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RESEARCH ARTICLE

Attachment strength and on-farm die-off rate
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K. Yemmireddy1, Cameron Cason1, Karuna Kharel1, Achyut AdhikariID
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1 School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA,

United States of America, 2 School of Plant, Environmental, and Soil Sciences, Louisiana State University

Agricultural Center, Baton Rouge, LA, United States of America

* acadhikari@agcenter.lsu.edu

Abstract

Pre-harvest contamination of produce has been a major food safety focus. Insight into the

behavior of enteric pathogens on produce in pre-harvest conditions will aid in developing

pre-harvest and post-harvest risk management strategies. In this study, the attachment

strength (SR) and die-off rate of E. coli on the surface of watermelon fruits and the efficacy of

aqueous chlorine treatment against strongly attached E. coli population were investigated.

Watermelon seedlings were transplanted into eighteen plots. Prior to harvesting, a cocktail

of generic E. coli (ATCC 23716, 25922 and 11775) was inoculated on the surface of the

watermelon fruits (n = 162) and the attachment strength (SR) values and the daily die-off

rates were examined up to 6 days by attachment assay. After 120 h, watermelon samples

were treated with aqueous chlorine (150 ppm free chlorine for 3 min). The SR value of the E.

coli cells on watermelon surfaces significantly increased (P<0.05) from 0.04 to 0.99 in the

first 24 h, which was primarily due to the decrease in loosely attached population, given that

the population of strongly attached cells was constant. Thereafter, there was no significant

change in SR values, up to 120 h. The daily die-off rate of E. coli ranged from -0.12 to 1.3 log

CFU/cm2. The chlorine treatment reduced the E. coli level by 4.2 log CFU/cm2 (initial level

5.6 log CFU/cm2) and 0.62 log CFU/cm2 (initial level 1.8 log CFU/cm2), on the watermelons

that had an attachment time of 30 min and 120 h respectively. Overall, our findings revealed

that the population of E. coli on watermelon surfaces declined over time in an agricultural

environment. Microbial contamination during pre-harvest stages may promote the formation

of strongly attached cells on the produce surfaces, which could influence the efficacy of

post-harvest washing and sanitation techniques.

Introduction

Fresh produce is highly implicated in foodborne disease outbreaks [1–3]. Produce is estimated

to be responsible for 20 million illnesses, resulting in the loss of $38.6 billion annually in the

US [4]. During 2010–2014, produce was on the top list of food categories responsible for Sal-
monella and shiga toxin–producing E. coli associated outbreaks [1]. Several studies have traced
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pre-harvest events as important causes of microbial contamination [5–8]. Produce is typically

consumed raw or minimally processed. Therefore, appropriate risk management strategies

should be in place in the field production stage to minimize food safety risks.

The transfer of microbial cells from sources to produce surfaces and their attachment are

the key events in pre-harvest contamination. Common sources of pre-harvest contamination

are soil, inadequately composted manure, irrigation water, dust, insects, an intrusion of wild

animals, and human handling [9–13]. Environmental factors such as temperature, relative

humidity, and contact time influence bacterial attachment and biofilm formation [14–17].

Once attached to fruit surfaces, bacterial cells initiate biofilms formation [18, 19], which is a

common defensive mechanism bacteria employ to protect themselves from environmental

stress [20]. Bacterial attachment is a key factor influencing the efficacy of post-harvest treat-

ments [21, 22]. Studies indicated that chlorine and other antimicrobial treatments could

become ineffective against pathogens firmly attached on produce [22–24]. Thus, an under-

standing of the behavior of microorganisms on produce in terms of attachment and survival is

essential to develop produce safety risk management strategies.

The survival of bacterial pathogens in agricultural field settings is influenced by environ-

mental conditions such as solar radiation, relative humidity, temperature, availability of nutri-

ents and interaction with other natural microflora [11, 25–29]. United States Food and Drug

Administration has included natural die-off as a corrective measure to reduce risks associated

with agricultural water and biological soil amendments, in the Food Safety Modernization Act

(FSMA) produce safety rule (PSR) [30, 31]. According to the FSMA PSR, producers that could

not meet the microbial water quality criteria could use a die-off rate of 0.5 log per day while

calculating the waiting period between the last irrigation and harvest. However, variable results

are reported for the die-off rate of E. coli, and some studies indicated that the die-off rate could

be affected by the surface characteristics of produce and the geographical location [11, 32].

