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Abstract

In this paper an eco-epidemiological model incorporating a prey refuge and prey harvesting with
disease in the prey-population is considered. Predators are assumed to consume both the suscep-
tible and infected prey at different rates. The positivity and boundedness of the solution of the
system are discussed. The existence and stability of the biologically feasible equilibrium points are
investigated. Numerical simulations are performed to support our analytical findings.
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1. Introduction

The dynamical relationship between a predator and a prey is one of the dominant themes in
both ecology and mathematical ecology due to its universal existence and importance (Berryman
(1992)). Alfred James Lotka and Vito Volterra have done fundamental work on formulating and
analyzing the first predator prey model.

Nature can provide some degree of protection to a given number of prey populations by providing
refuges. Such refugia can help in prolonging prey predator interactions by reducing the chance of
extinction due to predation (Huang et al. (2006); Kar (2005)) and damp prey predator oscillations
(Collings (1995)). The effects of prey refuges on the population dynamics are very complex in
nature, but for modeling purposes, it can be considered as constituted by two components: the first
effects, which affect positively the growth of prey and negatively that of predators, comprise the
reduction of prey mortality due to decrease in predation success. The second one may be the trade-
offs and by-products of the hiding behavior of prey which could be advantageous or detrimental
for all the interacting populations (Gonzalez-Olivares et al. (2003)).

In the literature’s studies show that refuges have both stabilizing (Hassell (1974)) and destabiliz-
ing effect (McNair (1986)). The traditional ways in which the effect of refuge used by the preys
has been incorporated in predator prey models is to consider either a constant number or a con-
stant proportion of the prey population being protected from predation (Smith (1978)). Hassell
(Hassell (1974)) notes that in reality refugia fall between these two extremes. It is pointed out
that those protecting a proportion of the prey population appearing to be more common (Collings
(1995)). However, as pointed out by the authors (Gonzalez-Olivares et al. (2003); Krivan (1998);
Ma et al. (2009)), the refuges, which protect a constant number of preys, have a stronger stabiliz-
ing effect on population dynamics than the refuges, which protect a constant proportion of prey.
For more biological backgrounds and results on the effects of a prey refuge, one could refer to
(Collings (1995); Kar (2006); Ko and Ryu (2006); Krivan (1998); McNair (1986); McNair (1987);
Sih (1987)) and the references therein.

In addition, many of the species in the natural ecosystem are being mined and harvested. The
exploitation of biological resources and harvest of population species are commonly practiced in
fishery, forestry and wildlife management. Concerning the conservation for the long-term benefits
of humanity, there is a wide-range of interest in the use of bio-economic modelling to gain insight
in the scientific management of renewable resources like fisheries and forestries (Tao et al. (2016)).

The mathematical modeling of epidemics has become a very important subject of research after
the seminal model of Kermack-McKendric (Kermack and McKendrick (1927)) on SIRS systems,
in which the evolution of a disease which gets transmitted upon contact is described. A lot of
research work has been done in this area (see (Bailey (1975); Anderson and May (1981); Ma et al.
(2009); Juneja and Agnihotri (2018); Kant and Kumar (2017a); Kant and Kumar (2017b)) and the
references therein)

Ecology and epidemiology are major fields of study in their own right. But there are some common
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features between these systems. Due to these common features, mathematical biologists have been
working on merging these two major areas of interest for a long time (Bhattacharya et al. (2014)).
It is very important both from the ecological and mathematical points of view to study ecological
systems under the influence of epidemiological factors. Anderson and May (Anderson and May
(1981)) who were the pioneers for formulating an eco-epidemiological predator prey model and
investigated the invasion, persistence, and spread of diseases. After the work of Anderson and
May (Anderson and May (1981)), many eco-epidemiological researchers study ecological systems
with disease either in prey (De Rossi et al. (2015); Saifuddin et al. (2017); Sarwardi et al. (2011);
Zhou et al. (2010); Rahman and Chakravarty (2013); Sharma and Samanta (2014); Kant and Kumar
(2017a); Nandi et al. (2015); Oliveira and Hilker (2010); Kooi and Venturino (2016); Sahoo (2016))
or in predator (Biswas et al. (2018); Das (2011); Das (2015); Das (2016); Haque (2010); Haque and
Venturino (2007); Juneja and Agnihotri (2018); Sahoo (2016); Sahoo and Poria (2016); Venturino
(2004); Jana et al. (2013); Wang et al. (2016); Mbava et al. (2017)) or in both populations (Gao et
al. (2013); Bera et al. (2015); Agnihotri and Gakkhar (2012); Kant and Kumar (2017b)).

