
 

 

University of Warwick institutional repository  
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 

Author(s): G. Gregori and D. O. Gericke  
Article Title: Low frequency structural dynamics of warm dense matter  
Year of publication: 2009  
Link to published version:   
http://dx.doi.org/ 10.1063/1.3100203 
Publisher statement: None  

 

 
 
 
 
 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/�
http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?fforward=http://dx.doi.org/10.1063/1.3100203�


G. Gregori and D.O. Gericke, Physics of Plasmas 16, 056306 (2009)

Low frequency structural dynamics of warm dense matter

G. Gregori

Clarendon Laboratory, Department of Physics,

University of Oxford, Oxford OX1 3PU, UK

D. O. Gericke

Centre for Fusion, Space and Astrophysics, Department of Physics,

University of Warwick, Coventry CV4 7AL, UK

Abstract

Measurements of the microscopic response of warm dense matter have been demonstrated by

multi-keV inelastic x-ray scattering using laser-based sources. These techniques have been used to

study the high frequency electron correlations (plasmons) in low to mid-Z plasmas. The advent of

4th generation light sources will provided high fluxes of narrowband and coherent x-rays that will

allow to look at the low frequency correlations (the ion-acoustic waves). In this paper we present

an analysis of such low frequency modes by calculating the frequency dependent ion-ion structure

factor. Our model includes all the relevant multi-body contributions arising from strong coupling

and non ideal plasma effects. In particular, the ion-ion structure factor is obtained within the

memory function formalism by satisfying a finite number of the sum rules. This work could be

used as a basis to a direct experimental test of dense plasma model as soon as keV free electron

laser sources will become available.
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I. INTRODUCTION

The warm dense matter (WDM) regime, defined by temperatures of a few electron volts

and densities comparable with solids, is a complex state of matter where multi-body particle

correlations and quantum effects play an important role in determining the overall structure

and equation of state [1, 2]. The study of WDM states has practical applications for con-

trolled thermonuclear fusion [3], and it also represents laboratory analogues of astrophysical

environments found in the core of planets and the crusts of old stars [4].

The experimental characterisation and theoretical modelling of warm dense matter pose

severe challenges since WDM spans the intermediate states between solids and plasmas and

retains properties common to both. It exhibits moderately-to-strongly coupled, but fluid-

like ions that prohibit the exploitation of long range order as in solids. Expansion techniques

used in plasma physics that incorporate correlations perturbatively are also not applicable.

From an experimental point of view, the high densities of free electrons make WDM opaque

in the visible and, therefore, usual spectroscopic techniques are not possible. To overcome

these limitations, x-ray and proton radiography have been applied to obtain density profiles

[5, 6]. In the recent years x-ray scattering has gained considerable attention as an alternative

diagnostic method in both isochorically heated and shock compressed matter [7–11].

The experimentally measured x-ray scattering cross section contains information about

the microscopic structure of the material since it is directly proportional to the total dynamic

structure factor of the scattering electrons:

d2σ

dΩdω
∝ Stot

ee (k, ω) . (1)

Here, k = |k0 − k1| = (4π/λ0) sin(Θ/2) is the momentum transfer to the photon, k0 and

k1 are the wave numbers of the incident and the scattered photon, respectively, λ0 is the

wavelength of the incident x-rays, and Θ is the scattering angle; ω = ω0 − ω1 is the related

energy transfer to or from the photon. On average, the photon energy loss is given by the

Compton formula EC = h̄2k2/2me.

The dynamic structure factor Stot
ee (k, ω) is a measure for the spatial correlations in the

system (unity for uncorrelated systems). The long range nature of the Coulomb interactions

that govern the WDM state gives rise to collective excitations, namely the ion acoustic and

the electron plasma modes. These become particularly important in the long wavelength
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limit (i.e., k → 0), and result in peaks in the structure factor. Stot
ee (k, ω) can be decomposed

into three parts that highlight both modes plus an additional term that includes resonant

processes [12, 13]

Stot
ee (k, ω) = |fI(k) + q(k)|2 Sii(k, ω) + ZS0

ee(k, ω) +

Zc

∫

S̃ce(k, ω − ω′)Ss(k, ω′)dω′ . (2)