Watermelons have been frequently associated with multi-state and multi-country outbreaks

[33, 34]. Since watermelon grows on the ground, this produce is highly susceptible to micro-

bial contamination during pre-harvest activities. The microbial die-off study on watermelons

in the south-central part of the U.S.A may provide a commodity and geographical location

specific microbial survival data for predictive die-off rate calculations. The present study exam-

ined the die-off rate and attachment behavior of E. coli on watermelon surfaces in an agricul-

tural field setting in a south central part of the U.S.A.

Materials and methods

Experimental overview

A watermelon field (22 x 28 m2) at the Louisiana State University Agriculture Center (LSU

AgCenter) Botanic Gardens in Baton Rouge, Louisiana, in summer 2016 was used in this

study. Watermelon variety ‘Legacy’was sourced from Reimer Seeds (MD, USA), and planted

into jumbo 6-0-6 plastic inserts and trays. The medium used was Sunshine Mix 1. The

medium, inserts, and trays were purchased from BWI Companies Inc. (Nash, TX). To achieve

uniform germination, seeds planted into the trays were placed on heat mats set at 29˚C for 24

hours. The trays were removed off the mats but kept in the greenhouse for 3 weeks. After the

first true leaf emerged, seedlings were fertilized with Peter’s 20-20-20 (ICL Specialty Fertilizers,

the Netherlands) weekly at 200 ppm N. Five hundred pounds (65 lbs actual N per acre rate) of

Expert Gardener 13-13-13 (Schultz Company St. Louis, MO) was incorporated into the field 7

days prior to planting. After transferring the plants to the field, overhead irrigation was used to

establish plants, until the vines began to run. Irrigation was not applied within the last month

of growth prior to the harvest. In this study, only municipal water was used for irrigation, and
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no biological soil amendments of animal origin were added to the seedlings or to the field thus

minimizing microbial contamination.

Testing natural coliform and E. coli levels on the watermelon surfaces

After 80 days, watermelon samples (n = 25) were randomly harvested from different locations

of the field using sterile disposable gloves. Watermelon length, width (L x W cm2) and fresh

weight (g) were measured. The visible soil was removed using sterile tissue paper. Each water-

melon was cut horizontally into halves, upper (facing to sunlight) and lower (facing to the

ground) and the edible portion was removed using sterile stainless-steel knives. The area of

each watermelon surfaces was measured (Area = π � Semi-Major Axis � Semi-Minor Axis).

The areas of the half watermelon surfaces ranged from 187 to 366 cm2. Watermelon rinds

from each halves were then aseptically transferred into a sterile polythene bags and immedi-

ately transported to the laboratory maintaining 4ºC. After receiving the samples in the lab,

0.1% peptone water (100 mL) was added into each bag and the rind was hand massaged with

peptone water for 5 min to dislodge the microorganisms from the melon surfaces. The super-

natant after massaging was used for the microbial analysis. Petrifilm™ EC plates (3M™ Microbi-

ology Products Co., St. Paul, MN) were used to enumerate coliform and E. coli levels on the

watermelon surfaces.

E. coli inoculum preparation

This study used a cocktail of three E. coli strains (ATTC 23716, 25922 & 11775). These strains

are among the few well-characterized potential surrogates for E. coli O157:H7 for use in field

trials [35, 36]. Frozen cultures were activated in three successive passes and harvested to an ini-

tial inoculum size of 7–8 log CFU/mL by following the procedure described by Adhikari et al

(2016) [37]

Curli expression of E. coli
The level of curli expression of E. coli strains was determined using the congo red binding

assay [38, 39]. Each culture was streaked on Congo red indicator (CRI) agar (0�1% tryptone,

0�05% yeast extract, 1�5% agar, 0�004% Congo red and 0�002% Coomassie brilliant blue) and

incubated at 22˚C and 32˚C for 48 h. We recorded E. coli producing red colonies as curli pro-

ducers, while those producing colorless colonies were recorded as curli negative.