Some researchers have analyzed an eco-epidemiological predator-prey model incorporating a prey
refuge in the system (Wang et al. (2018); Wang et al. (2012); Maji et al. (2019); Kant and Kumar
(2015)). On the other hand, the authors (Chakraborty et al. (2010); Bhattacharyya and Mukhopad-
hyay (2010); Bhattacharya et al. (2014)) have considered an eco-epidemiological predator prey
system with disease in prey species only and harvesting of both susceptible and infected prey.
Agnihotri and Gakkhar (Agnihotri and Gakkhar (2012)) have studied a prey predator system with
disease on both the species and aharvesting of the prey species only. Abdulghafour and Naji (Ab-
dulghafour et al. (2018)) investigated an eco-epidemiological prey-predator model involving a prey
refuge and harvesting from the predator. As far as our knowledge concerns, no one has considered
the effect of prey refuge, in the infected prey only, and prey harvesting in an eco-epidemiological
predator prey system.

The main aim of this paper is to study the effect of infection in prey, prey refuge and prey harvesting
in a predator prey system. Here, we have studied the boundedness, positivity of the solution, local
and global stabilities of the equilibrium points of this system.

The organization of this paper is as follows: Section 2 deals with the model formulation. Some
preliminary results of the proposed model are discussed in Section 3. The exclusion criteria and
Existence and stability of the biologically feasible equilibrium points are discussed in Sections
4 and 5, respectively. Numerical studies are carried out in Section 6 and conclusion is given in
Section 7.

2. The Mathematical Model Formulation

2.1. Model Assumptions

A mathematical model of a predator-prey system with infection in prey, prey refuge and harvesting
is considered here. Let N(t) and P (t) represent the total prey population density and the predator
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population density, respectively. The following assumptions are taken for the formulation of our
eco-epidemiological model.

(1) In the absence of disease, the prey population grows logistically with carrying capacity K and
intrinsic birth rate r.

(2) In the presence of disease, the prey population is divided into two groups, namely susceptible
prey denoted by S(t) and infected prey denoted by I(t). Therefore, at time t, the total population
is N(t) = S(t) + I(t).

(3) The susceptible prey is capable of reproducing only and the infected prey is removed by death at
a natural rate d1.

(4) The disease spreads among the prey population only by contact, and can not be transmitted ver-
tically. The infected prey species do not recover or become immune. We assume that the disease
transmission follows the simple law of mass action λS(t)I(t) with λ as the transmission rate.

(5) The infected prey species are assumed to take a refuge. That is (1 − m)I , m is prey refuge
constant, of the infected prey is available for predation.

(6) Predators predate both susceptible and infected prey following a Holling type-II functional re-
sponse with predation coefficients α1 and b1, respectively. The consumed prey is converted into
predator with efficiency c.

(7) The predators suffer loss due to natural death at a constant rate d2.
(8) The susceptible and infected preys are harvested by an external force according to linear type of

functional harvesting.

Figure 1. The Flow Diagram of the Model

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [2020], Iss. 2, Art. 28

https://digitalcommons.pvamu.edu/aam/vol15/iss2/28



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 1197

2.2. Model Equation

Based on the above assumptions, parameters and flow diagram, the eco-epidemiological model is
given by the following set of nonlinear differential equations.

dS

dT
= r1S

(
1− S + I

K

)
− λIS − α1SP

a1 + S
−H1E1S,

dI

dT
= λIS − d1I −

b1(1−m)IP

a1 + (1−m)I
−H2E2I, (1)

dP

dT
= −d2P +

cb1(1−m)IP

a1 + (1−m)I
+
cα1SP

a1 + S
,

and the initial conditions are given as

S(0) = S0 > 0, I(0) = I0 > 0, P (0) = P0 > 0.

We assume that all parameters of system (1) are positive. The detailed biological meanings of
parameters are given in Table 1.

Table 1. Biological meaning of parameters

Parameters Biological meaning
r The intrinsic growth rate of prey,
K The carrying capacity of the environment,
a1 The half-saturation constant,
α1 Predation rate of susceptible prey
b1 Predation rate of infected prey
c Conversion coefficient from the prey to predator
d1 The death rate of infected prey.
d2 The death rate of predator population,
λ The infection rate,
m The pey refuge constant
H1 The catchability coefficient of the susceptible prey,
H2 The catchability coefficient of the infected prey,
E Harvesting effort

In order to reduce the number of parameters of the system (2.2), it is convenient to scale the
variables as s = S

K
, i = I

K
, p = P

K
, and to consider the dimensionless time t = λKT . This

transformation leads to the dimensionless equations
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ds

dt
= rs(1− s− i)− si− αsp

a+ s
− h1s,

di

dt
= is− di− θ(1−m)ip

a+ (1−m)i
− h2i, (2)

dp

dt
= −δp+

cθ(1−m)ip

a+ (1−m)i
+
cαsp

a+ s
,

where

r =
r1
λK

, α =
α1

λK
, a =

a1
K
, h1 =

H1E1

λK
, d =

d1
λK

, h2 =
H2E2

λK
, θ =

b1
λK

, δ =
d2
λK

.

