A Matrix Application to Systems of n Linear and Non-Linear Homogenous 1st Order Differential Equations

William Loy Lester
Prairie View A\&M College

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-theses

Recommended Citation

Lester, W. L. (1968). A Matrix Application to Systems of n Linear and Non-Linear Homogenous 1st Order Differential Equations. Retrieved from https://digitalcommons.pvamu.edu/pvamu-theses/678

This Thesis is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in All Theses by an authorized administrator of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

A MATRXX APPLLCATION TO SYSTEMS OF n LNEAR AND NON-LINEAR HOMOGENEOUS IST ORDER DIFFERENTIAL EQUATIONS
 LESTER
 1968

A MATRIX APPLICATION TO SYSTEMS OF n LINEAR AND NON-IINEAR HOMOGENEOUS lst ORDER DIFFERENTIAL EQUATIONS

A Thesis
Presented to
the Faculty of the Department of Mathematics in the
Graduate Division
Prairie View Agricultural and Mechanical College

In Partial Fulfillment of the Requirement for the Degree Master of Science

by
William Loy Lester

August, 1968

This Thesis for the Degree
Master of Science
by

William Loy Lester

Has been approved for the
Department of Mathematics

by

$$
\frac{7-24-68}{\text { Date }}
$$

DEDICATION
This paper is dedicated to mywife, Virda and my parents, Mr. \& Mrs.
A. W. Lester who have been an inspirationto me throughout my graduate study.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to

> Dr. A, D, Stewart
for his many helpful conversations, suggestions,
criticisms and for his encouragement throughout my graduate study, Dr, Stewart is truly a great mathematician and an excellent teacher.
W.L.L.

TABLE OF CONTENTS

CHAPTER PAGE
I. Introduction and Terminology 1
II. Auxillary Theorems 5
III. Basic Lemmas 7
IV. Main Theorem 11
V. Application 20
Bibliography 23

INTRODUCTION AND TERMINOLOGY

The theory of differential equations constitute a large and very important branch of mathematical analysis. Differential equations occur in connection with numerous problems which are encountered in various branches of science and engineering. In the study of differential equations one has been able to find solutions to some very important problems such as: the problem of determining the motion of a projecticle rocket, satellete, the change of current in an electric circuit and the reaction of chemicals.

Let us consider the system of n linear homogeneous lst order differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}(x)=a_{11}(x) y_{1}(x)+a_{12}(x) y_{2}(x)+\cdots+a_{1 n}(x) y_{n}(x) \\
& y_{2}^{\prime}(x)=a_{21}(x) y_{1}(x)+a_{22}(x) y_{2}(x)+\cdots+a_{2 n}(x) y_{n}(x) \\
& \vdots \\
& y_{n}^{\prime}(x)=a_{n 1}(x) y_{1}(x)+a_{n 2}(x) y_{2}(x)+\cdots+a_{n n}(x) y_{n}(x)
\end{aligned}
$$

this system can compactly be written in vector and matrix notation as $Y^{\prime}(x)=A(x) Y(x)$, where $Y^{\prime}(x)$ and $Y(x)$ are n-dimensional vector functions and $A(x)$ is an $n \times n$ matrix function.

In recent years, matrices have become very useful in the study of differential equations.

The aim of this paper is to demonstrate the application of matrices to the existence and uniqueness of solutions to systems of differential equations. This matrix theory will be applied to both the linear and non-linear homogeneous lst order cases.

It is well known that under certain conditions the linear scalar differential equation $y^{\prime}(x)=\operatorname{ay}(x), y\left(x_{0}\right)=y_{0}$ and the non-linear scalar $y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=y_{0}$ have a solution and the solution is unique. The matrix and vector form of the system suggest a solution similar to the solution of a single differential equation.

Some of the basic definitions and terminology to be used in this paper are as follows:

Symbols and/or Definitions
(1) A differential equation
(2) Linear differential equation
(3) A non-linear differential equation
(4) The degree of a differential equation
(5) A solution to a differential equation

Meaning

An equation involving $x, y(x)$ and the derivatives of $y(x)$.

A differential equation such that
(a) $y(x)$ is of list degree
(b) all the derivatives of $y(x)$ are of lst degree
(c) no product of $y(x)$ and the derivatives of $y(x)$ occur.

