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Abstract

In this paper, the approximate solutions for systems of nonlinear algebraic equations by the power
series method (PSM) are presented. Illustrative examples have been presented to demonstrate the
efficiency of the proposed method. In addition, the obtained results are compared with those ob-
tained from the standard Adomian decomposition method. It turns out that the convergence of the
proposed algorithm is rapid.
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1. Introduction

The nonlinear systems of algebraic equations (NSAE) often arise from the numerical modeling of
problems in many branches of science and engineering (Brown and Saad (1990)). There are many
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1268 M.M. Khader and M. Adel

real life problems in biology, physics and science that give us linear and nonlinear system of equa-
tions (El-Ajou et al. (2019), Goufoa et al. (2020), Khader and Adel (2018)-Kumar et al. (2013),
Kumar et al. (2020), Sweilam et al. (2014)). Also, such these systems arise from the discretization
of boundary value problems by finite difference or finite element methods with a huge sparse sys-
tem of nonlinear algebraic equations. These equations more often are not solved analytically and
there is no general theory for finding their solutions; hence, the resort to numerical solutions. More
robust and efficient methods for solving NSAE are continuously being sought. Some available
methods include variations of the Newton approach (Sundar et al. (2001)), the conjugate gradient
method (Chronopoulos (1992), Daniel (1967), Fokkemma et al. (1996)) and the spectral methods
(Brown and Saad (1990)). The Newton method is well-known for solving nonlinear systems of
equations but at each step of the Newton method, it requires to solve a linear system of equations.
However, solving a system of linear equations at each step becomes expensive if the number of
unknowns is large and may not be justified when the iterative solution is far from a solution.

Recently, the PSM has been used for solving a wide range of problems (Ercan and Mustafa (2003),
Ercan C. and Mustafa B. (2004), Liu and Megahed (2012)-Liu et al. (2012)). This new iterative
method has proven rather success in dealing with linear as well as nonlinear problems. This method
yields solutions for high accuracy and offers certain advantages over standard numerical methods.
It is free from rounding off errors since it does not involve discretization and is computationally
inexpensive.

Consider the following nonlinear system of algebraic equations:

F (X) = 0, or fi(x1, x1, ..., xn) = 0, i = 1, 2, ..., n, (1)

where F and X are vector functions and fi : <n → <.

The solutions of (1) can be assumed that:

xi = θi, for some constants θi, i = 1, 2, ..., n, (2)

where θ = (θi) is a vector value. Substituting from (2) into (1) and neglect higher-order term, we
get a linear equation of θ in the form:

Aθ = b, (3)

where A and b are constant matrices. By solving this equation (3), the coefficients of θ in (2) can
be determined. By repeating the above procedure for a higher number of terms, we can get the
arbitrary order power series of the solutions for (1).

2. Procedure solution by using the PSM

We define another type of power series in the form (Inc et al. (2016), Kumar et al. (2016)):

f = f0 + f1 + f2 + ...+ (fn + p1θ1 + ...+ pmθm), (4)

where p1, p2, ..., pm are constants. θ1, θ2, ..., θm are bases of vector θ; m is the size of a vector θ,
and X is a vector with m elements in (2). Every element can be represented by the power series in
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(4). Therefore, we can write:

xi = xi,0 + xi,1 + xi,2 + ...+ θi, (5)

where xi is the i−th element of X . Substituting (5) into (1), we can get the following:

fi = (fi,n + pi,1θ1 + ...+ pi,mθm) +O(θmi ), (6)

where fi is the i−th element of F in (1). From (6), we can determine the linear equation in (3) as
follows:

Ai,j = Pi,j, bi = −fi,n. (7)

By solving the linear equation (3), we have θi, (i = 1, 2, ...,m). By substituting θi into (5), we
have xi, (i = 1, 2, ...,m). By repeating this procedure from (5)-(7), we can get the arbitrary order
power series of the solution for the nonlinear system of algebraic equations (1).

3. Illustrative numerical examples

To give a clear overview of the proposed method, we present the following examples. We apply
the PSM and compare the results with the standard Adomian decomposition method (ADM).

Example 3.1.

Consider the following nonlinear system of equations,

x21 − 10x1 + x22 + 8 = 0,

x1 x
2
2 + x1 − 10x2 + 8 = 0.

(8)

The exact solution is x1 = x2 = 1. According to PSM, the solutions of (8) can be supposed as

x1 = θ1, x2 = θ2. (9)

Substituting (9) into (8) and neglecting higher-order terms, we have:

(8− 10 θ1) +O(θ21, θ
2
2) = 0,

(8 + θ1 − 10 θ2) +O(θ21, θ
2
2) = 0.

(10)

The linear equation that corresponds to (10) can be given in the following form:

Aθ = b, (11)

where

A =

(
−10 0
1 −10

)
, b =

(
−8
−8

)
, θ =

(
θ1
θ2

)
.

By solving this linear equation, we get θ =

(
0.8
0.88

)
.