The initial conditions for the system (2) are given as

s(0) = s0 ≥ 0, i(0) = i0 ≥ 0, p(0) = p0 ≥ 0.

3. Preliminary Results

3.1. Existence and Positive Invariance

For t > 0, let Y ≡ (s(t), i(t), p(t))T and F (Y ) = (F1(Y ), F2(Y ), F3(Y ))T , where

F1(Y ) = rs(1− s− i)− si− αsp

a+ s
− h1s, F2(Y ) = is− di− θ(1−m)ip

a+ (1−m)i
− h2i,

F3(Y ) = −δp+
cθ(1−m)ip

a+ (1−m)i
+
cαsp

a+ s
.

Then, system (2) can be written as dY
dt

= F (Y ) where F : C+ → (R)3+ with Y (0) = Y0 ∈ R3
+.

Here Fi ∈ C∞(R) for i = 1, 2, 3. Thus, the function F is locally Lipschitzian and completely
continuous on R3

+. Therefore, the solution of the system (2) with non-negative initial condition
exists and is unique. Moreover, It can be shown that these solutions exist for all t > 0 and stay
non-negative. Hence, the regionR3

+ is an invariant domain of the system (2).

3.2. Boundedness

In theoretical eco-epidemiology model, boundedness of a system implies that the system is biolog-
ically well behaved. The following theorem ensures the boundedness of system (2).

Theorem 3.1.

All solutions of the system (2) starting inR3
+ are uniformly bounded.
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Proof:

Let s(t), i(t) and p(t) be any solution of the system (2) with positive initial conditions. Since,

ds

dt
≤ rs(1− s),

we have lim supt→∞ s(t) ≤ 1.

Let w = s+ i+ p. Taking the time derivative of w along the solutions of system (2) gives
dw

dt
= rs(1− s)− (1 + r)si− (1− c)αsp

a+ s
− h1s+ is− di− (1− c)θ(1−m)ip

a+ (1−m)i
− h2i− δp

≤ rs(1− s)− h1s− (d+ h2)i− δp (since c < 1)

≤ r

4
− h1s− (d+ h2)i− δp

(
since Max{rs(1− s)} =

r

4

)
≤ r

4
− γw, where γ = min{h1, d+ h2, δ}.

Hence, we have
dw

dt
+ γw ≤ r

4
.

Applying the theory of differential inequality, we obtain

0 < w ≤ r

4γ
(1− exp−γt) + w(s0, i0, p0) exp−γt .

For t→∞, we have 0 < w < r
4γ

. Hence, all the solutions system (2) starting inR3
+ for any ε > 0

are confined in the region

Ω = {(s, i, p) ∈ R3
+ : s+ i+ p ≤ r

4γ
+ ε}.

Hence, the result. �

4. Extinction Criteria

Theorem 4.1.

If r < h1, then limt→∞ s(t) = 0. If r < d + h2, then limt→∞ i(t) = 0. If c(θ + β) < δ, then
limt→∞ p(t) = 0.

Proof:

For the susceptible prey, we have

ds

dt
= rs(1− s− i)− si− αsp

a+ s
− h1s ≤ (r − h1)s.

Therefore, s(t) ≤ s0 exp{
∫ t
0
(r − h1)dq}. Thus, if r < h1, then limt→∞ s(t) = 0.

For the infected prey we have
di

dt
= is− di− (1−m)ip

a+ (1−m)I
− h2i ≤ (1− d− h2)i, (since s(t) ≤ 1).

7

Melese et al.: Behavior of an Eco-epidemiological Model Incorporating Prey

Published by Digital Commons @PVAMU, 2020



1200 D. Melese et al.

Therefore, i(t) ≤ i0 exp{
∫ t
0
(1− d− h2)dq}. Thus, if d+ h2 > 1, then limt→∞ i(t) = 0.

For the predator, we have

dp

dt
= −δp+

c(1−m)ip

a+ (1−m)i
+

βsp

a+ s

≤ (c(θ + β)− δ)p, (since
s

a+ s
< 1,

(1−m)i

a+ (1−m)i
< 1).