Watermelon inoculation with E. coli
Watermelons (n = 160) in the field were selected at random, and a circle (50 cm2) was drawn

on the upper surface of each watermelon fruits using a permanent marker pen. Prior to inocu-

lation, the E. coli cocktail was agitated 25 times in a 30 cm arc to ensure thorough mixing.

Each marked surface was then spot inoculated with 200 μL inoculum distributed into 15 small

droplets and spread using a sterilized cotton swab.

Recovery of strongly and loosely attached E. coli from watermelon surfaces

At 24 h time intervals (0, 24, 48, 72, 96 & 120 h), six watermelon samples were harvested ran-

domly each time (n = 36). The inoculated rind area of each watermelon was cut as a disk (50

cm2, 42 g) and separated from the edible portion using a sterile stainless steel knife. We placed

the disks in sterilized plastic bags and transported to the laboratory maintaining 4˚C. After

that, we separated the outer green peel (8 g) using a sterilized vegetable peeler and placed in a

sterile Security-Snap Bottle (Fisher Scientific, USA). The attachment assay was performed

Die-off of Escherichia coli on watermelon
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using the method described by Ells and Hansen (2006) [15] with a slight modification. Briefly,

25 ml of PBS (pH 7.2) containing 0.1% Tween 20 was added to the peel and vortexed for 20 s

to remove loosely attached bacterial cells. We repeated the washing process in a new bottle

with fresh PBS containing 0.1% Tween 20. We collected and mixed spent wash solutions for

the enumeration of loosely attached E. coli cells. The washed rinds were transferred to 50 ml

Falcon1 tubes containing 25 mL of PBS and homogenized for 30 s at high speed using a

Fisher Scientific™ 150 Hand Held Homogenizer (Fisher Scientific, USA). Between each sample,

we sanitized the homogenizer with 70% ethanol and rinsed three times with sterile distilled

water to remove residual alcohol. The homogenate was used to enumerate strongly attached E.

coli. Enumeration of E. coli was done by plating the homogenates and their respective wash

solutions on 3M™ Petrifilm E. coli/Coliform count plates and incubating the plates at 37˚C for

48 h. The attachment strength (SR value) was calculated as the ratio of bacterial population

recovered from homogenate (strongly attached cells) to the total bacterial cells (strongly

attached + loosely attached) [14]. The weather data for the study period was retrieved from

https://www.wunderground.com.

Scanning electron microscopy analysis

Watermelon rinds obtained after double PBS-tween 20 buffer wash were cut off (about

2x2 mm area and 0.5 mm thickness) using a sterile blade. The cut pieces were fixed over-

night in an FAA solution (95% Ethanol (50 mL), Glacial Acetic Acid (5 mL), 40% Formal-

dehyde (10 mL), distilled water (35 mL). The fixed samples were dehydrated in a graded

ethanol series (50%, 70%, and 100%). The samples were then dried in a Denton DCP Criti-

cal Point Dryer (Denton Vacuum, LLC, USA) with CO2 as the transition gas. We mounted

the samples on aluminum SEM stubs and coated with platinum in an EMS 550X sputter

coater (Electron Microscopy Sciences, USA). The samples were examined with a JSM-

6610 scanning electron microscope (JEOL USA Inc., USA) at an accelerating voltage of 10

KV in the high vacuum mode.

Chlorine treatment

Watermelons (n = 18, 9 each at 30 min and 120 h post-inoculation) were harvested using ster-

ilized disposable gloves. Each watermelon was completely dipped into 10 liters of aqueous

150 ppm chlorine (available) solution (25˚C, pH 7.3) (Clorox1, Oakland, CA, USA) for 3

min. Chlorine concentration was measured by Clorox Smart Strips (Clorox1, Oakland, CA,

USA). After the treatment, we removed the inoculated disks from the fruits as previously men-

tioned, and separated the outer green peel using a vegetable peeler. The peel was homogenized

in 100 mL of Dey-Engley (D/E) Neutralizing Broth using a Fisher Scientific™ 150 Hand Held

Homogenizer (Fisher Scientific, USA). We enumerated E. coli populations in the homogenate

using 3M™ Petrifilm E. coli/Coliform count plates.