The first term in Eq. (2) accounts for the density correlations of electrons that dynamically

follow the ion motion. This includes both the bound electrons, represented by the ion form

factor fI(k), and the screening cloud of free (and valence) electrons that surround the ion,

represented by q(k) [12]. Sii(k, ω) is the dynamic ion-ion structure factor. The second term

in Eq. (2) gives the contribution in the scattering from the free electrons that do not follow

the ion motion. Here, S0
ee(k, ω) is the high frequency part of the electron-electron correlation

function [2] and it reduces to the usual electron feature [14] in the case of an optical probe.

Inelastic (resonant) scattering by bound electrons is included in the last term of Eq. (2),

which arises from bound-free transitions to the continuum of core electrons within an ion,

S̃ce(k, ω), modulated by the self-motion of the ions, represented by Ss(k, ω). In Eq. (2), Z

is the ionization state and Zc is the total number of bound (core) electrons per atom.

The calculation of high frequency electron response function as well as the resonant

terms have been extensively discussed in the context of WDM and compared with x-ray

scattering data from laser produced plasmas [15–17]. The ion acoustic modes in the ion-ion

structure factor are separated by 2h̄ωpi ∼ 0.2-1 eV in most WDM states [11], where ωpi is

the ion-plasma frequency. This value is considerably smaller than the bandwidth of the laser

generated x-ray probe radiation (∼6-20 eV). Accordingly, these modes cannot be resolved

with such techniques and it is then reasonable to treat the ionic correlations frequency

integrated, that is statically: Sii(k, ω) ∼ Sii(k)δ(ω). In view of these limitations, most

of the studies so far have concentrated in the evaluation of Sii(k) in WDM under strong

coupling conditions with either semi-analytical techniques or by solving the hyper-netted

chain (HNC) equations [18, 19].

On the other hand, the advent of 4th generation light sources such as the FLASH XUV

Free Electron Laser (FEL) based in Hamburg and more significantly the hard x-ray sources

under commissioning in Stanford (LCLS) and Hamburg (European XFEL), will provide

unprecedented ultra-high brillance and coherent pulses for x-ray scattering measurements.
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Combining the self-amplified spontaneous emission (SASE) principle of FEL lasing with

high harmonic seeding a spectral bandwidth in the order of ∆E/E<∼10−3 can be achieved.

With an additional pre-monochromator, it is reasonable to expect ∼ 1010 photons in a

50-100 fs pulse with bandwidth ∆E/E ∼ 3 × 10−5 or smaller. These machines open up a

completely new area of WDM studies where the dynamics of structural phase transitions can

be directly investigated by exploiting the full frequency dependence to the ion-ion structure

factor Sii(k, ω).

II. THEORY OF LOW FREQUENCY CHARGE CORRELATIONS

In this paper we will discuss the theoretical framework required to describe the low-

frequency ionic fluctuations that enter in the ion-ion structure factor. There exists a couple

of approaches to determine the dynamics of the ionic density fluctuations. The usual random

phase approximation (RPA) scheme [20] can be extended using static local field corrections

[2], the self-consistent STLS approach [21, 22], and the quasi localized charge approximation

[23, 24]. The latter works particulary well for very strongly coupled plasmas close to the

fluid-solid phase boundary where it showed excellent agreement with molecular dynamics

(MD) simulations [25, 26]. However, problems remain for less coupled more fluid ions.

The approach we will follow is based on a memory function [27, 28] description of the

ionic correlations. This has the advantage of incorporating the full effects of multi-body

correlations beyond the mean field (random phase) approximations by constructing a se-

quence of phenomenological functions that identically satisfy the frequency moment sum

rules. Such techniques have been tested against classical MD and HNC simulations showing

good agreement [29]. The memory function approach was also been able to reproduced

experimental scattering spectra from weakly coupled plasmas [30].