Therefore, p(t) ≤ p0 exp{
∫ t
0
(c(θ + β)− δ)dq}. Thus, if c(θ + β) < δ, then limt→∞ p(t) = 0. �

5. Equilibrium points and their stability

The system (2) has four boundary equilibrium points and the coexistence equilibrium point.

5.1. Boundary Equilibrium Points

(1) The trivial equilibrium point: E0(0, 0, 0).
(2) The Infected Prey and Predator-Free Equilibrium Point: E1(

r−h1

r
, 0, 0). E1 exists for h1 < r.

(3) The Disease Free Equilibrium Point: E2(s̃, 0, p̃) where s̃ = aδ
cα−δ and p̃ = ac((cα−δ)(r−h1)−arδ)

(cα−δ)2 . E2

exists for δ < cα and h1 < r(1− aδ
cα−δ ).

(4) The Predator-Free Equilibrium Point: E3(s̄, ī, 0) where s̄ = d + h2 and ī = r(1−d−h2)−h1

r+1
, 0). E3

exists for h1 < r(1− d− h2) .

5.2. The Positive Interior Equilibrium Point ( The Endemic Equilibrium Point)

Theorem 5.1.

The positive interior equilibrium point of the system (2) E4(s
∗, i∗, p∗) exists for

cα < δ, h1 < r,
aδ(1 + r)

cα
− d < h2 < s∗ − d, (δ − cα)s∗ + aδ > 0, (3)

where

i∗ =
a(aδ + (δ − cα)s∗)

(1−m)(cαs∗ + (cθ − δ)(a+ s∗))
, p∗ =

ac(s∗ − d− h2)(a+ s∗)

(1−m)(cαs∗ + (cθ − δ)(a+ s∗))

and s∗ is the unique positive root of the quadratic equation

As2 +Bs+ C = 0, (4)

with

A = r(1−m)(cα + cθ − δ), C = −a((1−m)(r − h1)(cθ − δ) + (cα(d+ h2)− aδ(1 + r))),

B = (1−m)((cθ − δ)(h1 − r + ar) + αc(h1 − r)) + a(δ + (δ − cα)r).
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Proof:

The quadratic equation 4 will have a unique positive root provided the product of the coefficients
A and C is negative. It is easy to see that under the condition 3, A > 0 and C < 0. Hence, the
quadratic equation 4 has the unique positive root s∗. The positivity of s∗ and the conditions given
in 3 gives us that i∗ > 0 and p∗ > 0.

Hence, the result. �

5.3. Local stability analysis

In order to investigate the local stability property of the system (2), we shall calculate the Jacobian
matrix at each equilibrium. The Jacobian matrix of the system (2) at any arbitrary equilibrium
E(s, i, p) is given as

J(E) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where

a11 = r(1− 2s)− i(r + 1)− αap

(a+ s)2
− h1, a12 = −s(r + 1), a13 = − αs

a+ s
,

a22 = s− d− h2 −
aθ(1−m)p

(a+ (1−m)i)2
, a21 = i, a23 = − θ(1−m)i

(a+ (1−m)i
,

a31 =
acαp

(a+ s)2
, a32 =

acθ(1−m)p

(a+ (1−m)i)2
, a33 = −δ +

cθ(1−m)i

a+ (1−m)i
+

αcs

a+ s
.

Theorem 5.2.

The trivial equilibrium point E0(0, 0, 0) is locally asymptotically stable if r < h1. Otherwise, it is
unstable.

Proof:

The Eigenvalues atE0(0, 0, 0) are−d−h2,−h1+r,−δ. Hence,E0(0, 0, 0) is locally asymptotically
stable only if r < h1 and unstable otherwise. �

Theorem 5.3.

The infected prey and predator free equilibrium pointE1(
r−h1

r
, 0, 0) is locally asymptotically stable

if cα < δ and h1 > r(1− d− h2).

Proof:

The Eigenvalues at E1(
r−h1

r
, 0, 0) are 1 − d − h2 − h1

r
, h1 − r, cα

(
r−h1

r−h1+ar

)
− δ. Hence,
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E1(
r−h1

r
, 0, 0) is locally asymptotically stable if cα < δ and h1 > r(1− d− h2). �

Theorem 5.4.

