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Abstract

This paper deals with the problem of estimating scale parameter of the selected uniform population
when sample sizes are unequal. The loss has been measured by the generalized Stein loss (GSL)
function. The uniformly minimum risk unbiased (UMRU) estimator is derived, and the natural
estimators are also constructed under the GSL function. One of the natural estimators is proved
to be the generalized Bayes estimator with respect to a noninformative prior. For k = 2, we ob-
tained a sufficient condition for an inadmissibility result and demonstrate that the natural estimator
and UMRU estimator are inadmissible. A simulation investigation is also carried out for the per-
formance of the risk functions of various competing estimators. Finally, this article represents a
conclusion of our study.

Keywords: Generalized Stein loss (GSL) function; Uniform distributions; Inadmissibility;
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1. Introduction

The problem of estimating parameters of a selected population commonly occurs in various prac-
tical applications in engineering, agricultural, medical experiments and social sciences. For exam-
ple, a farmer not only wishes to select the type of fertilizer from k(≥ 2) available fertilizers which
provides the highest mean yield, but he also wants an estimate of mean of the selected fertilizer.
Several types of medicines are used for a particular disease and a doctor is interested in selecting
the most effective one among those. Naturally, he would be interested in an estimate of the effec-
tiveness of the selected medicine. Such types of problems of estimation after selection have been
widely investigated for various probability models due to its applications and perhaps the chal-
lenges involved in it. Some of the references in this area are due to Sackrowitz and Samuel-Cahn
(1984), Kumar and Gangopadhyay (2005), Misra et al. (2006a, 2006b), Sill and Sampson (2007),
Vellaisamy and Jain (2008), Vellaisamy and Al-Mosawi (2010), Al-Mosawi et al. (2012), Qomi et
al. (2012), Arshad and Misra (2015, 2016), Nematollahi and Jozani (2016), Meena and Gangopad-
hyay (2017), Nematollahi (2017), Meena et al. (2018) and Arshad and Abdalghani (2020).

A good amount of the work relating to selection and estimation after selection problems summa-
rized in the literature has been carried out over the last five decades under the assumption of equal
nuisance parameters and/or sample sizes, and a limited amount of the research work has been
conducted under the framework, where nuisance parameter and /or sample sizes may be unequal.
For important papers in this direction, we refer the readers to Abughalous and Miescke (1989),
Dhariyal et al. (1989), Gupta and Sobel (1958), Risko (1985). Recently, Pagheh and Nematollahi
(2015) have examined the problem of estimation after selection concerning the uniform population
based on the sample of equal sizes under the GSL function. In this article, we consider unequal
sample sizes and a more general class of selection rules thereby extending the results of Pagheh and
Nematollahi (2015). Arshad and Misra (2017) obtained the UMRU estimator and also established
some inadmissible results for scale parameter of the selected population when used the entropy loss
function. Vellaisamy et al. (1988) used the natural selection rule and investigated the problem of
estimating the mean of the selected uniform population with respect to the squared error loss func-
tion and scale-invariant loss function. For the selected mean, they obtained UMVU estimator and
a generalized Bayes estimator. Authors established that the natural estimator is inadmissible with
respect to squared error loss function and provided a minimax estimator with respect to the scale-
invariant loss function. They provided improvements on the UMVU estimator with respect to both
loss functions. Afterwards, Nematollahi and Motamed-Shariati (2012) discussed the same prob-
lem with respect to the entropy loss function. They constructed the UMRU estimator of the scale
parameter of the selected uniform population. For the case k = 2, they established that UMRU es-
timator is inadmissible and the generalized Bayes estimator is minimax. The problem of estimating
the scale parameter of the selected uniform population using the asymmetric scale equivarient loss
function has been studied by Arshad and Abdalghani (2019). To the best of our knowledge, this
estimation problem has not been explored in literature before under the GSL function.

The manuscript is organized as follows. The formulation of the problem and selection process
is discussed in Section 2. In Section 3, the UMRU estimator of µL is obtained using the UV
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896 K.R. Meena and A.K. Gangopadhyay

procedure of Robbins (1988) and prove that the natural estimator ξN,2(XXX) is a generalized Bayes
estimator of µL under the GSL function. In Section 4, employing the procedure of Brewster and
Zidek (1974), a sufficient condition for inadmissibility of scale parameter µL has been given under
the GSL function. Moreover, it is shown that the natural estimator ξN,1 and the UMRU estimator
are inadmissible, and improved estimators have been suggested for estimating µL. The simulation
studies to compare various competing estimators are conducted in Section 5. Section 6 concludes
our study.