Statistical analysis

Coliforms and generic E. coli populations recovered from the watermelon samples by direct

plating on the 3M petrifilms were converted to log CFU/cm2. The bacterial die-off and attach-

ment strength over the time was analyzed using ANOVA with Proc mixed feature of SAS 9.4

(SAS Institute, Cary, NC, USA.). The level of statistical significance was p<0.05 in all cases.
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Results

Levels of natural coliforms and E. coli on upper and lower half surfaces of

watermelons

All the tested samples were positive for coliforms. The coliforms levels were not significantly

different (P>0.05) with an average population of 2.20±0.18 log CFU/cm2 and 2.65±0.17 log

CFU/cm2 on the upper and the lower half samples, respectively. We observed a low prevalence

of natural E. coli on the surfaces of the watermelon fruits (S1 Appendix). Out of 25 watermel-

ons, 10 were positive for E. coli with five upper half and six lower half positive samples. Only

five watermelons had E. coli levels more than 1 log CFU/cm2. Although some lower half sur-

faces had higher count (up to 2.64 log CFU/cm2) compared to upper half surfaces (< 1 log

CFU/cm2), overall E.coli prevalence or level was not significantly different between the

surfaces.

Die-off rate and attachment strength of E. coli on watermelon surfaces

The die-off rate of E. coli inoculated on the watermelon surfaces is shown in Fig 1. A significant

reduction (P<0.05) in E. coli population (total) was observed within 24 hours (Day 2). In the

period between 24 to 96 h, there was no significant (P>0.05) reduction in E. coli levels. At 120

h, the total reduction was 1.94 log CFU/cm2 (from 3.65 log CFU/cm2 to 1.71 log CFU/cm2).

The daily die-off rate was variable during the study period, and the daily die-off pattern was

more likely multiphasic up to 120 h. The highest daily die-off was 1.30 log CFU/cm2 in day 2

(after 24 h) followed by 0.63 log CFU/cm2 in day 6, which were greater than the FSMA pro-

duce safety rule predicted die-off rate (0.5 log CFU/day) on produce surfaces. However, in

other days, the die-off rates were lower than the predicted value.

All the tested E. coli strains (ATCC 23716, ATCC 25922 and 11775) produced intense red

colored colonies on CRI agar at 32˚C indicating a strong curli expression. However, at 22˚C,

only E. coli ATCC 25922 showed curli expression. Other tested strains (ATTC 23716 and

11775) produced curli negative (colorless) colonies at that temperature.

Fig 1. Die-off and attachment of E. coli on watermelon surfaces. Average E.coli count on the watermelon surfaces

and FSMA- PSR predicted count on produce surfaces based on the die-off rate of 0.5 log CFU/day, up to 120 h (Day 6).

The population of loosely attached and strongly attached cells is also shown for up to 120 h. SR Value (Attachment

Strength) = Strongly Attached Cells/ Total Cells (strongly attached+ loosely attached). Data are shown as mean

values ± standard deviation.

https://doi.org/10.1371/journal.pone.0210115.g001
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The level of E. coli attachment on the watermelon surfaces is shown in Fig 1. The attach-

ment strength (SR) of E. coli on the watermelon surfaces increased significantly (P<0.05)

within 24 h. The initial SR value at 0 h (i.e., after 30 min of inoculation) was 0.04, which

increased to 0.99 after 24 h, and this level maintained up to 120 h. There was a significant

reduction (P<0.05) in loosely attached population (from 3.6 log CFU/cm2 to 0.20 log CFU/

cm2) in 24 h. Afterward, the lower level of loosely attached population maintained up to 120 h.

However, there was no significant change in the strongly attached population up to five days

(the graph overlapped by total count). Thus, the increase in SR over time was mainly attributed

to the decrease in the loosely attached population, given that the population of strongly

attached cells was constant.

Scanning electron microscopy (SEM) analysis

The SEM micrographs showed a strong colonization of small rod-shaped bacterial cells on the

surface of watermelons after 24 h (Fig 2). Since these samples were inoculated with E. coli cells

(~ 4 log/cm2) and there was a trend of attachment over time, the majority of those cells were

possibly E. coli. At 0 h, individual cells were predominant on the watermelon surfaces (Fig

2A). After 24 h, the cells were smaller and clustered together. As time progressed, the cells

became overlaid with a sheath of substances resembling an extracellular matrix (Fig 2C). After

120 h, it was hard to observe bacterial cells on the watermelon surfaces.