The disease free equilibrium point E2

(
aδ

cα−δ , 0,
ac((cα−δ)(r−h1)−arδ)

(cα−δ)2

)
is locally asymptotically sta-

ble if

min

{
aδ

cα− δ
− d, r

(
1− 2aδ

cα− δ

)}
< h1. (5)

Proof:

The entries of the Jacobean matrix J evaluated at the equilibrium point E2 are

a11 = −h1 + r − 2arδ)

(cα− δ)
− (cα− δ)2p̃

(aαc2)
, a12 = −a(1 + r)δ

cα− δ
, a13 = −δ

c
, a21 = 0, a23 = 0,

a22 = −d− h2 +
aδ

cα− δ
− (1−m)θp̃

a
, a31 =

(cα− δ)2p̃
acα

, a32 =
c(1−m)θp̃

a
, a33 = 0.

The characteristic equation corresponding to J(E2) is

λ3 + Aλ2 +Bλ+ C = 0, (6)

where

A = −a11 − a22, B = −a31a13 + a22a11, C = a13a22a31.

According to Routh-Hurwitz criteria, all the roots of the characteristics equation (6) have negative
real parts if and only if A, C and AB − C are positive.

From the sign of the entries of the Jacobean matrix J(E2), we can see that C becomes positive
when a22 is negative. The negativeness of a22 and the signs of the entries of the matrix J(E2)
guarantees us to take a11 < 0 as a sufficient condition for A and AB − C to be positive as
AB − C = −a11a22(a11 + a22) + a11a13a31. Now, the sufficient conditions for a11 and a22 to be
negative are aδ

cα−δ − d < h1 and r(1− 2aδ
cα−δ ) < h1, respectively.

Therefore, the disease free equilibrium point E2 is locally asymptotically stable provided the con-
dition 5 is satisfied. Hence, the result. �

Theorem 5.5.

The predator free equilibrium point E3(s̄, ī, 0) is locally asymptotically stable if

δ > c(α + θ). (7)

Proof:

The entries of the Jacobean matrix J evaluated at the equilibrium point E3 are

a11 = −(d+ h2)r, a12 = (−1− r)s̄, a13 = − αs̄

a+ s̄
, a21 = ī, a22 = 0,

a23 = − (1−m)θī

a+ (1−m)̄i
, a31 = 0, a32 = 0, a33 =

cαs̄

a+ s̄
− δ +

c(1−m)θī

a+ (1−m)̄i
.

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [2020], Iss. 2, Art. 28

https://digitalcommons.pvamu.edu/aam/vol15/iss2/28



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 1203

The characteristic equation corresponding to J(E3) is

λ3 + Aλ2 +Bλ+ C = 0, (8)

where

A = −a11 − a33, B = −a21a12 + a33a11, C = a12a21a33.

According to Routh-Hurwitz criteria, all the roots of the characteristics equation (8) have negative
real parts if and only if A, C and AB − C are positive.

From the sign of the entries of the Jacobean matrix J(E3), we can see that C becomes positive
when a33 is negative. Thus, if a33 is negative, then, we can see that A > 0 and AB−C > 0, where
AB − C = −a11(−a12a21 + a33(a33 + a11)). Now, the sufficient condition for a33 to be negative
is δ > c(α + θ). Therefore, the predator free equilibrium point E3 is locally asymptotically stable
provided the condition 7 is satisfied. Hence, the result. �

Table 2. Summary of Existence and Stability Conditions for the Boundary Equilibrium Points

Equilibrium Existence Conditions Stability Conditions Remark
E0(0, 0, 0) Unconditional r < h1 Theorem 5.2
E1(

r−h1

r
, 0, 0) h1 < r h1 > r(1− d− h2), δ > cα Theorem 5.3

E2(s̃, 0, p̃) h1 < r
(
1− aδ

cα−δ

)
, min

{
aδ

cα−δ − d, r
(
1− 2aδ

cα−δ

)}
< h1 Theorem 5.4

δ > cα

E3(s̄, ī, 0) h1 < r(1− d− h2) δ > c(α + θ) Theorem 5.5

The existence and stability conditions for the Boundary Equilibrium Points are summarized in
Table 2.

Remark 5.1.

From Table 2, one can easily see that

(1) If E0 is stable, then all the rest equilibrium points. E1, E2 and E3 do not exist.
(2) If E1 is stable, then the equilibrium points E2 and E3 do not exist.
(3) If E3 is stable, then E2 does not exist.
(4) If E3 exists, then E1 becomes unstable.

Theorem 5.6.

