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Abstract

Using a generalized binomial transform and a novel binomial coefficient identity, we will show
that the set of p-recursive sequences is closed under the binomial transform. Using these results,
we will derive a new series representation for the dilogarithm function that converges on its domain
of analyticity. Finally, we will show that this series representation results in a scheme for numerical
evaluation of the dilogarithm function that is accurate, efficient, and stable.
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1. Introduction

The binomial transform is useful numerous contexts, both in applied and pure mathematics. For
an overview of the many applications of this transform, consult the comprehensive book by Boy-
adzhiev (2018). Specifically, the relation of the binomial transform to finite differences makes it
well suited for applications to analytic continuation and series acceleration; for some of these ap-
plications, see Hirofumi (2015) and Willis (2016).
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1026 S.L. Harshbarger and B.L. Willis

The primary result of this paper is a proof that the set of sequences that satisfy linear recursion
relations with polynomial coefficients, called the set of p-recursive sequences, is closed under
the binomial transform. Actually, we will prove this result using a generalization of the binomial
transform that was first introduced by Prodinger (1994).

We will start with a derivation of generalized binomial transform that clarifies why Prodinger’s
generalization is particularly useful for series acceleration. After that, we will prove some novel
and interesting binomial coefficient identities that we will need for our main result. Finally, we will
show an application of our results, namely a new series expansion of the dilogarithm function that
converges on its entire domain. This result is particularly noteworthy because recently Schmidt
(2016) derived a series for the dilogarithm that converges only in the half-plane Re(x) < 1/2.

2. Generalized binomial transform

For analytic continuation and series acceleration, the utility of the binomial transform stems from
that fact that it can be derived from a sequence of extrapolated sequences. To show this, we build
on the work of Boyadzhiev (2014). For any sequence F , we start by defining the backward shift
operator S as

(SF )n =

{
0, n = 0,

Fn−1, n > 0.
(1)

For a sequence F (0), we define extrapolated sequences F (1), F (2), . . . , by F (k) = (β I+α S)k F (0),
where α, β ∈ C. We call these extrapolated sequences because assuming F (0) converges linearly
to L, there is a choice of α and β that makes the linear convergence rate of F (`) faster with larger
`.

Extracting the nth term of the nth extrapolated sequence yields a sequence n 7→ F
(n)
n . We call this

sequence the generalized binomial transform of F (0). Defined this way, a calculation shows that
the binomial transform operator B(α,β) is

(
B(α,β)F

)
n
=

n∑
k=0

(
n

k

)
αn−kβkFk. (2)

In a different context, Prodinger (1994) also introduced this form of the binomial transform.

The composition rule for the generalized binomial transform is B(α,β)B(α′,β′) = B(α+α′β,ββ′). Since
B(0,1) is the identity operator, it follows from the composition rule that for β 6= 0, the operator
B(α,β) is invertible and its inverse is B(−α/β,1/β). The adjoint of the binomial transform, denoted
with a superscript star, is (

B(α,β)?F
)
n
=
∞∑
k=n

(
k

n

)
αk−nβnFk. (3)
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Assuming convergence of all sums, the adjoint gives the identity
∞∑
k=0

FkGk =
∞∑
k=0

(
B(−α/β,1/β)?G

)
k

(
B(α,β)F

)
k
. (4)

Specializing to Gk = 1 and β = 1, gives
∞∑
k=0

Fk =
∞∑
k=0

1

(α + 1)k+1

(
B(α,1)F

)
k
. (5)

This identity is an extension of the Euler transform. For a description of the Euler transform, see
Olver et al. (2012).

We will use this summation identity to derive a new series representation for the dilogarithm func-
tion Li2. The key to deriving this result is a new binomial coefficient identity.

3. Binomial coefficient identities

Recall that a sequence that satisfies a linear homogeneous recursion relation with polynomial co-
efficients is said to be p-recursive; for details, see Schneider et al. (2013). The set of p-recursive
sequences is known to be closed under addition and multiplication; for proofs, see Kauers (2011)
and Zeilberger (1990). We will show that the set of p-recursive sequences is closed under the
generalized binomial transform.