2. Formulation of problem

Let Xi1, Xi2, . . . , Xini be independent random samples of size ni from the population Πi (i =
1, 2 . . . , k) which are individually uniformly distributed over the interval (0, µi) with unknown
scale parameter µi > 0. Let Xi = max{Xi1, ..., Xini}, therefore X = (X1, . . . , Xk) is a complete
and sufficient statistic for µµµ = (µ1, . . . , µk) ∈ Rk

+; here Rk
+ = {(x1, ..., xk) ∈ Rk : xi > 0 ∀ i =

1, 2, ..., k} denotes a subset of k− dimensional Euclidean space Rk. Let X1, ..., Xk denote inde-
pendent random variables and the density of Xi is

fi(x|µi) =

{
nixni−1

µ
ni
i

, if 0 < x < µi,

0, otherwise.
(1)

Here, µi > 0, (i = 1, . . . , k) is an unknown scale parameter. The population Πi is the "best" if
µi > µj , for all i, j = 1, . . . , k, i 6= j i.e., the population associated with the largest scale parameter
µ[k] = max{µ1, . . . , µk} to be the "best". If more than one of the µi are tied at the largest value, one
of the population is assumed to be arbitrarily marked as "best" population. For selecting/identifying
the "best" population, employ a nonrandomized selection procedure δδδ = (δ1, . . . , δk), where δi(xxx)
is the conditional probability of selecting population Πi when XXX = xxx is observed. Based on the
maximum likelihood estimator (MLE) Xi of µi, we wish to construct a natural selection procedure
for the goal of identifying the "best" population. Such a natural selection rule can be expressed as
δδδN(xxx) = (δN1 , δ

N
2 , ..., δ

N
k ), where

δNi (xxx) =

1, if max
j 6=i

xj < xi,

0, otherwise.

For samples of equal sizes, i.e., n1 = n2 = · · · = nk, under the 0−1 loss function, the natural selec-
tion rule δδδN(xxx) is known to be minimax (Misra and Dhariyal (1994)). However, the natural selec-
tion rule δδδN(xxx) is no longer minimax with respect to the 0−1 loss function, when the sample sizes
are unequal and it has many undesirable properties. For identifying (or selecting) the "best" uniform
population, Arshad and Misra (2015b) introduced a class C = {δδδννν : δδδννν(XXX) = (δννν1 , ..., δ

ννν
k), ννν ∈ Rk

+}
of selection rules, where

δνννi (XXX) =

1, if νiXi > max
j 6=i

νjXj,

0, otherwise.
(2)
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and ννν = (ν1, ..., νk) ∈ Rk
+. For k = 2 and n1 6= n2, the class C = {δδδν = (δν1 , δ

ν
2 ), ν > 0}, provides

the selection procedures of the following forms:

δν1 (XXX) =

1, if X1 > νX2,

0, if X1 ≤ νX2,
; δν2 (XXX) =

1, if X1 ≤ νX2,

0, if X1 > νX2.

The selection rule δδδν∗ = (δν
∗

1 , δ
ν∗

2 ) obtained by Arshad and Misra (2015a), where

ν∗ ≡ ν∗(n1, n2) =


(
n1+n2

2n2

) 1

n1 , if n1 ≤ n2,(
2n1

n1+n2

) 1

n2 , if n1 > n2,

is admissible and minimax under the 0 − 1 loss function and is a generalized Bayes rule with
respect to non-informative prior.

The problem is to estimate the scale parameter µL associated with the population chosen by a
selection rule δδδννν given in (2). Let Ai = {xxx ∈ χ : νixi > νjxj ∀j 6= i, j = 1, 2, ..., k} and let IA(.)
be the partition of sample space χ. Then, scale parameter µL can be given by

µL =
k∑
i=1

µiIAi(XXX). (3)

Here, IA(.) denotes the indicator function of the set A.

For this research, we study the problem of estimation of scale parameter of the selected population
using the GSL function. The GSL function has the form:

L(g(µµµ), ξ) =

(
ξ

µµµ

)q
− q ln

(
ξ

µµµ

)
− 1, µµµ ∈ Ω, ξ ∈ C, (4)

where g(µµµ) is real valued function of parameter µµµ and C indicates the class of all estimators of
g(µµµ). This loss function is asymmetric and convex when ∆ = ξ

g(µµµ)
and quasi concave otherwise,

but its risk function has unique minimum at ∆ = 1. The GSL function is a scale invariant loss
function and is suitable for estimating the scale parameter. Therefore, the GSL function is useful
in situations where under-estimation and over-estimation have not been assigned the same penalty.
The GSL function with negative q values penalizes over-estimation more than under-estimation
whereas it acts vice-versa with positive q values. In this article, under the GSL function, our aim
is to estimate the parameter of the selected uniform population with sample sizes are unequal.
Consider µµµ = (µ1, . . . , µk) and g(µµµ) be real valued function of µµµ. We would like to estimate
a function of µµµ, i.e µµµ by an estimator ξ with respect to the loss function L(g(µµµ), ξ). Following
Lehmann (1951), an estimator ξ(XXX) is said to be risk-unbiased for the parameter g(µµµ) if it satisfies
the inequality

