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Abstract

In this paper, we study an ecological model of a three-space food chain consists of two logically
growing mutual species and third species acts as a predator to second mutual species with Holling
type II functional response. This model is constituted by a system of nonlinear decoupled ordinary
differential equations. By using perturbed method, we identify the nature of the system at each
equilibrium point and also global stability is investigated for this model using Lypanov function at
the possible equilibrium points.

Keywords: Prey-predator; Holling type-II response function; Local and global stability; Hopf
bifurcation

MSC 2010 No.: 93A30, 37B25

1. Introduction

Many applications of real world problems are expressed in ecological models. The study of eco-
logical models has become a central role of mathematics and created much interest among au-
thors. The classical models of food chain with only two trophic levels are discussed by many re-
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1310 Srinivasarao Thota

searchers and scientists. The two species models are consider in many applications with only one
type of interaction at a time: prey-predation, mutualism or competition and they show these mod-
els are to be insufficient to produce realistic dynamic (Chauvet et al. (2002); Hsu et al. (2003);
Freedman and Waltman (1977); Hastings and Powell (1991); Klebanoff and Hastings (1994);
Mada et al. (2011); Thota (2019); Thota (2020)). The prey-predator models with Holling types
I, II, III and IV are discussed in Chen et al. (2012); Seo and DeAngelis (2011); Peng et al. (2009);
Yu (2012); Huang et al. (2011); Naji and Shalan (2011). Therefore, in this paper, we focused on
the dynamics of a three-space food chain consists of two logically growing competing species and
third species acts as a predator with Holling type II functional response.

The rest of the paper is organized as follows: Section 2 presents the mathematical formulation of
the proposed model; in Section 3, we discuss the stability analysis of the model in both locally and
globally.

There are different types of interactions available in nature. For example, the Prey-Predation, Com-
petition, Mutualism, Commensalism, Ammensalism, Parasitism and so on. Among all species
around whose individuals have a different life style that can be divided into different stages. Since
then great work have been done on mutualism interaction or multi-interactions of the species which
includes the mutualism interaction among two or three species in ecological systems.

A mutualistic association between two or more species represents a relationship in which all of
them experience a positive effect from their interactions, consisting in an increase of their ability
to survive, grow or reproduce. Ants, butterflies, caterpillars and Acacia (small tree) are examples
of a three way interaction. Ants, butterflies, caterpillars and an Acacia are beneficial to each other,
i.e., some protections are provided for both Acacia plant and caterpillars by ants, Acacia flowers
are helped by the ants and caterpillars in pollination, the caterpillars have nectar organs from which
the ants drink nectar, a number of benefits are provided to the ants by Acacia in terms of shelter,
protection and nectar, and also nectar to caterpillars (Dhakne and Munde (2012); Suresh Kumar et
al. (2019)).

2. Model Formulation

In the proposed model, suppose the non-dimensional population density of the prey is X at time t,
the population density of the predator is Y at time t and the population density of the host is Z at
time t. Now the ecological setup of food chain involving three species is shown in Figure 1. The
species X and Y are the two logistically growing competing species with intrinsic growth rates
and carrying capacities ri and ki (i = 1, 2), respectively. The species Z is predating over Y with
Holling type-II response. The proportion p of species Y is refuge from predation. The coefficients
aij (i, j = 1, 2, i 6= j) is the inter-species competition coefficients.

2
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Figure 1. Schematic diagram of 3 spaces food-chain system

2.1. Assumptions

Suppose X(T ), Y (T ) and Z(T ) are the densities of the two mutual species and a predator respec-
tively at any time T . The predator Z feeds on the first mutual species X according to Holling
type-II functional response.

(1) The parameters r1 and r2 are intrinsic growth rates of two mutual species X and Y , and also
assumed that the growth of the mutual species are logistic.

(2) The parameters k1 and k2 are the carrying capacities of two mutual species X and Y respec-
tively.

(3) The parameters a12 and a21 are the supporting constants for both mutual species X and Y
respectively.

(4) The parameter ca denotes the attack rate of the single predator search for single mutual species.
(5) The parameter p of species X is refuge from predator.
(6) The parameter b is half saturation level of the predator over the first mutual species.
(7) The parameter e is the natural death rate coefficient of the predator.
(8) The term represents the functional response for grazing of the first mutual species by the

predator. This functional response is called Holling type-II functional response represents the
rate at which the predator consumes the mutual species X . Here, b is half saturation constant
for a Holling type-II.