The charge-charge correlation function is the first step in the description of dynamic

response of the WDM state. This relates, by the fluctuation-dissipation theorem, to the

microscopic dielectric response of the dense plasma. Since we are interested in the low

frequency (ionic) response, we can approximate the charge-charge correlation function as

[18]

SZZ(k, ω) =

[

1 − q(k)

Z

]2

Sii(k, ω). (3)

This is equivalent in treating the low frequency response in terms of quasi-ions (i.e., bare
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ions plus their screening charge) interacting with a polarizable background. Following the

approach described by Hansen and McDonald [29], we can rewrite the charge-charge struc-

ture factor in terms of an unknown memory function N(k, ω) = N ′(k, ω) + iN ′′(k, ω). The

charge-charge structure factor can then be expressed in a very general form as

SZZ(k, ω) =
1

2π

(kvt)
2N ′(k, ω)

[ω2 − ω2
0 − ωN ′′(k, ω)]

2
+ [ωN ′(k, ω)]2

, (4)

where vt = (kBTi/M)1/2 is the ion thermal velocity (M is the ion mass and Ti is the

ion temperature, which doesn’t need to be equal to the electron temperature), and N ′(k, ω)

represents the damping of the plasma waves and N ′′(k, ω) their dispersion. Here ω2
0 = Ω2/Ω0,

where the frequency moments Ωn are defined as

Ωn(k) =
∫

ωnSZZ(k, ω)dω. (5)

The phenomenological memory function approach consists in choosing a suitable form for

the memory function N(k, ω) such that as many as possible frequency moments are satisfied.

Conservations laws (particle, current, etc.) can be used to obtain closed expressions of

these moments. We notice that since for a classical plasma (which is a reasonably good ap-

proximation for the ionic subsystem in WDM states) the charge-charge correlation function

is symmetric in frequency, i.e., SZZ(k, ω) = SZZ(k,−ω), implying that all the odd frequency

moments are identically zero. We have for the zeroth moment:

Ω0 = SZZ(k) =

[

1 − q(k)

Z

]2

Sii(k), (6)

where q(k) and Sii(k) are given, for example, by the formulas in Ref. [18], which we will

refer to as the screened one-component plasma (SOCP) model. Alternatively, we could use

Debye-Hückel (DH) formulas for such terms [31]. In the following section we will compare

results from both models. The second moment sum rule (also know as the f-sum rule) is

given by [27]

Ω2 = (kvt)
2 =

k2kBTi

M
, (7)

and for the fourth moment [28]

Ω4 = 3(kvt)
4 +

(

h̄k2

2M

)2

(kvt)
2 + ω2

pi(kvt)
2 [1 − I(k)] , (8)
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where ω2
pi = Ze2ne/ǫ0M (charge neutrality between electron and ions gives ne = Zni) and

I(k) is the short wavelength limit of the local field correction [28]

I(k) = − Z

4π2ne

∫

∞

0
dq q2 [SZZ(q) − 1] ×

[

5

6
− q2

2k2
+

(k2 − q2)2

4qk2
ln

∣

∣

∣

∣

∣

k + q

k − q

∣

∣

∣

∣

∣

]

. (9)

In our formalism, the memory functions are chosen such as the correct three lowest order

frequency-moment sum rules are exactly reproduced by the charge-charge correlation func-

tion. The advantage of such a representation is that we do not need anymore an exact mi-

croscopic theory to derive the spectrum of the longitudinal density fluctuations. Conversely,

the spectrum is obtained in a form that is phenomenologically self-consistent. Assuming

that the memory functions are much simpler objects than the density correlation itself (as

confirmed by molecular dynamics simulations), we adopt the following gaussian form for the

damping function [29]

N ′(k, ω) =
√

πτk(ω
2
1l − ω2

0) exp(−τ 2
kω2), (10)

where ω2
1l = Ω4/Ω2 and τk is the (k-dependent) relaxation time for the damping of the

collective modes. We notice that ω = ω1l is the memory function equivalent to the dispersion

relation, and it reduces to the usual Bohm and Gross dispersion relation for an ideal and

classical plasma [2]. In the case of an electron gas and including local field effects beyond the

random phase approximation, this has indeed shown excellent agreement with experimental

data on beryllium [8, 32]. From the analytic properties of the response function, and hence

of N(k, ω), the dispersion memory function N ′′(k, ω) is then obtained from N ′(k, ω) with

the help of the Kramers-Kronig relation [27, 29]