3

Khader and Adel: Systems of Algebraic Equations Using the Power Series Method

Published by Digital Commons @PVAMU, 2020



1270 M.M. Khader and M. Adel

From (9) we can obtain:

x1 = 0.8, x2 = 0.88. (12)

From (12) the solutions of (8) can be supposed as:

x1 = 0.8 + θ1, x2 = 0.88 + θ2. (13)

In a like manner, by substituting (13) into (8) and neglecting higher-order terms, we get:

(1.4144− 8.4 θ1 + 1.76 θ2) +O(θ21, θ
2
2) = 0,

(0.61952 + 1.7744 θ1 − 8.592 θ2) +O(θ21, θ
2
2) = 0,

(14)

where

A =

(
−8.4000 1.7600
1.7744 −8.5920

)
, b =

(
−1.4144
−0.6195

)
, θ =

(
θ1
θ2

)
.

By solving this linear equation, we obtain θ =

(
0.191787
0.111712

)
.

Therefore,

x1 = 0.8 + 0.191787 = 0.991787, x2 = 0.88 + 0.111712 = 0.991712. (15)

From (15), the solutions for (8) can be supposed as:

x1 = 0.991787 + θ1, x2 = 0.991712 + θ2. (16)

In a like manner, by substituting (16) into (8) and neglecting higher-order terms, we get

(0.0492618503846− 8.01642555779 θ1 + 1.9834234742 θ2) +O(θ21, θ
2
2) = 0,

(0.0500848159063 + 1.98349216949 θ1 − 8.0328659443 θ2) +O(θ21, θ
2
2) = 0,

(17)

where

A =

(
−8.01642555779 1.9834234742
1.98349216949 −8.0328659443

)
, b =

(
−0.0492618503846
−0.0500848159063

)
.

By solving this linear equation, we get θ =

(
0.0081880
0.0082568

)
. Therefore,

x1 = 0.991787 + 0.0081880 = 0.999975, x2 = 0.991712 + 0.0082568 = 0.999969. (18)

By repeating the above procedure (only twice) we have:

x1 = 1, x2 = 1. (19)
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The solution of the system (8) by the standard ADM (Kaya and El-Sayed (2004)) (after 20 itera-
tions) is

x1 = 1.00000181935, x2 = 1.00000224783.

For more details about the ADM, see Kaya and El-Sayed (2004).

Example 3.2.

Consider the following nonlinear system of equations,

x31 + x32 − 6x1 = −3,
x31 − x32 − 6x2 = −2.

(20)

The exact solution is x1 = 0.5323642890259361, x2 = 0.3512537227407807.

According to the PSM, the solutions for (20) can be supposed as:

x1 = θ1, x2 = θ2. (21)

By substituting (21) into (20) and neglecting higher-order terms, we get:

(3− 6 θ1) +O(θ21, θ
2
2) = 0,

(2− 6 θ2) +O(θ21, θ
2
2) = 0.

(22)

The linear equation that corresponds to (22) can be given in the form (11), where

A =

(
−6 0
0 −6

)
, b =

(
−3
−2

)
, θ =

(
θ1
θ2

)
.

By solving this linear equation, we obtain θ =

(
0.50000
0.333333

)
, and

x1 = 0.50000, x2 = 0.333333. (23)

Using (23), the solutions for (20) can be supposed as:

x1 = 0.50000 + θ1, x2 = 0.333333 + θ2. (24)

In like manner, by substituting (24) into (20) and neglecting higher-order terms, we get:

(0.162037037037037− 5.25 θ1 + 0.3333333333 θ2) +O(θ21, θ
2
2) = 0,

(0.087962962962963 + 0.75 θ1 − 6.3333333333 θ2) +O(θ21, θ
2
2) = 0,

(25)

where

A =

(
−5.25 0.333333333
0.75 −6.333333333

)
, b =

(
−0.162037037037
−0.087962962963

)
, θ =

(
θ1
θ2

)
.

By solving this linear equation, we get θ =

(
0.0319865
0.0176768

)
.

Therefore,

x1 = 0.5 + 0.0319865 = 0.531987, x2 = 0.333333 + 0.0176768 = 0.35101. (26)
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From (26), the solutions for (20) can be supposed as:

x1 = 0.531987 + θ1, x2 = 0.35101 + θ2. (27)

In like manner, by substituting (27) into (20) and neglect higher-order terms, we find:

(0.00188542552824− 5.15097098935 θ1 + 0.3696242730 θ2) +O(θ21, θ
2
2) = 0,

(0.00124944244468 + 0.84902901065 θ1 − 6.3696242730 θ2) +O(θ21, θ
2
2) = 0,

(28)

where

A =

(
−5.15097098935 0.3696242730
0.84902901065 −6.3696242730

)
, b =

(
−0.00188542552824
−0.00124944244468

)
.

By solving this linear equation, we get θ =

(
0.00038378
0.00024731

)
. Therefore,

x1 = 0.531987 + 0.00038378 = 0.53237, x2 = 0.35101 + 0.000247312 = 0.351257. (29)

By repeating the above procedure (only twice) we obtain:

x1 = 0.53237, x2 = 0.351257. (30)

The solution for the system (20) by the standard ADM (Kaya and El-Sayed (2004)) (after 8 itera-
tions) is

x1 = 0.532365, x2 = 0.351254.

4. Conclusion and Discussion

The power series method is a powerful approach that yields a convergent series solution for a wide
class of nonlinear problems. This method is better than the other numerical methods as it is free
from rounding off errors, and does not require large computing. The proposed method yields a
series of solutions which converges faster than the series obtained by standard ADM. Illustrative
examples presented clearly to support this claim. Mathematica has been used for computations in
this paper.
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