A possible starting place for a proof is to extend a result from Boyadzhiev (2017) for the binomial
transform of k 7→ kpFk, where p is a positive integer, to the generalized binomial transform.
Instead, our proof is based on the novel binomial coefficient identity

k

(
n

k

)
= n

(
n

k

)
− n

(
n− 1

k

)
. (6)

The identity is straightforward to prove and we think that using it provides more insight to the
proof of closure under the binomial transform. Extending this identity by multiplying it by k

and iterating, allows us to express kp
(
n
k

)
, where k ∈ Z≥0, as a linear combination of the set{(

n
k

)
,
(
n−1
k

)
,
(
n−2
k

)
, . . . ,

(
n−p
k

)}
with coefficients that involve only n. Table 1 displays these re-

sults for p up to three. The third row of this table, for example, corresponds to the identity
k2
(
n
k

)
= n2

(
n
k

)
− n (2n− 1)

(
n−1
k

)
+ (n− 1) n

(
n−2
k

)
.

Introducing a multiplication operator M on the set of sequences defined by (MF )n = nFn and
using the identity k

(
n
k

)
= n

(
n
k

)
− n

(
n−1
k

)
, we can show that B(α,β)M = M

(
I−α S

)
B(α,β), where

S is the backward shift operator. Consequently, for all p ∈ Z≥0, we have

B(α,β)Mp =
(
M(I−αS)

)p
B(α,β). (7)

Further, using the Pascal identity
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
, we can show that βB(α,β) S? =

(S?−α I) B(α,β). Extending this result to any positive integer power p of S? yields

βpB(α,β) S? p = (S?−α I)p B(α,β). (8)
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Table 1. Binomial coefficient identities(
n−3
k

) (
n−2
k

) (
n−1
k

) (
n
k

)
(
n
k

)
0 0 0 1

k
(
n
k

)
0 0 −n n

k2
(
n
k

)
0 (n− 1)n −n (2n− 1) n2

k3
(
n
k

)
− (n− 2) (n− 1)n 3(n− 1)2n −n (3n2 − 3n+ 1) n3

Using these two results, we can express the binomial transform of n 7→ npFn+q in terms of B(α,β)F

for all positive integers p and q. Consequently, we have shown that the set of p-recursive sequences
is closed under the generalized binomial transform.

4. The Dilogarithm Function

The dilogarithm function Li2 can be defined by its Maclaurin series

Li2(x) =
∞∑
k=0

xk+1

(k + 1)2
. (9)

Inside the unit circle, the series converges linearly; on the unit circle, it converges sublinearly, and
outside the unit circle, it diverges. Although various functional identities, for example Li2 (z) +
Li2
(
1
z

)
= −1

6
π2 − 1

2
(ln (−z))2, analytically continue Li2 to C \ [1,∞], collectively these series

converge only sublinearly at the points (1±i
√
3)/2. And near these two points, the Maclaurin series

converges slowly. Using the generalized binomial transform, we will find a series representation
that converges linearly on C\[1,∞). The currently available series require a patchwork of methods.

The summand of the Maclaurin series for Li2, call it Q, is p-recursive. Thus we consider the
convergence set for the formal identity Li2(x) =

∑∞
k=0 Q̂k/(α + 1)k+1, where Q̂ = B(α,1)Q.

Although we will not explicitly use this fact, the sequence Q̂ has an unwieldy representation in
terms of a 3F2hypergeometric function; it is

Q̂k = 3 F2

[
−k, 1, 1
2, 2

;−x/α
]
xαn. (10)

The sequence Q satisfies the recursion (k + 2)2Qk+1 = (k + 1)2Qk. Using Table 1, the recursion
for Q̂ has the form 0 = P0(n)Q̂n+P1(n)Q̂n+1+P2(n)Q̂n+2+P3(n)Q̂n+3, where the polynomials
P0 through P3 are