N ′′(k, ω) = −P 1

π

∫ N ′(k, ω′)

ω′ − ω
dω′ =

2τk(ω
2
1l − ω2

0) exp(−τ 2
kω2)

∫ τkω

0
exp(y2)dy, (11)

with P denoting the principal part of the integral. The relaxation time τk is related to the

sixth moment of the charge-charge correlation function [29]. We have,

τ 2
k =

ω2
1l − ω2

0

2(Ω6/Ω2 − ω4
1l)

. (12)

Although explicit expressions for Ω6 are available [33, 34], they are rather complicated

and difficult to evaluate since they involve triplet correlation functions in slowly convergent
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integrals [35]. The superposition approximation [34] is often used in the evaluation of the

triplet correlation functions.

In order to overcome this problem, we notice that not all the details of the correlation

function are required in order to compute the frequency moments. Let us consider a simpli-

fied version, S̃ZZ(k, ω), of the charge-charge structure factor. In the long wavelength limit,

S̃ZZ(k, ω) can be written as a sum of ion-acoustic excitations plus single particle excitations

[36], thus

S̃ZZ(k, ω) = SZZ(k)
{

1

2
A [δ(ω − ω1l) + δ(ω + ω1l)] +

(1 − A)
1√
πγ

exp(−ω2/γ2)

}

, (13)

where γ = 2ω2
1l/3 and

A =
1

2

ω2
0 − ω2

1l/3

ω2
1l/3

, (14)

are chosen such that S̃ZZ(k, ω) satisfies all the sum rules up to the fourth frequency moment.

This is indeed a very simple approximation and it neglects any damping on the ion modes

resulting from triplet correlations, but we believe it is adequate up to moderate ion coupling

conditions. We can then use S̃ZZ(k, ω) to derive an approximate form for the sixth moment,

and we obtain

Ω6 ≈
1

3
(kvt)

2ω4
1l

(

2 +
ω2

1l

ω2
0

)

. (15)

With this equation, the charge-charge dynamic structure factor is fully determined once all

the static (frequency integrated) properties have been obtained for a given plasma state.

We should note that despite being derived in the long wavelength limit, our expression for

Ω6 reproduces the correct limit for short wavelength. In this case, Ω6(k → ∞) = 15(kvt)
6

as shown in Refs. [33, 34].

III. THE ION-ION STRUCTURE FACTOR

In the memory function description of the charge-charge structure factor we have essen-

tially assumed that the ions behave as classical particles (i.e., we have used the classical

form of the sum rules). Since we are dealing with ionic dynamics, it is reasonable to as-

sume that quantum aspects not associated with detailed balance are marginal. This indeed

has shown excellent agreement with liquid metal data [37]. On the other hand, quantum
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FIG. 1: (Color online) Calculated structure factors Sii(k) for a WDM lithium plasma with Ti =

Te = 4.5 eV, ne = 7 × 1022 cm−3, and Z = 1.35. The sharp peaks in the structure factors are

unresolved in the calculations. The energy shift corresponds to h̄ω.

effects directly associated with detailed balance are not always negligible, especially if we

are dealing with excitations such as h̄ω1l ≈ kBTi. In those cases, we follow the prescription

of Ref. [37] of including detailed balance as a multiplicative factor in front of the classical
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structure factor, i.e.,

SZZ(k, ω) → h̄ω/kBTi

1 − exp
(

− h̄ω
kBTi

)SZZ(k, ω). (16)

Thus by virtue of Eq. (4) we have for the ion-ion structure factor [37]

Sii(k, ω) =
h̄ω/kBTi

1 − exp
(

− h̄ω
kBTi

)

[

1 − q(k)

Z

]

−2

SZZ(k, ω), (17)

where the first factor includes the effects of detail balance (not associated with particle

correlations) and with the charge-charge structure factor obtained from the analysis given

in the previous section.