Now, the model equation for the multi-interaction among three species (in which two species inter-
acting mutually themselves and a mortal predator, which consumes the first mutual species in terms
of Holling type-II functional response) is given by the following system of non-linear decoupled
ordinary differential equations:

dX

dT
= r1X

(
1− X

k1

+
a12Y

k1

)
,

dY

dT
= r2Y

(
1− Y

k2

+
a21X

k2

)
,

dZ

dT
= Z

(
−e+

ca(1− p)Y
b+ (1− p)Y

)
,

(1)
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with the non-negative initial conditions are X(0) ≥ 0, Y (0) ≥ 0, Z(0) ≥ 0. The following non-
dimensional variables and parameters will help us to write the above set of equations in a simple
form:

t = r1T, x =
X

k1

, y =
Y

k2

, z =
aZ

r1k1

, α12 =
a12k2

k1

, α21 =
a21k1

k2

, v1 =
b

k1

,

v2 =
e

r1

, v3 =
ac

r1

, r =
r2

r1

.

The corresponding non-dimensional equations of the above system (1) and associated initial con-
ditions are

dx

dt
= x (1− x+ α12y) = xF1(x, y, z),

dy

dt
= ry (1− y + α21x)− (1− p)yz

v1 + (1− p)y
= yF2(x, y, z),

dz

dt
= z

(
−v2 +

v3(1− p)y
v1 + (1− p)y

)
= zF3(x, y, z),

(2)

and x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

3. Analysis

In this section, we discuss the local and global stability analysis of the proposed model in Equa-
tion (2).

3.1. Equilibrium Points

The equilibrium points of the system are necessary for the purpose of studying the local stability
nature of the ecological model. The system under investigation has the following six equilibrium
points:

(1) Fully washed state or extent state: E1 = (0, 0, 0),
(2) Only first mutual species survival state: E2 = (0, 1, 0),
(3) Only second mutual species survival state: E3 = (1, 0, 0),
(4) Predator washed state: E4 = (x̂, ŷ, 0), where

x̂ =
1 + α12

1− α12α21

, ŷ =
1 + α21

1− α12α21

.

This exists only when α12α21 < 1.
(5) Second mutual species washed state: E5 = ( 0, ȳ, z̄) where

ȳ =
v1v2

(1− p)(v3 − v2)
,

z̄ =
rv1v3[(1− p)(v3 − v2)− v1v2]

(1− p)2(v3 − v2)2 .

This exists when v3 > v2 and (v3 − v2) > v1v2.

4
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(6) Coexistence state: E6 = (x∗, y∗, z∗) where

x∗ = 1 +
α12v1v2

(1− p)(v3 − v2)
,

y∗ =
v1v2

(1− p)(v3 − v2)
,

z∗ =
yv1v3

(1− p)2(v3 − v2)2 ((1− p)(v3 − v2)(α21 + 1)− v1v2(1− α12α21)).

This exists when (1− p)(v3 − v2)(α21 + 1) > v1v2(1− α12α21) and v3 > v2.

3.2. Existence and Stability Analysis of Equilibrium Points

The Jacobin matrix for the system (2) at equilibrium point E = (x, y, z) is given by

JE =

J11 J12 0
J21 J22 J23

0 J32 J33

 , (3)

where

J11 = α12y − 2x+ 1, J12 = xα12, J21 = ryα21,

J22 = r (α21x− y + 1)− ry − (1− p) z
v1 + (1− p) y

+
(1− p)2yz

(v1 + (1− p) y)2 ,

J23 = − (1− p) y
v1 + (1− p) y

,

J32 =
v3 (1− p)

v1 + (1− p) y
− v3(1− p)2y

(v1 + (1− p) y)2 ,

J33 = − v2 +
v3 (1− p) y
v1 + (1− p) y

.

Theorem 3.1.

The system is always exists and unstable at the equilibrium points E1, E2, E3.

Proof:

(1) The Eigenvalues for the extinct equilibrium point E1 = (0, 0, 0) are 1, r,−v2 and hence the
equilibrium point is saddle point. Therefore, the dynamical system is unstable.