Efficacy of chlorine treatment

The efficacy of aqueous chlorine (150 ppm) against E. coli on the watermelon surfaces at two

different attachment times (30 min and 120 h) is shown in Fig 3. The efficacy of chlorine treat-

ment in reducing the E. coli level was significantly (P< 0.05) higher on the freshly inoculated

watermelons than on those watermelons inoculated 120 h before the treatment. The average

reduction due to the chlorine treatment was 4.2 log CFU/cm2 and 0.62 log CFU/cm2 on 30

min and 120 h post-inoculation watermelon samples, respectively.

Fig 2. Scanning electron micrographs of E. coli inoculated watermelons surfaces. SEM images (SEI 10 KV, 5,000x &

10,000x) of watermelon surfaces after inoculating with E. coli and leaving them in an agriculture field for 0 h (A), 24 h

(B), 48 h (C), 72 h (D), 96 h (E) and 120 h (F).

https://doi.org/10.1371/journal.pone.0210115.g002
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Discussion

Coliforms and E. coli were uniformly distributed on the watermelon

surfaces

The lower part of watermelon surfaces which sits on soil is generally assumed to have a higher

microbial level than the upper part of the watermelon. Studies on melon-rinds indicated a

higher level of microbial contamination on ground spots as compared to the non-ground spot

areas of melon rinds [40, 41]. In addition, the upper surfaces may have a greater chance of

exposure to sunlight than the lower surfaces. However, we did not observe a significant differ-

ence in the levels of coliforms between upper and lower half surfaces of the watermelon. This

result agrees with our previous study, which observed a similar level of coliform and generic E.

coli counts on watermelons with different levels of sunlight exposure caused by the surround-

ing vegetation [42]. The top part of watermelon surfaces may be equally prone to the bacterial

contamination as the bottom part in the agriculture field. Results were observed in the condi-

tion where municipal water was used for irrigation without the addition of biological soil

amendments of animal origin. Therefore, further investigation to establish an association

between the distribution of microbial cells on produce surfaces and sources of contamination

is needed.

Majority of E. coli die-off was within 24 h of contamination

Our study demonstrated that die-off of E. coli does occur on watermelon rind surfaces in an

agricultural field environment. The reduction in culturable E. coli population on the surface of

watermelon fruits was significant at 24 h. However, the reduction rate did not follow the same

pattern over time. The rapid decline in E. coli population in the first 24 h was evident in most

of the studies [43], which was likely due to the sudden change in the environmental conditions.

Limitation of nutrients, sunlight, desiccation, and competition with surface microflora might

have been the predominant stress factors [43]. Several studies have reported an average die-off

Fig 3. Efficacy of chlorine (150 ppm for 3 min) on E. coli inoculated watermelon surfaces. 30 min: Inoculated 30

min prior to the treatment; 120 h: Inoculated 120 h prior to the treatment. The bar diagrams with different lowercase

letters on the top are significantly different (P < 0.05) from each other. The detection limit of the test was 0.28 log

CFU/cm2.

https://doi.org/10.1371/journal.pone.0210115.g003
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rate of around half a log on produce matrices, such as lettuce and spinach [44, 45]. For

instance, Weller et al (2017) [46] demonstrated a mean E. coli die-off rate of 0.52 log MPN on

lettuce heads under field condition in Freeville, New York. Similarly, Barker-Reid et al (2009)

[44] observed a total reduction of E. coli level on lettuce by 2.2-log in 5 days (the average daily

die-off rate of 0.44 log) in southeastern Australia. Wood et al (2010) [45] observed an exponen-

tial decline in E. coli population on spinach after irrigation over the time under field condition

in Canada. In contrast, we did not observe any significant change in the E. coli levels between

48 to 96 h. This result may be attributed to the bacterial ability to adapt to a new environment

and/or to develop resistance to the environmental stresses, by altering their cellular physiology

[47–51]. However, further studies are needed to better understand the survival mechanisms of

bacterial cells, specifically on the surface of watermelon fruits.