A differential equation that is not linear.

The degree of the highest ordered derivative appearing after all fractional exponents have been removed.
(a) An equation free of derivatives
(b) An equation that satisfies the differential equation.
(6) list order linear homogeneous differential equation
(7) $\mathrm{f}(\mathrm{x})$ is a function
(8) $f(x)$ is continuous at x_{0}
(9) A is a matrix
(10) A is a square matrix
(11) $\mathrm{A}(\mathrm{x})$ is a matrix function
(12) $\mathrm{V}(\mathrm{x})$ is a k -dimensional vector function
(13) $A(x)$ is a continuous matrix function on I
(14) I is a closed interval
(15) R is a rectangle
(16) $\sum \mathrm{V}_{\mathrm{n}}(\mathrm{x})$ converges uniformly on I to $\mathrm{V}(\mathrm{x})$
(17) $\sum V_{k}^{n}(x)$ is uniformly convergent on I
(18) Z is the norm of the matrix A
(19) The matrix function $A(x)$ is bounded

A linear differential equation: $y^{\prime}(x)=a(x) y(x)+b(x)$ is homogeneous if $b(x)$ is identically zero.
$f(x)$ is a set of ordered number pairs (x, y) such that no two pairs have the same first x number.

If $\mathrm{e}>0$, then there exist a $\mathrm{d}>0$, such that if $\left|x-x_{0}\right|<d$, then $\left|f(x)-f\left(x_{0}\right)\right|<e$.
A is a rectangular array of numbers.
A has the same number of rows as columns.

A is a matrix whose elements are functions
$\mathrm{V}(\mathrm{x})$ is a kxl matrix function.

A is a matrix whose elements are continuous functions on I.
$I=\{a \leq x \leq b\}$.
$R=I x I$.
If $\mathrm{e}>0$, there exist $\mathrm{a} \mathbb{N}>0$, such that $n>\mathbb{N}$, then $\left|\Sigma y_{n}(x)^{\prime}-V(x)\right|<e$.
$\sum_{k} n_{k}(t)$ converges uniformly $z=\sum_{i j}^{n}\left|a_{i j}\right|$.

There exist a positive number K, such that $\|A(x)\| \leqslant K$.

In Chapter II we shall state the auxillary theorems. These theorems are used at various points in this paper, however they will
not be proved.
In Chapter III we shall state and prove some basic lemmas to be used in this paper.

In Chapter IV we shall state and prove the main theorem.
Chapter V gives an application of a system of two linear lst order homogeneous differential equations.

AUXILIARY THEOREMS

Theorem 1.1
H: $f(x) \in C^{\circ}$ on I.
C: $\quad\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

Theorem 1.2
$H_{1}: f(x) \in C^{0}$ on I
$H_{2}: \quad F(x)=\int_{a}^{x} f(t) d t$

C: $\quad F(x) \in C^{\circ}$ on I.

Theorem 1.3
$H_{1}: f_{n}(x) \in C^{0}$ on I for each $n=1,2,3, \ldots$
$H_{2}: \quad \sum_{n}(x)$ converges uniformly on I to $f(x)$

C: $f(x) \in C^{\circ}$ on I.

Theorem 1.4
$H_{1}: f_{n}(x)$ is defined for each $n=1,2,3, \ldots$
$H_{2}: \sum M_{n}$ converges, $M_{n}>0$ for each $n=1,2,3, \ldots$
$H_{3}:\left|f_{n}(x)\right| \leqslant M_{n}$ for each n and for each x on I

C: $\sum f_{n}(x)$ converges uniformly on I.

Theorem 1.5
$H_{1}: f_{n}(x) \in C^{0}$ on I for each $n=1,2,3, \ldots$
$H_{2}: \sum f_{n}(x)$ converges uniformly on I.'
C: $\quad \int_{a}^{b} \sum f_{n}(x) d x=\sum \int_{a}^{b} f_{n}(x) d x$.

Theorem 1.6
$H_{1}: f_{n}(x)$ is a sequence of real functions which converges uniformly to $f(x)$ on I.
$H_{2}: f_{n}(x)$ is continuous on I for each $n=1,2,3, \ldots$

C: $\quad \operatorname{Lim}_{n} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} \operatorname{Lim} f_{n}(x) d x$.