Fig. 1 shows Sii(k, ω) calculations for conditions expected in a dense lithium plasma

[11]. In particular, we have compared results from both the SOCP and the DH models for

the static properties. These shows a moderate increase of damping in the SOCP model

with respect the ideal case represented by the Debye-Hückel theory. This is expected since

multi-body effects (i.e., collisions) will play an important role in enhancing de-correlation on

collective modes. Plots of the structure factors (in the SOCP approximation for the static

properties) with different plasma temperature are given in Fig. 2. These clearly indicates

thermal broadening (Landau damping) of the resonances and the effect of thermal pressure

in the dispersion relation (i.e., the position of the resonances). Experiments are indeed

required to resolve the details of damping and dispersion, thus providing the necessary tool

for the validation of these theoretical models.

We note that in the long wavelength limit, from Eq. (13), the intensity of the ion acoustic

resonances for a semi-classical plasma is given by

Speak
ii ≃ 3k6

De(ZTe/Ti)

4k6 [1 − I(0)]
, (18)

where kDe is the inverse of the (electron) Debye length. In absence of correlations, I(0) = 0,

and the peak intensity will decrease with increasing ion temperature. Since I(0) is directly

related to the compressibility of the system [2], deviations from a monotonic decrease with

temperature will be thus associated to non-ideal effects, which in principle, could be mea-

sured in a dedicated experiment.

The calculation presented so far in Figs. 1 and 2 have assumed a WDM plasma in ther-

modynamic equilibrium (Te = Ti). In principle this is not required in our analysis and

extensions to non equilibrium systems can be readily performed. As discussed in Ref. [31]
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and references therein, the fluctuation-dissipation theorem remains applicable if the temper-

ature relaxation is slow compared to the electron density fluctuation time scale. A common

condition in experimental plasmas for this to occur is when the ion mass is much larger

than the electron mass, so that the coupling between the two components take place at a

sufficiently low frequency.

IV. FEASIBILITY OF FEL EXPERIMENTS

As indicated in both Figs. 1 and 2, the separation between the ion-acoustic resonances

is of the order of 0.4-1 eV for a dense lithium plasma. Achieving such a resolution is now

possible with the advent of 4th generation light sources and future high resolution inelastic

x-ray scattering experiments could then provide a direct method to test the proposed model

of ionic correlation by measuring the position and the broadening of the ionic resonances.

The expected bandwidth for the Linear Coherent Light Source (LCLS) under final com-

missioning at Stanford is ∆E/E ∼ 0.2% which gives 4 eV for 2 keV probe x-rays in the

1st harmonic (delivering 1012 photons per ∼100 fs pulse). This then requires an additional

monochromating station to be added in the incident beam path. With a Si (311) double

crystal monochromator, a bandwidth ∆E/E ∼ 3× 10−5 can be achieved (equivalent to 0.06

eV for 2 keV x-rays). While this is theoretically sufficient for discriminating the peaks in the

ion feature, additional broadening mechanisms associated with inhomogeneity in the sam-

ple must also be included. These typically arises from temperature and density gradients.

As shown by Belyi [38], the effect of macroscopic inhomogeneities introduces an effective

broadening of the resonance lines given by

∆ωk ∼ 2

Λt

+
ωpi

kΛl

[

1 +
6(kvt)

2

ω2
pi

]

, (19)

where Λt is the characteristic scale length of temporal macroscopic fluctuations (which are

in the order of the FEL pulse length), and Λl is the characteristic scale length of spatial

gradients. The second term usually dominates over the first one. Assuming that the spatial

gradients are produced by the propagation of a thermal wave from a femtosecond optical

pump laser focussed on the sample, Λl ∼ few×vtτL (where τL = 100 fs is the duration of the

FEL pulse), we get that for the conditions of this work ∆(h̄ωk) < 0.1 eV. Thus, while some

broadening induced by spatial gradients is expected, it will still be possible to resolve the
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peak structure in the ion feature, especially for the large k cases. A significant improvement

could be achieved if the optical pump laser is replaced by a secondary FEL beam. For a soft

x-ray pump, the gradient scale length on a Li sample is several microns, and in this case

spatial broadening effects are completely negligible.

