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Abstract

The circular case of Sitnikov problem is studied here when the infinitesimal body varies its mass
according to Jeans law and it is moving along the z-axis which is perpendicular to the orbital plane
of the two equal spherical primaries. The two primaries are moving in xy−plane on the same
circular path. These two primaries are imposing the Newtonian forces on the third variable mass
body but not influenced by it. Stability of equilibrium points is examined followed by the derived
equations of motion. The time-series solutions of the equation of motion are performed by using
the Lindstedt-Poincaré method which is used to remove the secular term. We have numerically
performed the time-series which shows that variation parameters have great impact on it.

Keywords: Circular Sitnikov problem; Variable mass; Meshcherskii transformation; Lindstedt-
Poincaré method
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1. Introduction

The few body problem is an interesting problem in celestial mechanics and dynamical astronomy
for the researchers. The most interesting and studied problem in this area is restricted three-body
problem. It has many configuration like Lagrangian configuration, Euler configuration, Copen-
hagen configuration, Sitnikov configuration, Robes configuration, etc. In Lagrangian configura-
tion, two bodies remain on straight line with moving on different circular or elliptic path and third
body will move in space. In Euler configuration, all the bodies will remain on the same straight
line. In Copenhagen configuration, two bodies remain on the same straight line but moving on the
same circular path and the third body is moving in the space.

In Sitnikov configuration, two bodies remain on the same straight line and moving either in elliptic
or circular path while third body is moving on the vertical line of the orbital plane of the last two
bodies. In the Robes configuration, two bodies remain on the same straight line and moving either
in elliptic or circular path and also the shape of one of the body is taken as spherical shell while
the third body is moving inside the shell. These configurations are studied with different shapes of
the bodies (as point mass, spherical shape, spherical shell, oblateness, triaxial body, heterogeneous
body, homogeneous body, Roche-ellipsoid, finite-straight segment, cylindrical shape, etc.), vari-
able mass, mobile coordinates, viscous force, Stroke force, Poynting-Robertson drag, resonance,
coriolis and centrifugal forces, modified Newtonian potential, etc. Many researchers have studied
these problems, some of them are as follows.

Jeans (1928) explained about variable mass in his book. Singh (2008) and Singh (2009) stud-
ied the effect of oblateness and variable parameters in the frame of circular restricted three-body
problem. Perdios and Markellos (1988), Perdios and Markellos (2007), and Perdios and Kalan-
tonis (2012) studied the restricted three- body problem in the Sitnikov configuration where they
discussed the periodic motion, the stability and self resonant bifurcations. Faruque (2003) used a
Lindstedt-Poincare perturbation method and Courant-Snyder transformation to evaluate the solu-
tion and compared with existing solution where he found satisfactory agreement. Kalantonis et al.
(2008) studied the problem with Sitnikov configuration by supposing the radiated oblate-primaries.
Zhang et al. (2012) investigated the effect of variable mass of the infinitesimal body in the frame of
circular restricted three-body problem. Pandey and Ahmad (2013) studied the periodic orbits and
bifurcation in the circular Sitnikov configuration by supposing all the primaries as oblate body.

Shahbaz Ullah et al. (2015) studied the series solution of the problem in the elliptic Sitnikov con-
figuration when there are N + 1 bodies by following Giacaglia (1967). Ansari (2017), Ansari et
al. (2018), Ansari et al. (2019a), Ansari et al. (2019b), Ansari et al. (2020) have studied restricted
three-body problem by considering many factors and shown the effects of these factors analyti-
cally and numerically on the equilibrium points, regions of motion, Poincaré surfaces of section
and basins of attraction.

This paper is organized as follows. Literature review is made in the first section. The configuration
of the problem with derived equations of motion and equilibrium point are presented in second sec-
tion. The third section contains stability examination of the equilibrium point. The fourth section
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shows the solution of the equations of motion. Numerical study is presented in the fifth section,
and finally the paper ends with the conclusion in the sixth section.