Lemma 2.1

H: A and B are $n \times n$ matrices
$C: \quad\|A+B\| \leqslant\|A\|+\|B\|$
Proof:

1. $\|A+B\|=\sum_{i j}^{n}\left|a_{i j}+b_{i j}\right|$
2. $\left|a_{i j}+b_{i j}\right| \leqslant\left|a_{i j}\right|+\left|b_{i j}\right|$ for each $I \leq i \leq n$ and

$$
1 \leq j \leq n
$$

3. $\|A+B\|=\Sigma\left|a_{i j}+b_{i j}\right| \leq \sum\left(\left|a_{i j}\right|+\left|b_{i j}\right|\right)$
$\leq \sum\left|a_{i j}\right| \cdot+\sum\left|b_{i j}\right|$
4. $\|A+B\| \leq\|A\|+\|B\|$ Q.E.D.

Lemma 2.2

H: A and B are $n \times n$ matrices
C: $\quad\|A-B\| \leq\|A\|+\|B\|$
Proof:

1. $\|-B\|=\|B\|$
2. Replace B by $-B$ in Lemma 2.1
3. $\|A-B\| \leq\|A\|+\|B\|$ Q.E.D.

Lemma 2.3
IF A and B are $n \times n$ matrices
C: $\quad\|A B\| \leq\|A\|\|B\|$

Proof:

1. $\|A B\|=\sum_{i j k}\left|a_{i k} b_{k j}\right|$
2. $\|A B\|=\sum_{i k_{j}}^{n}\left|a_{i k}\right|\left|b_{k j}\right| \leq \sum_{i k_{j l}}^{n}\left|a_{i k}\right|\left|b_{1 j}\right|$
3. $\|A B\| \leq\left(\sum_{i k}^{\pi}\left|a_{i k}\right| \sum_{i j}^{\pi}\left|b_{l j}\right|\right)$
4. $\|A B\| \leqslant\|A\|\|B\|$
Q.E.D.

Lemma 2.4
H: $A(x)$ is a continuous matrix function on I
C: $\quad\left\|\int_{a}^{b} A(x) d x\right\| \leq \int_{a}^{b}\|A(x)\| d x$

Proof:

1. $\quad\left\|\int_{a}^{b} A(x) d x\right\|=\Sigma\left|\int_{a}^{b} a_{i j}(x) d x\right|$
2. $\left|\int_{\Delta}^{b} a_{i j}(x) d x\right| \leqslant \int_{a}^{b}\left|a_{i j}(x)\right| d x \quad$ By Theorem 1.1
3. $\left\|\int_{a}^{b} A(x) d x\right\|=\sum\left|\int_{a}^{b} a_{i j}(x) d x\right| \leqslant \sum \int_{a}^{b}\left|a_{i j}(x)\right| d x$

$$
\leq \int_{2}^{b} \sum\left|a_{i j}(x)\right| d x
$$

4. $\left\|\int_{a}^{b} A(x) d x\right\| \leqslant \int_{a}^{b}\|A(x)\| d x$. Q.E.D.

Lemma 2.5
The following two statements are equivalent:

A: $\quad Y^{\prime}(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0}$
$B: Y(x)=Y_{0}+\int_{X_{0}}^{X} A(t) Y(t) d t$
Proof: A: is equivalent to B :

1. $Y^{\prime}(x)=A(x) Y(x), Y\left(x_{0}\right)=Y_{0}$
2. $\left.Y(x)\right|_{x_{0}} ^{X}=\int_{X_{0}}^{X} A(t) Y(t) d t \quad$ Integrating both sides of 1 .
3. $Y(x)-Y\left(x_{0}\right)=\int_{X_{0}}^{*} A(t) Y(t) d t$
4. $Y(x)=Y\left(x_{0}\right)+\int_{X_{0}}^{X_{0}} A(t) Y(t) d t$
5. $Y(x)=Y_{0}+\int_{x_{0}}^{X} A(t) Y(t) d t \quad$ Q.E.D.