Another important parameter that determines the overall feasibility of the experiment is

the total photometric efficiency. As discussed above, an inline monochromator is required

to achieve the desired bandwidth. This will reduce the total number of photons per shot

arriving at the sample to Nph ∼ 1010. The total number of detected photons per shot is

Nd ≃ NphZ
2
AniσT L

ΩdectRcrystalηdect

4π
, (20)

where ZA = 3 is the lithium atomic number, σT is the Thomson cross section, L is the sample

thickness (which we assume to be 100 µm), Ωdect is the solid angle of the crystal spectrometer

used for detection of the scattered x-rays, Rcrystal is the integrated crystal reflectivity and

ηdect is the overall efficiency of the CCD detector (∼95% for a back thinned silicon chip). If

we assume that the scattered photons are detected with a 50 mm x 50 mm highly annealed

pyrolitic graphite (HAPG) crystal [39] placed at a distance 0.5 m in a Von Hamos focussing

geometry, Ωdect = 0.01 sr and Rcrystal ≈ 0.02, thus Nd ≈ 500 per shot. If we use a CCD

camera that has an analog-to-digital (A/D) gain of gAD = 3.5 electron-hole pairs per count

and geh = 3.6 eV is the energy required to liberate an electron-hole pair in the silicon, then

the number of counts per incident photon of energy Ex = 2 keV is Ex/gADgeh and the total

expected number of counts per shot is ∼80000. These will be distributed over about 10 x

10 pixels, giving 800 counts per pixel per shot. This number is significantly higher than the

r.m.s. readout noise of a cooled CCD camera and single shot detection is clearly possible.

We should stress that the use of a HAPG crystal is important, but not essential for

single shot operations. These crystals can have a narrow rocking curve with high integrated

reflectivity. Assuming a mosaic spread γm = 0.04o [39], the expected resolution is 0.2 eV

(source broadening is not important for the suggested configuration, and it only amounts

to 0.008 eV), which is sufficient for the detection of the ion acoustic peaks for the larger

wavenumber and temperature cases. A significant gain in crystal bandwidth can be obtained

if, instead, we use a perfect crystal (e.g., Si), but in this case an improvement by a factor of

∼10 in the rocking curve will likely result in a reduction by a similar factor of the expected

number of counts per pixel per shot. Again, single shot operation at ∼80 counts per pixel
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per shot is possible if the r.m.s. noise from any possible source is maintained at a minimum

level. However, since LCLS (and XFEL) can run at a repetition rate of 30 Hz, integration

over multiple shots is also feasible and, in this case, multiple shot acquisition over a few

minutes will then generate enough signal counts for high signal-to-noise ratio data.

V. SUMMARY

We have presented a detailed statistical model for the low frequency ion response based

on the phenomenological memory function formalism. This has allowed to construct a closed

form expression for the frequency dependent ion-ion structure factor which is applicable in

WDM system by fully accounting for strong coupling effects by identically satisfying the sum

rules up to the sixth moment. A detailed photometric analysis, both in terms of required

bandwidth and photon number at the detector, has shown that experimental measurement

of the the ion acoustic peaks will be possible for the proposed 4th generation light sources.

We also notice that the blue and red sides of the scattering spectrum are modulated by

the detailed balance relation [27]. This implies that such experiments could be used to

directly measure the ion temperature independently of any assumptions on the correlation

functions. If this type of experiment is then combined to the ones already proposed to

investigate the plasmon resonances resulting from the high frequency electron correlations

[40], then we could envision an experimental platform where both the electron and the ion

temperatures are measured simultaneously (and independently) using the detailed balance

relation. Clearly this would enable a very powerful tool to look at energy relaxation processes

in WDM systems in a pump-probe configuration, thus providing a guidance on current

uncertainties in the equilibration process modeling of dense plasmas [41, 42].
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FIG. 2: (Color online) Calculated structure factors Sii(k) for a WDM lithium plasma in thermo-

dynamic equilibrium (Te = Ti) with ne = 7 × 1022 cm−3, and Z = 1.35. Static properties have

been obtained from the SOCP model. The sharp peaks in the structure factors are unresolved in

the calculations. The energy shift corresponds to h̄ω.
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