(2) The second axial equilibrium point E2 = (0, 1, 0) is also saddle point because of one Eigen-
value, 1 + α12, is positive and remaining two, −r, v1v2−(1−p)(v3−v2)

p−1−v1 , are negative.
(3) The axial equilibrium pointE3 = (1, 0, 0) always exists and its Eigenvalues are−1,−v2, r(1+

α21), and so it also is a saddle point in any case. The system is also unstable locally at this fixed
point. �
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Theorem 3.2.

The boundary steady state E4 is always stable in xy-direction.

Proof:

In the absence of species z (which is predator for y species), the system reduces to

dx

dt
= x (1− x+ α12y) ,

dy

dt
= ry (1− y + α21x) ,

(4)

and x(0) ≥ 0, y(0) ≥ 0. Local stability analysis for the system (4) gives the following results. The
equilibrium points of system (4) under investigation are

(0, 0), (0, 1), (1, 0), and
(

1 + α12

1− α12α21

,
1 + α21

1− α12α21

)
,

and the Jacobin matrix for the system (4) at equilibrium point E = (x, y) is

J =

(
1− 2x+ α12 xα12

ryα21 r(α21x− y + 1)− ry

)
.

The fully washed state (0, 0) is always exists and it is a unstable point, and the equilibrium points
(0, 1), (1, 0) are always exist and these are always saddle points. The nontrivial positive equilibrium
point is (x̂, ŷ), where

x̂ =
1 + α12

1− α12α21

, ŷ =
1 + α21

1− α12α21

.

The associated Jacobian matrix at (x̂, ŷ) is

J1 =

(
− 1+α12

1−α12α21

α12(1+α12)
1−α12α21

rα21(1+α21)
1−α12α21

− r(1+α21)
1−α12α21

)
.

The characteristic equation of the Jacobian matrix J1 is

λ2 +
α21r + α12 + r + 1

1− α12α21

λ+
r(1 + α21)(1 + α21)

1− α12α21

= 0.

Comparing with λ2 + a0λ+ a1 = 0, we get

a0 =
α21r + α12 + r + 1

1− α12α21

> 0, and

a1 =
r(1 + α21)(1 + α21)

1− α12α21

> 0.

According to Routh-Hurwitz criteria, the system is stable. Hence the system is unstable in z-
direction and stable in xy-direction. �
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Theorem 3.3.

The equilibrium point E4 = (x̂, ŷ, 0) is globally asymptotically stable in the interior R2
+ of the

xy−plane.

Proof:

For any vale in interior R2
+ of the xy−plane, the system reduces to following subsystem in the

interior of xy−plane

dx

dt
= x (1− x+ α12y) = g1(x, y),

dy

dt
= ry (1− y + α21x) = g2(x, y).

Now, assume that M1(x, y) = 1
xy

, it is clear that M1(x, y) > 0, for all (x, y) in interior of R2
+.

∇.(M1(x, y)).

(
dx
dt
dy
dt

)
= ∇.

(
1

xy

)
.

(
g1(x, y)
g2(x, y)

)
=

∂

∂x

(
1

xy
(x (1− x+ α12y))

)
+

∂

∂y

(
1

xy
(ry (1− y + α21x))

)
=

∂

∂x

(
1

y
− x

y
+ α12

)
+

∂

∂y

( r
x
− ry

x
+ rα21

)
= − x+ ry

xy
< 0, for all (x, y) ∈ R2

+.

So, according to Bendixson-Dulac criteria, there is no periodic solution in the interior R2
+ of

xy−plane. Since all the solutions of the system are bonded and E4 is unique positive equilib-
rium point in the interior R2

+ of the xy−plane, hence, by Poincare Bendixson-Dulac theorem, the
equilibrium point E4 = (x̂, ŷ, 0) is globally asymptotically stable in the interior of R2

+. �

Theorem 3.4.

The boundary equilibrium point E4 = (x̂, ŷ, 0) is globally asymptotically stable in the interior R3
+.

Proof:

Let the Lyapunov function for the nonlinear system be

V1(x, y, z) = l1

(
x− x̂− x̂ log

(x
x̂

))
+ l2

(
y − ŷ − ŷ log

(
y

ŷ

))
.