Proof: B: is equivalent to A :

1. $Y(x)=Y_{0}+\int_{X_{0}}^{X} A(t) Y(t) d t$
2. $Y^{\prime}(x)=0+A(x) Y(x) \quad$ By the Fundamental Theorem of Integral Calculus
3. $Y^{\prime}(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0} \quad$ Q.E.D,

Lemma 2.6

$H_{1}: \sum M_{n}$ converges, $M_{n}>0$
$\mathrm{H}_{2}: \quad \mathrm{V}_{\mathrm{k}}^{\mathrm{n}}(\mathrm{x})$ is a k -dimensional vector of functions
$H_{3}: \quad\left\|v_{k}^{n}(x)\right\| \leqslant M_{n}$ for each $n=1,2,3, \ldots$
C: $\quad \sum V_{k}^{n}(x)$ converges uniformly for each k.

Proof:

1. $\quad\left\|v_{k}^{n}(x)\right\|=\left|v_{1}^{n}(x)\right|+\left|v_{2}^{n}(x)\right|+\cdots+\left|v_{k}^{n}(x)\right| \leqslant M_{n}$
2. $\left|v_{k}^{n}(x)\right| \leq M_{n}$ for each $k^{t h}$ component
3. Hence: $\sum V_{k}^{n}(x)$ converges uniformly for each k by Theorem 3.4
Q.E.D.

CHAPTER IV

Theorem I.
$H_{1}: A(x) \in C^{O}$ on I
$H_{2}: Y(x) \in C^{\prime}$ on I
$H_{3}: Y\left(x_{0}\right)=Y_{0}$
C_{1} : There exist a solution $Y(x)$ which satisfies $Y^{\prime}(x)=A(x) Y(x)$ such that $Y\left(x_{0}\right)=Y_{0}$
C_{2} : The solution is unique.

Proof:

1. $Y^{\prime}(x)=A(x) Y(x), Y\left(x_{0}\right)=Y_{0}$
2. $Y(x)=Y_{0}+\int_{x_{0}}^{X} A(t) Y(t) d t$, Integrating both sides of 1 .
3. $Y_{1}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Y_{0}(t) d t$

Substituting $Y_{0}(t)$ for $Y(t)$ in 2. and in general $Y_{n}(t)$
4. $Y_{2}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Y_{1}(t) d t$ for $Y_{n-1}(t)$.
5. $Y_{3}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Y_{2}(t) d t$
6. $Y_{n}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Y_{n-1}(t) d t$
7. $Y_{n+1}(x)=Y_{0}+\int_{X_{0}}^{x} A(t) Y_{n}(t) d t$
8. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\|=\left\|\int_{x_{0}}^{x} A(t)\left[Y_{n}(t)-Y_{n-1}(t)\right] d t\right\|$
9. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leqslant \int_{x_{0}}^{*}\left\|A(t)\left[Y_{n}(t)-Y_{n-1}(t)\right]\right\| d t \quad$ By Lerma 2.4
10. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leq \int_{x_{0}}^{x}\|A(t)\|\left\|Y_{n}(t)-Y_{n-1}(t)\right\| d t \quad B y$ Lemma 2.3
11. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leq \int_{x_{0}}^{K} K\left\|Y_{n}(t)-Y_{n-1}(t)\right\| d t$

By $H_{1} K>0, \quad\|A(t)\| \leqslant K$.
12. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leq \int_{x_{0}}^{x} K\left\|Y_{1}(t)-Y_{0}(t)\right\| d t$

$$
\mathrm{n}=1 \text { in } 11
$$

13. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leqslant \int_{x_{0}}^{X} K\left(\left\|Y_{1}(t)\right\|+\left\|Y_{0}(t)\right\|\right) d t \quad$ By Lemma 2.2
14. $\left\|y_{2}(x)-Y_{1}(x)\right\| \leqslant \int_{x_{0}}^{x_{\text {KMAt }}}$

By $H_{1} \quad M_{1}>0 \quad\left\|Y_{1}(t)\right\| \leqslant M_{1}$ and $\left\|Y_{0}(t)\right\|$ is a number Let $M_{1}+\left\|Y_{0}(t)\right\| \leqslant M$
15. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leqslant K M\left|x-x_{0}\right|$
16. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leq \int_{x_{0}}^{x} K\left\|Y_{2}(t)-Y_{1}(t)\right\| d t \quad n=2$ in 11 .
17. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leq \int_{x_{0}}^{K^{2} M\left|x-x_{0}\right| d t \quad \text { Using } 15 . ~ . ~}$
18. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leqslant K^{2} M\left|x-x_{0}\right|^{2}$