2. Model Description with Equations of Motion

Let m1, m2 (with m1 = m2) and m(t) be three masses, where m1 and m2 are moving on the same
circular orbit around their common center of mass (i.e., these primaries are forming the Copen-
hagen configuration). And the mass of third particle m(t) varies its mass according to Jeans law
(ṁ(t) = −ε1m(t)), where ε1 is variational constant which is defined for all values of real number
except zero, is moving in the vertical direction (along z-axis) of the orbital plane of the primaries
(i.e., xy-coordinate system or synodic coordinate system), it will clearly visualise from Figure 1.
For non-dimensional coordinates, we fixed the sum of masses of the primaries, the distance be-
tween them and gravitational constant as unity. Hence, the mean motion will be unity. Following
the procedure given by Sitnikov (1961), Abouelmagd et al. (2015) and Abouelmagd et al. (2019),
we can write the equations of motion under the assumption that the variation of mass emitted from
one point has zero momenta as

r1
r2

O m2

m

m1
x–axis

z–axis

y–axis

Figure 1. Geometric configuration for the vertical motion


ẍ− 2ẏ = Ψx,

ÿ + 2ẋ = Ψy,

z̈ = Ψz,

(1)
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where



Ψ =
1

2
(x2 + y2) +

ε21
8

(x2 + y2 + z2) +
2µ ε

3/2
2

ρ1
,

ρ2i = (x± µ ε1/22 )2 + y2 + z2, i = 1, 2,

ε̇2 = − ε1 ε2.

(2)

For the Sitnikov motion, we will put x = 0, y = 0 and µ = 0.5 in Equation (1), hence

z̈ =
ε21z

4
− ε

3/2
2 z

(z2 + 0.25 ε2)3/2
, (3)

and the corresponding equilibrium point of Equation (3) is given by

(0, 0, z) =

(
0, 0,

(45/3 − ε4/31 )1/2
√
ε2

2 ε
2/3
1

)
. (4)

This coordinate of equilibrium point clearly shows the dependency on the variable parameters ε1
and ε2.

3. Stability

The variational equations for the perturbed motion are


ξ̈ − 2η̇ = U0

xx(z) ξ,

η̈ + 2ξ̇ = U0
yy(z) η,

ζ̈ = U0
zz(z) ζ,

(5)

where
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U0
xx(z) = 1 +

ε21
4

+ ε
3/2
2

 3ε2

4(z2 +
ε2
4

)5/2
− 1

(z2 +
ε2
4

)3/2

 ,

U0
yy(z) = 1 +

ε21
4
− ε

3/2
2

(z2 +
ε2
4

)3/2
,

U0
zz(z) =

ε21
4

+ ε
3/2
2

 3z21

(z2 +
ε2
4

)5/2
− 1

(z2 +
ε2
4

)3/2

 ,

(ξ, η, ζ) = the displacement from the equilibrium point (0, 0, z),

where the super script zero means the value of the derivative of the potential function at the equi-
librium point (0, 0, z).

Let 

ξ̇ = u,
η̇ = v,

ζ̇ = w,

u̇ = U0
xx(z) ξ + 2v,

v̇ = U0
yy(z) η − 2u,

ẇ = U0
zz(z) ζ.

(6)

Due to variation of mass, we can not examine stability with general method; therefore, we will
apply Meshcherskii inverse space time transformation as

α = ξ ε
−1/2
2 ,

η = η ε
−1/2
2 ,

γ = ζ ε
−1/2
2 ,

α1 = u ε
−1/2
2 ,

β1 = v ε
−1/2
2 ,

γ1 = w ε
−1/2
2 .

(7)

Using the above transformation, Equation (5) can be written as



α̇

β̇

γ̇
α̇1

β̇1
γ̇1

 = M ×



α

β

γ
α1

β1
γ1

 , (8)
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where

M =



ε1
2

0 0 1 0 0
0 ε1

2
0 0 1 0

0 0 ε1
2

0 0 1
U0
xx 0 0 ε1

2
2 0

0 U0
yy 0 − 2 ε1

2
0

0 0 U0
zz 0 0 ε1

2

 ,

and the corresponding characteristic polynomial will be

f(λ) = λ6 + C5λ
5 + C4λ

4 + C3λ
3 + C2λ

2 + C1λ+ C0 (9)

with

C5 = −3ε1,

C4 = 4−W 0
xx(z)−W 0

yy(z)−W 0
zz(z) + 15

4
ε21,

C3 = −ε1(8− 2W 0
xx(z)− 2W 0

yy(z)− 2W 0
zz(z) + 5

2
ε21),

C2 = W 0
xx(z)W 0

yy(z) +W 0
zz(z)(−4 +W 0

xx(z) +W 0
yy(z))