P0(n) = −α2(α + x)(n+ 1)(n+ 2), (11)
P1(n) = α(n+ 2)(3nα + 2nx+ 8α + 5x), (12)
P2(n) = − (3α + x)n2 − (19α + 6x)n − 26α− 9x, (13)
P3(n) = (n+ 2)(n+ 6). (14)
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Assuming α 6= −x, a fundamental solution set for this recursion is{
n 7→ αn

n+ 1
, n 7→ αn

n+ 1

n∑
k=0

1

k + 1
, n 7→ (α + x)n

n2
(1 + O (1/n))

}
. (15)

The first two members of this set are exact, but the third is an asymptotic solution that is valid
toward infinity. The fundamental solution set shows that the formal series converges linearly, pro-
vided that

max

(∣∣∣∣ α

α + 1

∣∣∣∣ , ∣∣∣∣α + x

α + 1

∣∣∣∣) < 1 and α ∈ C6=−x,6=−1. (16)

The convergence set is maximized when
∣∣ α
α+1

∣∣ = ∣∣α+x
α+1

∣∣. Assuming x ∈ R, the convergence set is
maximized when α = −x/2. For this choice, the linear convergence rate is |x/(x − 2)| and the
series converges in the half plane Re(x) < 1. For x ∈ C \ R, the convergence set is maximized
when

α =
eiθ

eiθ − 1
x , where eiθ = ±

√
x− 1

x− 1
. (17)

Setting x = 1 + R exp(iω), where R ∈ R≥0 and ω ∈ [0, 2π), the minimum of the linear conver-
gence rate |α/(α + 1)| is

min

(
2R cos (ω) +R2 + 1

(R− 1)2
,
2R cos (ω) +R2 + 1

(R + 1)2

)
. (18)

For ω ∈ (0, 2π), or equivalently for x ∈ C\ [1,∞), the linear convergence rate is less than one. We
have shown that there is a value of α that makes the series

∑∞
k=0 Q̂k/(α+ 1)k+1 converge linearly

on C \ [1,∞). Recently, Schmidt (2016) derived a series that only converges in the half-plane
Re(x) < 1/2.

In the next section, we will comment on some of the practical considerations of using this series to
numerically evaluate Li2.

5. Accuracy, efficiency, and stability

For our series representation to be useful for numerical evaluation, the sum must be well condi-
tioned (accuracy), the convergence must be fast (efficiency), and every solution to the fundamental
solution set to the recursion for the summand must converge to zero (stability).

Of these three conditions, we have already shown that for a particular choice of parameter α each
member of the fundamental solution set to the recursion relation converges to zero; thus the recur-
sion for the summand is stable.

We can achieve greater efficiency by leveraging various functional identities. The algorithm can
automatically choose between them to minimize the linear convergence rate. Making an optional
choice, our tests show that to achieve full accuracy with IEEE binary64 numbers at most 70 terms
need to be summed, including all points on the unit circle, including the difficult points (1±i

√
3)/2.
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Additionally, our numerical experiments show that the sum is well-conditioned. Higham (2002) has
many details about the condition number of a sum.

6. Conclusion

Our derivation of the generalized binomial transform highlights the reason for its effectiveness for
series acceleration methods and for analytic continuation. Additionally, by introducing the operator
adjoint, we have shown how our method extends the venerable Euler summation method.

Further, using a simple, yet novel binomial coefficient identity, we were able to show that the set of
p-recursive sequences is closed under the generalized binomial transform. Our proof is construc-
tive; that is, our proof gives a mechanical method for determining the recursion for the transformed
sequence. Using operator notation, we are able to express these results in a form that is both brief
and intelligible.

We merged these results to derive a single series representation for the dilogarithm function that
converges linearly on its entire domain of analyticity. The series available currently involve a patch-
work of series that cover various proper subsets of the domain. In particular, our series converges
linearly at the points (1± i

√
3)/2. In part we think this is a noteworthy result because other series,

for example, the various power series for the Gauss hypergeometric function, also fail to converge
linearly at these same two points.

Finally, we gave a brief discussion of the utility our series representation. In particular, the recur-
sion for the summand is stable, the sum is well conditioned, and it converges linearly on C\[1,∞).
This is in contrast to recent work on series representations for Li2 that converge on a smaller portion
of the complex plane.
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