2
19. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leqslant \int_{x_{0}}^{X}\left\|Y_{3}(t)-Y_{2}(t)\right\| d t \quad n=3$ in 11 .
20. $\left\|Y_{4}(x)-Y_{3}(x)\right\|=\int_{x_{0}}^{x_{K} 3 M\left|x-x_{0}\right|^{2}} \frac{2}{2} d t$
21. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leq \frac{K^{3} M\left|x-x_{0}\right|^{3}}{3!}$
22. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leq \frac{K^{n} M \mid x-x_{d} \|^{n}}{n!}$
23. $Y_{n}(x)=Y_{0}(x)+Y_{1}(x)-Y_{0}(x)+Y_{2}(x)-Y_{1}(x)+\ldots+Y_{n}(x)-Y_{n-1}(x)$
24. $\left\|Y_{n}(x)\right\| \leqslant\left\|Y_{0}(x)\right\|+\left\|Y_{1}(x)-Y_{0}(x)\right\|+\left\|Y_{2}(x)-Y_{1}(x)\right\|+\ldots$

$$
+\left\|Y_{n}(x)-Y_{n-1}(x)\right\|
$$

Let R be on I such $\left|x-x_{0}\right| \leqslant R$
Therefore the series in 23. converges uniformly on I and each $Y_{n}(x)$ is continuous for each $n=1,2,3, \ldots$

It follows that:
25. $\operatorname{Lim}_{n} Y_{n}(x)=Y_{0}+\operatorname{Lim}_{n} \int_{X_{0}}^{X} A(t) Y_{n-1}(t) d t$
26. $\operatorname{Lim}_{n} Y_{n}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) \operatorname{Lim}_{n} Y_{n-1}(t) d t$

By Theorem 1.6
27. $Y(x)=Y_{0}+\int_{X_{0}}^{X} A(t) Y(t) d t$

Therefore $Y(x)$ satisfies the integral equation and by Lemma 2.5 $Y(x)$ satisfies the differential equation, Q.E.D.

Proof of C_{2} :

Assume that $Z(x)$ is a solution to the integral equation in 27 , that is, $Z(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Z(t) d t$ and consider $Y_{n}(x)=Y_{0}+\int_{x_{0}}^{x} A(t) Y_{n-1}(t) d t$. Here we are using the same method of successive substitution as in the proof of C_{1} in Theorem I.
28. $\left\|Z(x)-Y_{n}(x)\right\| \leq \int_{x_{e}}^{x}\|A(t)\| \cdot\left\|Z(t)-Y_{n-1}(t)\right\| d t \quad$ By lemmas 2.3 \& 2.4
29. $\left\|Z(x)-Y_{n}(x)\right\| \leq \int_{x_{0}}^{x} K\left\|Z(t)-Y_{n-1}(t)\right\| d t \quad$ By H_{1}
30. $\left\|Z(x)-Y_{1}(x)\right\| \leq \int_{x_{0}}^{x} K\left\|Z(t)-Y_{0}(t)\right\| d t \quad n=1$ in 29.
31. \|Z $Z(x)-Y_{1}(x) \| \leqslant \int_{x_{0}}^{x} K M d t \quad$ By the same argument as in 13 . \& 14 .
32. $\left\|Z(x)-Y_{1}(x)\right\| \leqslant K M\left|x-x_{0}\right|$
33. $\left\|Z(x)-Y_{2}(x)\right\| \leq \int_{x_{e}}^{x} K\left\|Z(t)-Y_{1}(t)\right\| d t \quad n=2$ in 29.
34. $\left\|\left\|Z(x)-Y_{2}(x)\right\| \leqslant \int_{x_{0}}^{x} K^{2} M\left|x-x_{0}\right| d t\right.$
35. $\left\|Z(x)-Y_{2}(x)\right\| \leq \frac{K^{2} M|x-x|^{2}}{2}$
36. $\left\|Z(x)-Y_{n}(x)\right\| \leq \frac{K^{n_{M}}\left|x-x_{0}\right|^{n}}{n!}$

Let $R>0$ be on I such that $\left|x-x_{0}\right| \leqslant R$.
Since the series $\frac{M(K R)^{n}}{n!}$ converges, it follows that $\operatorname{Lim}_{n} \frac{M(K R)^{n}}{n!}=0$ and $\operatorname{Lim}_{n} Y_{n}(x)=Y(x)$, therefore $\left\|Z(x)-Y_{n}(x)\right\|=0$.