7

Thota: Model of Mutualisim Between Two Species With a Mortal Predator

Published by Digital Commons @PVAMU, 2020



1316 Srinivasarao Thota

On differentiating with respect to t and substituting derivatives of x, y, z expressions, we get

dV1

dt
= l1

(
x− x̂
x

)
dx

dt
+ l2

(
y − ŷ
y

)
dy

dt

= l1

(
x− x̂
x

)
(x (1− x+ α12y)) + l2

(
y − ŷ
y

)
(ry (1− y + α21x))

= l1(x− x̂)(−(x− x̂) + α12(y − ŷ)) + l2r(y − ŷ)(−(y − ŷ) + α21(x− x̂))

= − l1(x− x̂)2 − l2r(y − ŷ)2,

for l1 = −rα21

α12
and l2 = 1, then dV1

dt
< 0 and hence by Lyapunov theorem, the system is globally

stable at the boundary equilibrium point E4 = (x̂, ŷ, 0). �

Theorem 3.5.

If v1v3 + v1v2 > (1− p)(v3 − v2), the boundary steady state E5 = (0, ȳ, z̄) is stable in yz−plane.

Proof:

In the absence of species x, which is commensal of z species, the system reduces to system:

dy

dt
= ry (1− y)− (1− p)yz

v1 + (1− p)y
,

dz

dt
= z

(
−v2 +

v3(1− p)y
v1 + (1− p)y

)
,

(5)

under the condition

v2 <
v3(1− p)
v1 + (1− p)

. (6)

Local stability analysis for the system (5) gives the following results. The equilibrium points of
system (5) under investigation are

(0, 0), (1, 0), and (ȳ, z̄),

and the Jacobin matrix for the system (5) at equilibrium point E = (y, z) is

J =

(
r(1− y)− ry − (1−p)z

v1+(1−p)y + (1−p)2yz
(v1+(1−p)y)2

− (1−p)y
v1+(1−p)y

z
(

v3(1−p)
v1+(1−p)y −

v3(1−p)2y
(v1+(1−p)y)2

)
0

)
.

The trivial equilibrium point (0, 0) is always exists and it is a saddle point and the equilibrium
point (1, 0) is also exists always and it is a saddle point if v2 <

v3(1−p)
v1+(1−p) . The nontrivial positive

equilibrium point is (ȳ, z̄), where

ȳ =
v1v2

(1− p)(v3 − v2)
, z̄ =

rv1v3[(1− p)(v3 − v2)− v1v2]

(1− p)2(v3 − v2)2 .

The associated Jacobian matrix at (ȳ, z̄) is

J1 =

(
rv2((1−p)(v3−v2)−v1(v2+v3))

v3(1−p)(v3−v2)
− v2

v3
r((1−p)(v3−v2)−v1v2)

1−p 0

)
.

8
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The characteristic equation of the Jacobian matrix J1 is

λ2 − rv2((1− p)(v3 − v2)− v1(v2 + v3))

v3(1− p)(v3 − v2)
λ+

rv2((1− p)(v3 − v2)− v1v2)

v3(1− p)
= 0.

Compare with λ2 + a0λ+ a1 = 0, where

a1 =
rv2((1− p)(v3 − v2)− v1v2)

v3(1− p)
> 0, and

a0 =− rv2((1− p)(v3 − v2)− v1(v2 + v3))

v3(1− p)(v3 − v2)
.

Here, a0 > 0 if v1v3 > ((1− p)(v3 − v2)− v1v2) and a0 < 0 if v1v3 < ((1− p)(v3 − v2)− v1v2).
Hence, according to Routh-Hurwitz criteria, the system is stable in xy-direction if v1v3 + v1v2 >
(1− p)(v3 − v2) and unstable in z-direction. �

Theorem 3.6.

Along the condition stated in Theorem 3.5, the equilibrium point E5 = (0, ȳ, z̄) is globally asymp-
totically stable in the interior R2

+ of the yz−plane.

Proof:

For any value in interior R2
+ of the yz−plane, the system reduces to following subsystem in the

interior of yz−plane

dx

dt
= x

(
1− x− (1− p)z

v1 + (1− p)x

)
= g3(x, y),

dz

dt
= z

(
−v2 +

v3(1− p)x
v1 + (1− p)x

)
= g4(x, y).