We compared the daily die-off rate with the rate recommended by FSMA produce safety rule

(0.5 log per day) to see if it followed a similar pattern. Out of 6 days, two days (day 2 and day 6)

had higher daily die-off rate than the recommended rate. However, for other days the population

did not change significantly. In other studies, daily die-off rate of E. coli on produce varied from

0.4 to 1.64 log MPN/day [26, 46, 52, 53]. As the geographical locations where the studies were con-

ducted were different among studies, the variation in die-off rate might be due to the differences

in environmental factors. We recorded the temperature, relative humidity and the precipitation

for 120 h (Table 1). There was not much change in temperature and the relative humidity values

during the study period. However, these parameters may vary every hour during day and night.

Thus, further study is needed to determine the association between environmental factors and the

survival of bacterial cells on produce surfaces. The bacterial strains used in the studies could have

been another factor [54]. Weller et al. (2017) [46] observed a significantly lower die-off rate on the

lettuce head samples harvested after a rain event. We did not have sufficient data to establish an

association between precipitation and die-off. Our study showed that waiting days between con-

tamination and harvest could be a way to reduce the bacterial load on produce surfaces. However,

the die-off rate may be dependent on multiple factors.

Attachment strength of E. coli on watermelon surface increased over time

The ability of bacterial pathogens to attach and form biofilm to produce surfaces is one of the

biggest concerns in produce safety. Microorganisms are highly tolerant of various disinfectants

when they are in a strongly attached form or in biofilms [55]. In our study, the attachment

strength of E. coli on watermelon surfaces increased with time. The proportion of strongly

attached cells to loosely attached cells reversed after 24 h. The majority of survivors or cultur-

able E. coli cells were in strongly attached form, and the increase in SR value over time was

mainly attributed to the decrease in loosely attached population. Therefore, further study is

needed to understand the fate of E. coli cells on produce surfaces, especially die-off and the

posibility of transforming into strongly attached cells.Our SR results agree with the findings of

other studies, which demonstrated the increasing attachment strength of pathogens on pro-

duce (vegetables) surfaces over time [14, 15, 38, 56]. The attachment strength (SR value) of E.

coli O157: H7 increased from 0.09 to 0.45 on intact cabbage surface after 24 h [38]. In another

study, Ells and Hansen [15] reported that the initial SR of L. monocytogenes to intact cabbage

surfaces was 0.66, which increased to 0.82 after 24 h of storage at 37˚C.

The initial step of the bacterial colonization to produce surfaces is the reversible attachment

[55]. In our study, the proportion of loosely attached cells was significantly higher than

strongly attached cells at 0 h, after inoculation. Other studies also reported similar results [14].

This result may be attributed to the initial reversible and weak attachment of bacterial cells.

One of the subsequent steps of the colonization involves the production of the exopolymeric
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substances (EPS) which leads to an irreversible attachment [55]. Bacteria use this mechanism to

protect themselves from the harsh environment of phyllosphere and to buffer environmental

changes such as nutrient stress, desiccation and UV irradiation [47, 57, 58]. Scanning electron

micrograph showed a different bacterial arrangement after 24 h, which may be associated with

EPS production. The bacterial cells were enclosed in a structure similar to the extracellular poly-

meric matrix demonstrated by other studies [15, 47]. Annous et al (2005) [47] observed a fibrillary

material after 2 h, and salmonella cells embedded in an extracellular polymeric substance in 24 h

at 10 & 20o C. Ells and Hansen (2006) [15] observed a greater number of clusters of Listeria spp

with an extrapolymeric coating (biofilm) on cabbage surfaces after 24 h. These results indicate

that the higher level of bacterial attachment might be associated with the production of the exopo-

lymeric substance. If the bacterial cells are embedded in an exopolymeric substance, even the sur-

factants based washing becomes ineffective in removing them from produce surfaces.