This means $Z(x)=Y(x)$, therefore the solution $Y(x)$ is unique, Q.E.D.

Now let us consider the system of n non-linear homogeneous list order differential equations.

Theorem II
$H_{1}: F(x, Y(x)) \in C^{0}$ on R
$H_{2}: Y(x) \in C^{0}$ on I
$\mathrm{H}_{3}: \quad Y(x) \in C^{\prime}$ on I
$H_{4}:\left\|F\left(x, Y_{2}(x)\right)-F\left(x, Y_{1}(x)\right)\right\| \leqslant K\left\|Y_{2}(x)-Y_{1}(x)\right\|$

$$
K>0, Y_{1}(x) \text { and } Y_{2}(x) \in R .
$$

$H_{5}: \quad Y\left(x_{0}\right)=Y_{0}$
C_{1} : There exist a solution which satisfies $Y^{\prime}(x)=F(x, Y(x))$ such that $Y\left(X_{0}\right)=Y_{0}$
C_{2} : The solution is unique.

Proof of C_{1} :

1. $Y^{\prime}(x)=F(x, Y(x)), Y\left(X_{0}\right)=Y_{0}$
2. $Y(x)=Y_{0}+\int_{X_{0}}^{X} F(t, Y(t)) d t$
3. $Y_{1}(x)=Y_{0}+\int_{x_{0}}^{x} F\left(t, Y_{0}(t)\right) d t$

Substituting $Y_{0}(t)$ for $Y(t)$ in 2. and in general $Y_{n}(t)$ for $Y_{n-1}(t)$.
4. $Y_{2}(x)=Y_{0}+\int_{x_{0}}^{X} F\left(t, Y_{1}(t)\right) d t$
5. $Y_{3}(x)=Y_{0}+\int_{x_{0}}^{x} F\left(t, Y_{2}(t)\right) d t$
6. $Y_{n}(x)=Y_{0}+\int_{x_{0}}^{x} F\left(t, Y_{n-1}(t)\right) d t$
7. $Y_{n+1}(x)=Y_{0}+\int_{x_{0}}^{\pi} F\left(t, Y_{n}(t)\right) d t$
8. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\|=\left\|\int_{x_{0}}^{x}\left[F\left(t, Y_{n}(t)\right)-F\left(t, Y_{n-1}(t)\right)\right] d t\right\|$
9. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leqslant \int_{x_{0}}^{x}\left\|F\left(t, Y_{n}(t)\right)-F\left(t, Y_{n-1}(t)\right)\right\|$ dt By Lerma 2.4
10. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leqslant \int_{x_{0}}^{x} \| F\left(t, Y_{1}(t)\right)-F\left(t, Y_{0}(t) \| d t\right.$

$$
\leqslant \int_{x_{0}}^{z} K\left\|Y_{1}(t)-Y_{0}(t)\right\| d t \quad \text { By } H_{4}
$$

11. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leq \int_{x_{0}}^{x} K\left\|Y_{1}(t)-Y_{0}(t)\right\| d t$

By $H_{2} \quad M_{1}>0, \quad\left\|Y_{1}(t)\right\| \leqslant M_{1}$ and $\left\|Y_{0}(t)\right\|$ is a number Let $M_{1}+\left\|Y_{0}(t)\right\|=M$
12. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leq \int_{x_{0}}^{x} K M d t$
13. $\left\|Y_{2}(x)-Y_{1}(x)\right\| \leqslant K M\left|x-x_{0}\right|$
14. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leqslant \int_{x_{0}}^{X}\left\|F\left(t, Y_{2}(t)\right)-F\left(t, Y_{1}(t)\right)\right\| d t$

$$
\leq \int_{X_{0}}^{X} K\left\|Y_{2}(t)-Y_{1}(t)\right\| d t \quad n=2 \text { in } 9 . \text { and } H_{4}
$$

15. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leqslant \int_{x_{0}}^{x} K^{2} M\left|x-x_{0}\right| d t \quad$ By using 13 .
16. $\left\|Y_{3}(x)-Y_{2}(x)\right\| \leqslant \frac{K^{2} M\left|x-x_{0}\right|^{2}}{2}$
17. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leqslant \int_{x_{0}}^{x}\left\|F\left(t, Y_{3}(t)\right)-F\left(t, Y_{2}(t)\right)\right\| d t$

$$
t \int_{x_{0}}^{2} K\left\|Y_{3}(t)-Y_{2}(t)\right\| d t \quad n=3 \text { in } 9 \text { and by } H_{4}
$$

18. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leqslant \int_{x_{0}}^{x} K\left\|Y_{3}(t)-Y_{2}(t)\right\| d t$.
19. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leqslant \int_{x_{0}}^{x} \frac{K^{3} M\left|x-x_{0}\right|^{2}}{2} d t$
20. $\left\|Y_{4}(x)-Y_{3}(x)\right\| \leqslant \frac{K^{3} M\left|x-x_{0}\right|^{3}}{3!}$
21. $\left\|Y_{n+1}(x)-Y_{n}(x)\right\| \leq \frac{K^{n} M\left|x-x_{0}\right|^{n}}{n!}$
22. $Y_{n}(x)=Y_{0}(x)+Y_{1}(x)-Y_{0}(x)+Y_{2}(x)-Y_{1}(x)+\cdots+Y_{n}(x)-Y_{n-1}(x)$

Identity
23. $\left\|Y_{n}(x)\right\| \in\left\|Y_{0}(x)\right\|+\left\|Y_{1}(x)-Y_{0}(x)\right\|+\left\|Y_{2}(x)-Y_{1}(x)\right\|+\cdots$

$$
+\left\|Y_{n}(x)-Y_{n-1}(x)\right\|
$$

Let R be on I such that $\left|x-x_{0}\right| \leqslant R$
Therefore the series in 22 converges uniformly on I and each $Y_{n}(x)$ is continuous for each $n=1,2,3, \ldots$ It follows that:
24. $\operatorname{Lim}_{n} Y_{n}(x)=Y_{0}+\operatorname{Lim}_{n} \int_{X_{0}}^{x} F\left(t, Y_{n-1}(t)\right) d t$
25. $\operatorname{Lim}_{n} Y_{n}(x)=Y_{0}+\int_{X_{0}}^{K_{F}}\left(t, \operatorname{Lim}_{X_{1}} Y_{n-1}(t)\right) d t$
26. $Y(x)=Y_{0}+\int_{X_{0}}^{X} F(t, Y(t)) d t$

Therefore $Y(x)$ satisfies the integral equation and by Lemma $2.5, Y(x)$ satisfies the differential equation.
Q.E.D.

Proof of C_{2} :

Assume that $Z(x)$ is a solution to the integral equation in 26. , that is, $Z(x)=Y_{0}+\int_{x_{0}}^{x} F(t, Z(t)) d t$ and consider $Y_{n}(x)=Y_{0}+\int_{x_{0}}^{x} F\left(t, Y_{n-1}(t)\right) d t$. Here we are using the same method of successive substitution as in the proof of C_{1} in Theorem II.
27. $\left\|Z(x)-Y_{n}(x)\right\| \leqslant \int_{x_{0}}^{x}\left\|Z(t)-Y_{n-1}(t)\right\| d t \quad$ By Lemma 2.4
28. $\left\|Z(x)-Y_{1}(x)\right\| \leqslant \int_{x_{0}}^{x} K\left\|Z(t)-Y_{0}(t)\right\| d t \quad$ By H_{4}
29. $\left\|Z(x)-Y_{I}(x)\right\| \leqslant \int_{x_{0}}^{x} K M d t \quad$ By the same argument as in 11.
30. $\left\|Z(x)-Y_{I}(x)\right\| \leqslant K M\left|x-x_{0}\right|$
31. $\left\|Z(x)-Y_{2}(x)\right\| \leqslant \int_{x_{0}}^{x_{K}}\left\|Z(t)-Y_{1}(t)\right\| d t$
32. $\left\|Z(x)-Y_{2}(x)\right\| \leqslant \int_{x_{0}}^{x_{0}} K^{2} M\left|x-x_{0}\right| d t$
33. $\left\|Z(x)-Y_{2}(x)\right\|_{\leqslant} \frac{K^{2} M\left|x-x_{0}\right|^{2}}{2!}$
34. $\left\|Z(x)-Y_{n}(x)\right\| \leq \frac{K^{n} M\left|x-x_{0}\right|^{n}}{n!}$