The positive endemic equilibrium point of E∗ of the system (2) is locally asymptotically stable if

A > 0, C > 0, AB − C > 0, (9)

where

A = −a11 − a22, B = −a21a12 + a22a11 − a13a31 + a23a32,

C = a13(−a22a31 + a21a32) + a23(a12a31 − a11a32),
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and aij(i, j = 1, 12, 3) are the entries of the Jacobean matrix at E∗ which are given as

a11 = −s
∗(h1 − r + ar + (1 + r)i∗ + 2rs∗)

a+ s∗
, a12 = −(r + 1)s∗, a13 = − αs∗

a+ s̄
,

a21 = i∗, a22 =
aθ(1−m)2i∗p∗

(a+ (1−m)i∗)2
, a23 = − (1−m)θi∗

a+ (1−m)i∗
,

a31 =
acαp∗

(a+ s∗)2
, a32 =

ac(1−m)θp∗

(a+ (1−m)i∗)2
, a33 = 0.

Proof:

The characteristic equation of the Jacobean matrix at the positive endemic equilibrium point E∗ is

λ3 + Aλ2 +Bλ+ C = 0. (10)

According to Routh-Hurwitz criteria, all the roots of the characteristics equation (10) have negative
real parts if and only if A, C and AB−C are positive. Therefore, the positive endemic equilibrium
point E∗ is locally asymptotically stable provided the condition 9 is satisfied. Hence, the result. �

6. Numerical Simulations

In this section, several numerical simulations on the system (2) are performed in order to verify the
theoretical findings. In the present study, the rate of harvesting (h1), predation rate (α) and refuge
coefficient (m) are the key parameters, which will be taken as control parameters. The numerical
simulation is carried out using MATLAB software package for the set of parameter values given
in table 3 below.

Table 3. Parametric values of the system (2)

Parameter Numeric Value
r 0.5
a 0.2
d 0.1
c 0.5
δ 0.1
θ 0.4
h2 0.15
α variable
h1 variable
m variable
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6.1. Effect of varying the predation rate α

Let us fix the variables in Table 3 as h1 = 0.2 and m = 0.2. For the given parametric values, the
disease free equilibrium point E2 and the endemic equilibrium point E4 exists for α > 0.26667
and 0.130909 < α < 0.283305, respectively. It is observed that system (2) approaches the disease
free equilibrium point for α < 0.283305, while it approaches the endemic equilibrium point when
0.130909 < α < 0.283305. Figure 2(a) shows the stability of E2 for α = 0.3 and Figure 2(b)
shows the stability of E4 for α = 0.28.

Figure 2. The time series solution of the system (2) (a) around the equilibrium point E2 with parametric values as in
table 3 except (h1 = 0.2, m = 0.2 and α = 0.3)., (b) around the equilibrium point E4 with parametric
values as in table 3 except (h1 = 0.2, m = 0.2 and α = 0.28)

Figure 3. (a) The density of infected prey population for the parametric values as in table 3 except (h1 = 0.2,m = 0.2)
and α = 0.15, 0.2, 0.28, 0.3., (b) The density of predator population for the parametric values as in table
3 except (h1 = 0.2, m = 0.2) and (α = 0.15, 0.2, 0.28, 0.3)

Figure 3(a) shows that an increase in the susceptible predation rate results in a decrease in infected
prey population. Whereas, as the rate of susceptible prey predation rate increases the predator
population density increases, see Figure 3(b).
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6.2. Effect of varying the harvesting rate h1

For the parametric values as in table 3 with α = 0.25 and m = 0.2, the disease free equilibrium
point E2 and the endemic equilibrium point E4 exists for h1 < 0.1 and 0.0140625 < h1 <
0.307377, respectively. It is observed that system (2) approaches the disease free equilibrium point
for h1 < 0.0148768, while it approaches the endemic equilibrium point when 0.0140625 < h1 <
0.307377. Thus, Figure 4 shows the stability of E2 for h1 = 0.01 and Figure 5 shows the stability
of E4 for h1 = 0.08.

From Figure 6 (a), Figure 6(b) and Figure 6(c), it can be observed that an increase in the harvesting
rate of susceptible prey leads to a decrease in susceptible prey and predator population whereas an
increase in infected prey population.

Figure 4. (a) The time series solution of the system (2) about the equilibrium point E2 with parametric values as in
table 3 except (α = 0.25, m = 0.2 and h1 = 0.01)., (b) The Parametric Plot of the equilibrium point E2

with parametric values as in table 3 except (α = 0.25, m = 0.2 and h1 = 0.01)

Figure 5. (a) The time series solution of the system (2) about the equilibrium point E4 with parametric values as in
table 3 except (α = 0.25, m = 0.2 and h1 = 0.08)., (b) The Parametric Plot of the equilibrium point E4

with parametric values as in table 3 except (α = 0.25, m = 0.2 and h1 = 0.08)
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Figure 6. The density of (a) Susceptible prey population, (b) infected prey population, (c) predator population for the
parametric values as in table 3 except (α = 0.25, m = 0.2) and h1 = 0.01, 0.08, 0.2, 0.3