The bacterial attachment and biofilm formation to produce surface are complex processes

which may alter physicochemical properties of both bacteria and plant surface [56, 59]. In E. coli,
curli has been found to be associated with the attachment and biofilm formation on biotic and

abiotic surfaces [38, 39]. Curli-expressing E. coli O157:H7 strains showed a higher level of attach-

ment to spinach surfaces compared to the curli-deficient mutants [39].The curli expression of E.

coli is dependent on environmental factors such as temperature, oxygen level and osmolality [60,

61].In our study, all three E. coli strains exhibited a better curli expression ability at 32˚C. While

the field temperature during the study period ranged from 23.5˚C to 35.5˚C. The favorable envi-

ronmental temperature might have contributed to the attachment of E. coli cells to watermelon

surfaces. However, bacterial cell surface charge and hydrophobicity could be other potential fac-

tors associated with the attachment. Patel et al (2010) [14] reported that strong curli-expressing E.

coli O157:H7 showed a higher surface hydrophobicity and a higher level of attachment to the cab-

bage and iceberg lettuce surfaces than other weak curli expressing strains.

The efficacy of the chlorine wash reduces with increase in bacterial

attachment level

This study showed that the chlorine treatment was effective on watermelon surfaces immedi-

ately after the contamination with E. coli. However, the efficacy of the treatment decreased

Table 1. Weather conditions during the study period.

Day

(Hour)

Day light length

(H:Min:S)

Temperature

(oC)

Relative humidity

(%)

Average Precipitation

(Inches)

Low High Day Average Low High

Day 1

(0 h)

NA 24.4 34.4 29.4 48 94 0.93

Day 2

(24 h)

13:49:50 24.4 35.5 30.0 46 91 ND

Day 3

(48 h)

13:48:45 25.0 35.5 30.5 52 90 ND

Day 4

(72 h)

13:47:37 23.8 33.3 28.8 54 90 0.04

Day 5

(96 h)

13:46:28 23.8 35.0 29.4 54 94 ND

Day 6

(120 h)

13:45:18 23.5 32.7 28.8 57 90 ND

ND: Not detected. Temperature: low, high, and day average. Relative humidity: low and high. These weather data were retrieved from https://www.wunderground.com.

The temperature values in Fahrenheit were converted to centigrade.

https://doi.org/10.1371/journal.pone.0210115.t001
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significantly when treated after 120 h of contamination. Our results concurred with the find-

ings of other studies [56, 62]. Ölmez & Temur, (2010) [62] found that the sanitizer treatments

(including chlorine treatment) reduced 99% of total E.coli and L. monocytogenes population

on lettuce leaves after 6 h of inoculation. However, after 48 h, the treatment reduced only up to

90% of the bacterial population. In an another study, chlorine treatment was less effective

when applied after 60 min of the inoculation than 20 to 40 min of the inoculation on the canta-

loupe rinds [56]. The results indicate that the efficacy of the chlorine treatment is dependent

on the level of bacterial attachment. The reduced efficacy of chlorine against strongly attached

cells or cells enclosed in biofilms may be attributed to the limited penetration ability of this

sanitizer into exopolymeric substances or biofilm matrix [63]. Bacterial cells embedded within

the crevices and fissures of the watermelon rind may be another factor. Cracks and fissures on

melon rind surfaces may allow bacterial cells to enter interior tissues [64]; this phenomenon

may limit the access of bacterial cells to the applied sanitizer solutions. E. coli levels on the

watermelons harvested at 0 h and at 120 h, before chlorine treatment, was different. Further

study is needed to see if there is an effect of the initial bacterial load on the effectiveness of

chlorine treatment on watermelon surfaces.

Overall, we calculated an average daily die-off rate of E. coli on watermelon surfaces in an

agriculture setting in a south central location of the United States. The differences in die-off

rate from other studies could be due to a number factors, including environmental conditions

(Louisiana versus other locations, summer versus other seasons), level of vegetation in the

field, type of produce, type of bacterial strains and length of the study. Further studies, there-

fore, are needed to identify associated factors and their level of influence on the die-off rate,

specifically on human pathogens. We observed an increase in attachment level of E. coli with

time in field condition and a lower efficacy of chlorine treatment on the watermelon surfaces 6

days after the inoculation. The results indicated that the efficacy of the chlorine might be

dependent on the attachment level of bacterial cells. The results reported in this study may be

useful while developing pre-harvest and post-harvest risk management strategies.
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