Assume that M2(y, z) = v1+(1−p)y
yz

. It is clear that M2(y, z) > 0 for all (y, z) in interior of R2
+.

Now

∇.(M2(y, z)).

(
dy
dt
dz
dt

)
=∇.

((
v1 + (1− p) y

yz

)
.

(
g3(y, z)
g4(y, z)

))
=

∂

∂y

(
r
v1 + (1− p)y

z
− rv1y + (1− p)y2

z
− (1− p)

)
+

∂

∂z

(
−v2

v1 + (1− p)y
y

+ v3(1− p)
)

=
r

z
((1− p)(1− 2y)− v1) < 0, if (1− p)(1− 2y) < v1.

Then from Bendixson-Dulac criteria, there is no periodic solution in the interior R2
+ of yz−plane.

Since all the solutions of the system are bonded and E5 is unique positive equilibrium point in the
interior R2

+ of the yz−plane, hence, by Poincare Bendixson-Dulac theorem, the equilibrium point
E5 = (0, ȳ, z̄) is globally asymptotically stable in the interior of R2

+. �
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Theorem 3.7.

Assume that the condition in the Theorem 3.5, the planar equilibrium point E5 = (0, ȳ, z̄) is
globally asymptotically stable in the interior of R3

+.

Proof:

Consider the positive definite function

V2(y, z) = l1

(
y − ȳ − ȳ log

(
y

ȳ

))
+ l2

(
z − z̄ − z̄ log

(z
z̄

))
,

where l1, l2 are the positive constants to be determined. On differentiating with respect to t and
substituting derivatives of y, z expressions, and simplifying, we get

dV2

dt
= l1

(
y − ȳ
y

)
dy

dt
+ l2

(
z − z̄
z

)
dz

dt

= l1(y − ȳ)

(
r − ry − (1− p)z

v1 + (1− p)y

)
+ l2(z − z̄)

(
−v2 +

v3(1− p)y
v1 + (1− p)y

)
= l1(y − ȳ)

(
−r(y − ȳ)− (1− p)

(
z

v1 + (1− p)y
− z̄

v1 + (1− p)ȳ

))
+ l2(z − z̄)

(
v3(1− p)

(
y

v1 + (1− p)y
− ȳ

v1 + (1− p)ȳ

))
= − l1r(y − ȳ)2 − l1v1(1− p) (y − ȳ)(z − z̄)

(v1 + (1− p)y)(v1 + (1− p)ȳ)

− l1(1− p)2 ȳ(y − ȳ)(z − z̄)

(v1 + (1− p)y)(v1 + (1− p)ȳ)

+ l1(1− p)2 z̄(y − ȳ)2

(v1 + (1− p)y)(v1 + (1− p)ȳ)

+ l2v1v3
(y − ȳ)(z − z̄)

(v1 + (1− p)y)(v1 + (1− p)ȳ)

= − l1(y − ȳ)2

(
r − (1− p)2z̄

(v1 + (1− p)y)(v1 + (1− p)ȳ)

)
+

(1− p)(y − ȳ)(z − z̄)

(v1 + (1− p)y)(v1 + (1− p)ȳ)
(−l1v1 − l1(1− p)ȳ + l2v1v3) .

By choosing non-negative constants l1 = 1 and l2 = v1+(1−p)ȳ
v1v3

, then the above equation becomes

dV2

dt
= − l1(y − ȳ)2

(
r − (1− p)2z̄

(v1 + (1− p)y)(v1 + (1− p)ȳ)

)
< 0 if r(v1 + (1− p)y)(v1 + (1− p)ȳ) > (1− p)2z̄.

Hence, by Lyapunov theorem the equilibrium point E5 = (0, ȳ, z̄) is globally stable, if

r(v1 + (1− p)y)(v1 + (1− p)ȳ) > (1− p)2z̄. �
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Theorem 3.8.

The interior equilibrium point E6 = (x∗, y∗, z∗) exists if (1 − p)(v3 − v2)(α21 + 1) > v1v2(1 −
α12α21) and v3 > v2.

Proof:

Let x∗, y∗, z∗ be the positive solutions of the equations

x∗ (1− x∗ + α12y
∗) = 0,

ry∗ (1− y∗ + α21x
∗)− (1− p)y∗z∗

v1 + (1− p)y∗
= 0,

z∗
(
−v2 +

v3(1− p)y∗

v1 + (1− p)y∗

)
= 0.