Figure 7. The time series solution of the system (2) about the equilibrium point (a)E2 with parametric values as in table
3 except (α = 0.3, h1 = 0.25) and m = 0.2., (b) E4 with parametric values as in table 3 except (α = 0.3,
h1 = 0.25) and m = 0.3
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6.3. Effect of varying the refuge constantm

It is observed that for the parametric values given in Table 3 with α = 0.3 and h1 = 0.25, the
trajectories of the system (2) approaches asymptomatically disease free equilibrium point for m <
0.25 while it approaches the endemic equilibrium point for 0.25 < m < 0.781818. Figure 7(a)
shows the stability of E2 for m = 0.2 and figure 7(b) show the stability of E4 for m = 0.3.

Figure 8. The density of (a) Susceptible prey population, (b) infected prey population for the parametric values as in
table 3 except (α = 0.3, h1 = 0.25) and m = 0.2, 0.3, 0.5, 0.7

From Figure 8(a), we can observe that the density of the susceptible prey population decreases
as the refuge constant increases. Figure 8(b) shows an increase in infected prey population as the
refuge constant m increases from 0.2 to 0.7.

7. Conclusion

In this paper, we have studied an eco-epidemiological model incorporating a prey refuge and a
prey harvesting with disease in the prey population, where the predator predates both the infected
and susceptible prey. The boundedness and positivity results show that the developed system 2 is
biologically well behaved. Theorem 1 shows that the population go to extinction when the intrinsic
growth rate of the susceptible prey is less than the harvesting rate of the susceptible prey.

The local stability of each biologically feasible equilibrium points of the system (2) has been
established. The rate of harvesting (h1), predation rate (α) and refuge coefficient (m) are taken
as control parameters. The disease free equilibrium point loses its stability whereas the endemic
equilibrium point gains its stability for an increase in infected prey refuge and susceptible prey
harvesting rate. However, the disease free equilibrium point becomes stable for an increase in
predation rate.

The analytical and numerical results show that harvesting rate, refuge and predation rate have a
major impact on each population. Increasing the amount of infected prey refuge decreases the
susceptible prey density, whereas the opposite holds for the infected prey density. Increasing the
amount of susceptible predation rate results in a decrease in infected prey population and an in-
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crease in predator population density. Furthermore, increasing the susceptible prey harvesting rate
leads to a decrease in susceptible prey and predator population whereas an increase in infected
prey population.

This study shows complex behavior of the proposed model. In particular, when the infected refuge,
susceptible prey harvesting rate and susceptible prey predation rate lies in a certain range, the
disease free and endemic equilibrium points exist and become stable. The model with infected
prey refuge and harvesting of prey gives rise to rich dynamics.

Acknowledgment:

Authors are thankful to the anonymous reviewers and Professor Aliakbar Montazer Haghighi for
their useful comments and suggestions which helped us to improve the manuscript.

REFERENCES

Abdulghafour, A. S. and Naji, R. K. (2018). A study of a diseased prey-predator model
with refuge in prey and harvesting from predator, J. Appl. Math., Vol. 2018, pp. 1–17.
doi:10.1155/2018/2952791

Agnihotri, K. and Gakkhar, S. (2012). The dynamics of disease transmission in a Prey Predator
System with harvesting of prey, Int. J. Adv. Res. Comput. Eng. Technol., Vol. 1, No. 2.

Anderson, R. M. and May, R. M. (1981). The population dynamics of microparasites and their
invertebrate hosts, Philos. Trans. R. Soc. B Biol. Sci., Vol. 291, No. 1054, pp. 451–524.
doi:10.1098/rstb.1981.0005

Bailey, N. T. J (1975). The Mathematical Theory of Infectious Diseases and its Applications,
Charles Griffin and Company Ltd.

Bera, S.P., Maiti, A. and Samanta, G. (2015). A prey-predator model with infection in both prey
and predator, Filomat, Vol. 29, No. 8, pp. 1753–1767. doi:10.2298/FIL1508753B

Berryman, A. (1992). The origins and evolution of predator-prey theory, Ecology, Vol. 73, No. 5,
pp. 1530–1535.