Let $R>0$ on I such that $\left|x-x_{0}\right| \leqslant R$

By the same argument as in 36. of the Proof of C_{2} of Theorem I, the solution $Y(x)$ is unique. Q.E.D.

$$
\begin{gathered}
\text { CHAPTERV } \\
\text { APPLICATION }
\end{gathered}
$$

- Let us consider a system of two lst order linear homogeneous differential equations with constant coefficients.

$$
\begin{array}{ll}
y_{1}^{\prime}(x)=2 y_{1}(x)+y_{2}(x), & y_{1}(0)=2 \\
y_{2}^{\prime}(x)=3 y_{1}(x)+4 y_{2}(x), & y_{2}(0)=5
\end{array}
$$

In matrix and vector notation we have

$$
Y^{\prime}(x)=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right], \quad Y(0)=\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

In order to find a solution $Y(x)$ to this system we use the well known fact that the solution is $Y(x)=P \cdot d i a g[e r x] C$, where P is a. non-singular matrix such that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal matrix (diag), r is given by $(A-r I)=0$ and C is a column matrix of arbitrary constants.

In order to find the matrix P we use the following method:

$$
|A-r I|=\left|\begin{array}{cc}
2-r & 1 \\
3 & 4-r
\end{array}\right|=0 \quad r^{2}-6 r+5=0
$$

$$
(A-r I) V=0
$$

$$
\text { for } r_{1}=1 \text {, we get }
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{y}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& v_{1}+v_{2}=0 v_{1}=-v_{2} \\
& 3 v_{1}+3 v_{2}=0 \text { Let } v_{1}=1 \\
& \text { Then } v_{2}=-1
\end{aligned}
$$

$$
\text { for } r_{2}=5 \text {, we get }
$$

$$
\left[\begin{array}{cc}
-3 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
-3 v_{1}+v_{2}=0 \quad v_{2}=3 v_{1} \quad \text { Let } v_{1}=1
$$

$$
3 v_{1}-v_{2}=0
$$

$$
\text { Then } v_{2}=3
$$

$$
P=\left[\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right]
$$

$$
Y(x)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
e^{x} & 0 \\
0 & e^{5 x}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

$$
y_{1}(x)=c_{1} e^{x}+c_{2} e^{5 x}
$$

$$
y_{2}(x)=-c_{1} e^{x}+3 c_{2} e^{5 x}
$$

$$
\begin{aligned}
& \text { Using } Y(0)=\left[\begin{array}{l}
2 \\
5
\end{array}\right] \text { we find } c_{1} \text { and } c_{2} \\
& 2=c_{1}+c_{2} \\
& 5=-c_{1}+3 c_{2} \\
& c_{1}=1 / 4 \\
& c_{2}=7 / 4
\end{aligned}
$$

therefore

$$
\begin{aligned}
& y_{1}(x)=1 / 4 e^{x}+7 / 4 e^{5 x} \\
& y_{2}(x)=-1 / 4 e^{x}+21 / 4 e^{5 x}
\end{aligned}
$$

Hochstadt, Harry. Differential Equations. New York: Holt, Rinehart and Winston, 1964.

Ross, Shepley L. Differential Equations. New York: Blaisdell Publishing Company, 1965.

Taylor, Angus E. Advanced Calculus. Massachusetts: Blaisdell Publishing Company, 1955.

Taylor, Angus E. General Theory of Functions and Integration. Massachusetts: Blaisdell Publishing Company, 1965.

