11. Notice that Y ( 1
2 , t) 6= 0 and A( 1

2 , 0) = A(0, 12 ) = 0. But A( 1
4 ,

1
2 ) = 0,

A( 1
2 ,

1
4 ) = 1, then there is a connection from cell 1

4 to cell 1
2 , which explains the

fact that Y ( 1
2 , t) 6= 0.
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Figure 9. Simulation 2. Heat map of B (|x− y|2) for x, y ∈ G2.

Figure 10. Simulation 2. Heat map of U(x).

The numerical solutions is given in Figure 11. We now take A(x) = B(x) =
Ω(22|x|2). In this case the output Y (x, t) changes completely, see Figure 12.
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Figure 11. Simulation 2. Step 0.05.

Figure 12. Simulation 2. Output with A(x) = B(x) = Ω(22|x|2)
and step 0.05.

6.6. Third Simulation. In this example, we take k = 3, p = 2, which means
that we use a tree with 26 = 64 leaves and 12 levels. We consider a CNN with
the following parameters: A(x) = Ω(23|x − 2−2|2), B(|x|2) = Ω(23|x|2), U(x) =
sin(p4|x|2), Z(x) = 0.15Ω(2−2|x|2) for x ∈ G3 = 2−3Z3/2

3Z3. We set X0(x) = 0
and f(x) = 1

2 (|x+ 1| − |x− 1|).
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As a consequence of the fractal nature of the p-adic numbers, the p-adic CNNs
exhibit self-similarity in several ways. For instance, the graph of the kernel A(x, y)
is a self-similar set, this follows by comparing the graphs given in simulations 2
and 3 for this kernel. In addition, the output Y (x, t) = 0 when the norm |x|2 is
sufficiently large. In this simulation the CNN produces a pattern similar to the
input.

Figure 13. Simulation 3. Heat map of A(x− y) for x, y ∈ G3.

Figure 14. Simulation 3. Heat map of U(x).
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Figure 15. Simulation 3. Step 0.05.

6.7. Fourth Simulation. In this example, we take k = 2, p = 2, which means
that we use a tree with 24 = 16 leaves and 4 levels. The parameters of the CNN are
A(x) = Ω

(
22
∣∣x− 2−2

∣∣
2

)
, B(x) = U(x) = Z(x) = 0, we set X0 (x) = Ω

(
22 |x|2

)
,

f(x) = 1
2 (|x+ 1| − |x− 1|) for x ∈ G2.

In this example, at time zero the cells near the origin are excited. Which causes
all the cells of the network to activate. The activation can be seen in the Fourier
transform of the output. After some time the network returns to a state of rest.

Figure 16. Simulation 4. Heat map of X0(x).

27



Figure 17. Simulation 4. Step 0.05.

Figure 18. Simulation 4.

7. CONCLUSIONS

In this article, we present a p-adic generalization of Chua-Yang CNNs. In the
p-adic framework, a continuous CNN is modeled by just one integro-differential
equation depending on several p-adic variables and the time. In contrast, the clas-
sical CNNs are described by a discrete system of integro-differential equations. The
need of constructing continuous models of discrete CNNs whose modeling requires
millions of integro-differential equations is quite natural.

A one-dimensional p-adic continuous CNN has infinitely many cells which are
hierarchically organized in rooted trees, also a such network has infinitely many
hidden layers. The topology of the network, which lately controls the interaction
of the cells, depends on the supports of the kernels of the feedback and feedforward
operators. Under mild hypotheses, there is a natural discretization process of
p-adic continuous CNNs that produces standard discrete CNNs. The solutions of
the continuous CNNs can be very well approximated by the solutions of discrete
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CNNs. Then, for practical purposes, a p-adic continuous CNN is a hierarchical
discrete CNN with many hidden layers.

Our numerical simulations show that the solutions of continuous CNN exhibit
a very complex behavior, including self-similarity and multistability, depending on
the interaction of the parameters defining the network and the initial datum.

In the p-adic framework, the class of continuous CNNs is huge, for instance,
consider equations of type

∂X(x, t)

∂t
= −LX(x, t) +

∫
QNp

A(x, y)Y (y, t)dNy +

∫
QNp

B(x, y)U(y)dNy + Z(x),

where ∂X(x,t)
∂t = −LX(x, t) is a p-adic heat equation, i.e. the fundamental solution

of a such equation is the transition probability density of a Markov process on
QNp . The class of p-adic heat equations is extremely large, see e.g. [20], [31].
By incorporating a ‘diffusion term’ is natural to expect that the corresponding
network will produce more complex patterns. We plan to study these networks in
a forthcoming article. In the classical framework the reaction-diffusion CNNs have
been studied intennsively, see e.g. [12, 13, 14].
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[22] Miklavčič Milan, Applied functional analysis and partial differential equations. World Scien-

tific Publishing Co., Inc., River Edge, NJ, 1998.
[23] Nakao Hiroya and Mikhailov Alexander S., Turing patterns in network-organized activator-

inhibitor systems, Nature Physics 6 (2010), 544-550.

[24] Rammal R., Toulouse G., Virasoro M. A., Ultrametricity for physicists, Rev. Modern Phys.
58 (1986), no. 3, 765–788.

[25] Slavova Angela, Cellular neural networks: dynamics and modelling. Mathematical Modelling:

Theory and Applications, 16. Kluwer Academic Publishers, Dordrecht, 2003.
[26] Taibleson M. H., Fourier analysis on local fields. Princeton University Press, 1975.

[27] Vladimirov V. S., Volovich I. V., Zelenov E. I., p-adic analysis and mathematical physics.

World Scientific, 1994.
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