+ε21(6− 3
2
W 0
xx(z)− 3

2
W 0
yy(z)− 3

2
W 0
zz(z) + 15

16
ε21),

C1 = −W 0
xx(z)W 0

yy(z)ε1 + 4W 0
zz(z)ε1 −W 0

xx(z)W 0
zz(z)ε1

−W 0
yy(z)W 0

zz(z)ε1 − 2ε31 + 1
2
W 0
xx(z)ε31 + 1

2
W 0
yy(z)ε31 + 1

2
W 0
zz(z)ε31 − 3

16
ε51,

C0 = −W 0
xx(z)W 0

yy(z)W 0
zz(z) + 1

4
W 0
xx(z)W 0

yy(z)ε21 −W 0
zz(z)ε21 + 1

4
W 0
xx(z)W 0

zz(z)ε21

+1
4
W 0
yy(z)W 0

zz(z)ε21 + 1
4
ε41 − 1

16
W 0
xx(z)ε41 − 1

16
W 0
yy(z)ε41 − 1

16
W 0
zz(z)ε41 + ε61.

From Equation (9), f(λ)→ ∞ as λ→ ∞ and f(0) = C0 < 0. Therefore, characteristic equation
(9) has at least one positive root and hence the equilibrium point is unstable.

4. Solution by Lindstedt-Poincaré method

Rearranging Equation (3), we get

z̈ + P0 z +Qz3 = 0, (10)
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where

P0 =
32− ε21

4
, Q = −48

ε2
.

We will use Lindstedt-Poincaré method to find the solution of Equation (10).

Let 
z = z0 +Qz1 +Q2 z2 +Q3 z3 +Q4 z4 + · · · ,

s = P t,

P = P0 +QP1 +Q2 P2 +Q3 P3 +Q4 P4 + · · · .

(11)

Hence from Equations (10, 11), we get

P 2
0 (
d2z0
ds2

+ z0) = 0, (12)

P 2
0 (
d2z1
ds2

+ z1) + 2P0P1
d2z0
ds2

+ z30 = 0, (13)

P 2
0 (
d2z2
ds2

+ z2) + 2P0P1
d2z1
ds2

+ (P 2
1 + 2P0P2)

d2z0
ds2

+ 3z20z1 = 0, (14)

P 2
0 (
d2z3
ds2

+ z3) + 2P0P1
d2z2
ds2

+ (P 2
1 + 2P0P2)

d2z1
ds2

+ 2(P1P2 + P0P3)
d2z0
ds2

+3(z0z
2
1 + z20z2) = 0.

(15)

By taking initial value as z0(0) = S and ż0(0) = 0, the solution of Equation (12) can find as

z0 = S Cos(s). (16)

The solution of Equation (13) by taking initial value as z1(0) = S and ż1(0) = 0 will be

z1 = S0Cos(s) + A0Cos(3s), (17)

and also,

S0 = S − S3

32P 2
0

,

A0 =
S3

32P 2
0

,

P1 =
3S2

8P0

.

(18)

7

Ansari et al.: Variable Infinitesimal Mass In the Circular Sitnikov Problem

Published by Digital Commons @PVAMU, 2020



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 1403

When initial value is taken as z2(0) = S and ż2(0) = 0, then the solution of Equation (14) will be

z2 = S1Cos(s) + A1

8
Cos(3s) + A2

24
Cos(5s), (19)

where

S1 = S − 3S3

32P 2
0

− 21S5

1024P 4
0

,

A1 =
3S3

4P 2
0

+
9S5

128P 4
0

,

A2 =
9S5

32P 4
0

,

P2 =
3S2

4P0

− 3S4

128P 3
0

.