By solving these equations, we obtain

x∗ = 1 +
α12v1v2

(1− p)(v3 − v2)
, y∗ =

v1v2

(1− p)(v3 − v2)
,

z∗ =
yv1v3

(1− p)2(v3 − v2)2 ((1− p)(v3 − v2)(α21 + 1)− v1v2(1− α12α21)).

Hence, the interior equilibrium point E6 = (x∗, y∗, z∗) exists if (1 − p)(v3 − v2)(α21 + 1) >
v1v2(1− α12α21) and v3 > v2. �

Theorem 3.9.

The interior equilibrium point E6 = (x∗, y∗, z∗) is locally asymptotically stable if a0 > 0, a2 > 0
and a0a1 − a2 > 0 otherwise is unstable.

Proof:

The Jacobian matrix for the coexistent equilibrium state E6 = (x∗, y∗, z∗) is

JE6
=

H11 H12 0
H21 H22 H23

0 H32 0

 ,

where

H11 = − x∗, H12 = α12x
∗, H22 = (1− y∗ + α21x

∗)

(
r − 1 +

v2

v3

)
− ry∗,

H21 = rα21y
∗, H23 = − (1− p)y∗

v1 + (1− p)y∗
, H32 =

(1− p)z∗

v1 + (1− p)y∗
(v3 − v2).

The characteristic equation is λ3 + a0λ
2 + a1λ+ a2 = 0, with

a0 = − (H11 +H22) ,

a1 = H11H22 − (H12H21 +H23H32) ,

a2 = H32H23H11.
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According to Routh-Hurwitz criteria is locally asymptotically stable if a0 > 0, a2 > 0 and a0a1 −
a2 > 0 otherwise is unstable. �

Theorem 3.10.

Along with the conditions stated in the Theorem 3.9 and if

r(v1 + (1− p)y)(v1 + (1− p)y∗) > (1− p)2z∗,

the interior equilibrium point E6 = (x∗, y∗, z∗) is globally asymptotically stable.

Proof:

Let the Lyapunov function for the nonlinear system be

V (x, y, z) = x− x∗ − x∗ log
( x
x∗

)
+ l1

(
y − y∗ − y∗ log

(
y

y∗

))
+ l2

(
z − z∗ − z∗ log

( z
z∗

))
.

On differentiating with respect to t and substituting derivatives of x, y, z expressions, we get

dV

dt
= (x− x∗) (1− x+ α12y)

+ l1(y − y∗)
(
r (1− y + α21x)− (1− p)z

v1 + (1− p)y

)
+ l2(z − z∗)

(
−v2 +

v3(1− p)y
v1 + (1− p)y

)
= (x− x∗) (−(x− x∗) + α12(y − y∗))

+ l1(y − y∗)[−r(y − y∗) + rα21(x− x∗)

− (1− p)
(

z

v1 + (1− p)y
− z∗

v1 + (1− p)y∗

)
]

+ l2v3(1− p)(z − z∗)
(

y

v1 + (1− p)y
− y∗

v1 + (1− p)y∗

)
= − (x− x∗)2 + (α12 − l1α21r)(x− x∗)(y − y∗)

+
(y − y∗)(z − z∗)

[v1 + (1− p)y][v1 + (1− p)y∗](
l2v1v3(1− p)− l1(1− p)2y∗ − l1(1− p)v1

)
−

(
l1r −

l1(1− p)2z∗

(v1 + (1− p)y) (v1 + (1− p)y∗)

)
(y − y∗)2.
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If l1 = α12

rα21
, l2 = α12

α21rv1v3
(v1 + (1− p)y∗) and r > (1−p)2z∗

[v1+(1−p)y] [v1+(1−p)y∗]
, then dV

dt
< 0, and hence,

by known theorem, the system is globally stable. �

4. Conclusion

In this paper, we focused on an ecological model of a three-space food chain that consists of two
logically growing mutual species and a third species acts as a predator to second mutual species
with Holling type II functional response. A system of nonlinear decoupled ordinary differential
equations formed using the model and we identify the nature of the system at each equilibrium
point by perturbed method. We also investigated the global stability at the possible equilibrium
points for this model using Lypanov function.
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