Bhattacharya, S., Martcheva, M. and Li, X. Z. (2014). A predator-prey-disease model with
immune response in infected prey, J. Math. Anal. Appl., Vol. 411, No. 1, pp. 297–313.
doi:10.1016/j.jmaa.2013.09.031

Bhattacharyya, R., and Mukhopadhyay, B. (2010). On an eco-epidemiological model with prey
harvesting and predator switching: Local and global perspectives, Nonlinear Anal. Real World
Appl., Vol. 11, No. 5, pp. 3824–3833. doi:10.1016/j.nonrwa.2010.02.012

Biswas, S., Samanta, S. and Chattopadhyay, J. (2018). A cannibalistic eco-epidemiological
model with disease in predator population, J. Appl. Math. Comput. Vol. 57, pp. 161–197.
doi:10.1007/s12190-017-1100-9

Chakraborty, S., Pal, S. and Bairagi, N. (2010). Dynamics of a ratio-dependent eco-epidemiological

17

Melese et al.: Behavior of an Eco-epidemiological Model Incorporating Prey

Published by Digital Commons @PVAMU, 2020



1210 D. Melese et al.

system with prey harvesting, Nonlinear Anal. Real World Appl., Vol. 11, No. 3, pp. 1862–
1877. doi:10.1016/j.nonrwa.2009.04.009

Collings, J. B. (1995). Bifurcation and stability analysis of a temperature-dependent mite predator
prey interaction model incorporating a prey refuge, Bull. Math. Biol., Vol. 57, No. 1, pp.
63–76. doi:10.1007/BF02458316

Das, K. P. (2016). Complex dynamics and its stabilization in an eco-epidemiological model with
alternative food, Model. Earth Syst. Environ., Vol. 2, No. 4, pp. 1–12. doi:10.1007/s40808-
016-0224-5

De Rossi, A., Lisa, F., Rubini, L., Zappavigna, A. and Venturino, E. (2015). A food chain ecoepi-
demic model: Infection at the bottom trophic level, Ecol. Complex., Vol. 21, pp. 233–245.
doi:10.1016/j.ecocom.2014.03.003

Gao, X., Pan, Q., He, M. and Kang, Y. (2013). A predator-prey model with diseases in both
prey and predator, Phys. A Stat. Mech. its Appl., Vol. 392, No. 23, pp. 5898–5906.
doi:10.1016/j.physa.2013.07.077

Gonzalez-Olivares, E. and Ramos-Jiliberto, R. (2003). Dynamic consequences of prey refuges in a
simple model system: More prey, fewer predators and enhanced stability, Ecol. Modell., Vol.
166, No. 1-2, pp. 135–146. doi:10.1016/S0304-3800(03)00131-5

Haque, M. (2010). A predator-prey model with disease in the predator species only, Nonlinear
Anal. Real World Appl., Vol. 11, No. 4, pp. 2224–2236. doi:10.1016/j.nonrwa.2009.06.012

Haque, M. and Venturino, E. (2007). An ecoepidemiological model with disease in predator: The
ratio-dependent case, Math. Meth. Appl. Sci., Vol. 30, pp. 1791–1809. doi:10.1002/mma.869

Hassell, M. P. (1974). The Dynamics of Arthropod Predator-Prey Systems, Princeton University
Press. doi:10.2307/4300

Hsu, Sze-Bi, Ruan, S. and Yang, T.-H. (2015). Analysis of three species Lotka-Volterra food web
models with omnivory, JMAA, Vol. 426, No. 2, pp. 659–687. doi:10.1016/j.jmaa.2015.01.035.

Huang, Y., Chen, F. and Zhong, L. (2006). Stability analysis of a prey-predator model with holling
type III response function incorporating a prey refuge, Appl. Math. Comput., Vol. 182, No. 1,
pp. 672–683. doi:10.1016/j.amc.2006.04.030

Jana, S. and Kar, T. K. (2013). Modeling and analysis of a prey-predator system with disease in the
prey, Chaos, Solitons and Fractals, Vol. 47, No. 1, pp. 42–53. doi:10.1016/j.chaos.2012.12.002

Juneja, N. and Agnihotri, K. (2018). Global stability of harvested prey-predator model with infec-
tion in predator species. In Satapathy S., Tavares J., Bhateja V., Mohanty J. (eds) Information
and Decision Sciences. Advances in Intelligent Systems and Computing, Vol 701, Springer,
Singapore. https://doi.org/10.1007/978-981-10-7563-6-58

Kant, S. and Kumar, V. (2015). Analysis of an eco-epidemiological model with migrating and
refuging prey, Springer Proc. Math. Stat., Vol. 143. doi:10.1007/978-81-322-2485-3

Kant, S. and Kumar, V. (2017a). Dynamics of a prey-predator system with infection in prey, Elec-
tron. J. Differ. Equations, Vol. 2017, No. 209, pp. 1–27.

Kant, S. and Kumar, V. (2017b). Stability analysis of predatorâĂŞprey system with migrating
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