(20)

The solution of Equation (15) can be written by considering the initial value as z3(0) = S and
ż3(0) = 0 as

z3 = S2Cos(s)− B1

8
Cos(3s)− B2

24
Cos(5s)− B3

48
Cos(7s), (21)

where

S2 = S +
B1

8
+
B2

24
+
B3

48
,

B1 = − 3S3

2P 2
0

+
72S5

128P 4
0

+
141S7

4096P 6
0

,

B2 = − 3S3

32P 2
0

+
9S5

1024P 4
0

+
3175S7

32768P 6
0

,

B3 = − 39S7

4096P 6
0

,

P3 =
15S2

8P0

− 93S4

256P 3
0

− 390S6

8192P 5
0

.

(22)

Finally we get the solution of Equation (11) is

z(t) = S Cos(P t)

+Q {S0Cos(P t) + A0Cos(3P t)}

+Q2 {S1Cos(P t) + A1

8
Cos(3P t) + A2

24
Cos(5P t)}

+Q3 {S2Cos(P t)− B1

8
Cos(3P t)− B2

24
Cos(5P t)− B3

48
Cos(7P t)}

+ · · · .

(23)
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(a) For the evolution case at
S = 0.2, ε1 = 0, ε2 = 1
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(c) For the evolution case at
S = 0.2, ε1 = 0.2, ε2 = 0.8
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(b) For the evolution case at
S = 0.2, ε1 = 0.2, ε2 = 0.4
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-5000
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(d) For the evolution case at
S = 0.2, ε1 = 0.2, ε2 = 1.4

Figure 2. Time-series evolution for the different values of variation parameters
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(a) Evolution for the different initial values
S = 0.2(Black), S = 0.4(Red), S = 0.6(Green)
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-20000
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t
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(b) Evolution for the different values of
ε1 = 0(Blue), ε1 = 0.2(Black),
ε1 = 0.4(Red), ε1 = 0.6(Green)

Figure 3. Time-series evolution for the different values of S, ε1 and fixed value of ε2 = 1.4

5. Numerical Analysis

To see the impact of the variational constant on the motion of the third body, we need to study
numerically for the various values of parameters used with the help of equation (23) up-to third
order of Q, and given in Figures 2 and 3. The value of S is taken from Shahbaz Ullah et al.
(2015). From Figure (2 a), we observed that there is a sine series with amplitude approximately
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20,000 units for time period around 0.0065 units when there is constant mass (i.e., ε1 = 0, ε2
= 1), but when we consider the effects of variation parameters we again get the sine series but
with different amplitude and time period. Figure (2 b) (i.e., ε1 = 0.2, ε2 = 0.4), presents amplitude
around 300000 units and time periods 0.0005 units. Figure (2 c) (i.e., ε1 = 0.2, ε2 = 0.8), presents
amplitude around 40000 units and time periods 0.003 units. Figure (2 d) (i.e., ε1 = 0.2, ε2 = 1.4),
presents amplitudes around 9000 units and time periods 0.0225 units. From all these figures we
reveal that when we took the effect of variation parameters, the amplitude increases highly while
the time period decreases. As we increase the value of parameter ε2 from 0.4 to 1.4, we observed
that amplitude decreases and time period increases.

From Figure (3 a), i.e., we observed when we increase the initial value, we revealed that amplitude
increases and time period decreases. Similarly from Figure (3 b), we received that as we increase
the value of ε1 from 0 to 0.6, the amplitude decreases and time period increases. In this way we
can say that the variation parameters have great impact on the motion of the infinitesimal body.

6. Conclusion

Here we have presented the Sitnikov problem with copenhagen configuration where infinitesimal
mass is moving along the z-axis and varying its mass according to Jeans law. Our equations of mo-
tion are different from the original Sitnikov problem due to variation parameters ε1 and ε2. We have
evaluated the equilibrium point and examined the stability of the equilibrium point and found that
this equilibrium point is unstable. Further we have solved the equation of motion by Lindstedt-
Poincaré Method analytically and solved numerically for the various values of the variation pa-
rameters. We observed that these parameters have great impact on the motion of the infinitesimal
body.
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