Eµµµ [L (g(µµµ, ξ(XXX)))] ≤ Eµµµ[L(g(µ
′
µ
′
µ
′
, ξ(XXX)))], for all µ

′
µ
′
µ
′ 6= µµµ. (5)

Using condition (5) and the GSL function (4), an estimator ξ(XXX) is a risk-unbiased estimator of
the parameter g(µµµ), if it satisfies the following condition

Eµµµ[ξq(XXX)] = gq(µµµ), for all µµµ. (6)

4
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Since µL is dependent on X1, ..., Xk. Thus, the condition for the risk-unbiased estimator of µL is
defined as

Eµµµ [ξq(xxx)] = Eµµµ [µqL] , for all µµµ.

Therefore, apply the (U − V ) procedure of Robbins (1988) to establish the risk unbiased and
UMRU estimator of µL of selected uniform population.

We consider two natural estimators of µL based on the maximum likelihood estimator (MLE) and
the UMRU estimator, under the GSL function. Therefore one may write the natural estimators of
µL of the selected population as:

ξN,1(XXX) =
k∑
i=1

XiIAi(XXX); and ξN,2(XXX) =
k∑
i=1

(
ni + q

ni

) 1

q

XiIAi(XXX). (7)

3. UMRU Estimator and Generalized Bayes Estimator

We discuss the general form of uniformly minimum risk unbiased estimator and Generalized Bayes
estimator of µL with respect to the GSL function (4) in this section. Utilizing the unbiased criterion
(5), an estimate ξ(XXX) is a risk unbiased estimator of the random parameter g(µµµ) with respect to the
GSL function (4), if it satisfies

Eµµµ [ξq(xxx)] = Eµµµ [gq(µµµ)] , for all µµµ.

To evaluate the UMRU estimator of µL, we adopt the (U-V) procedure of Robbins. The ensuing
lemma is important in deriving the UMRU estimator.

Lemma 3.1.

Suppose X1, ..., Xk be k independent random variables, where Xi has a probability density func-
tion as given in (1). Let U1(XXX), ..., Uk(XXX) be k real valued functions on Rk

+ such that

(1) Eµµµ [|Xq
i Ui(XXX)|] <∞, for all µµµ ∈ Ω, i = 1, ..., k.

(2)
∫ xi

0
xqiUi(x1, ..., xi−1, t, xi+1, ..., xk)t

ni−1dt <∞, for all xxx ∈ Rk
+, i = 1, ..., k.

(3) limxi→0

[
xqi
∫ xi

0
Ui(x1, ..., xi−1, t, xi+1, ..., xk)t

ni−1dt
]

= 0, for all xxx ∈ Rk
+, j 6= i, i =

1, ..., k.

Then, the function Vi(XXX) defined as

Vi(XXX) = Xq
i Ui(XXX) + qxq−nii

∫ xi

0

Ui(x1, ..., xi−1, t, xi+1, ..., xk)t
ni−1dt,

satisfies

Eµµµ

[
k∑
i=1

Vi(XXX)

]
= Eµµµ

[
k∑
i=1

µqiUi(XXX)

]
.

5
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Proof:

This lemma is a generalization of Theorem 3.1 of Nematollahi and Jozani (2016). Therefore, the
proof of this Lemma follows from the Theorem 3.1 of Nematollahi and Jozani (2016). �

Theorem 3.1.

Consider the GSL function, as defined in (4), then the estimator

ξU(XXX) =
k∑
i=1

Xi

1 +
q

ni

1−

max
j 6=i

νjXj

νiXi

ni



1

q

IAi(XXX), (8)

is the UMRU estimator of scale parameter µL of the selected population.

Proof:

For i = 1, ..., k, let Vi(XXX) be a function defined on the sample space χ such that E [Vi(XXX)] =
E [µqi IAi(XXX)].

Using Lemma 3.1, for i = 1, ..., k, we have

Vi(XXX) = Xq
i IAi(XXX) + qXq−ni

i

∫ xi

0

IAi(x1, ..., xi−1, t, xi+1, ..., xk)t
ni−1dt

= Xq
i IAi(XXX) + qXq−ni

i

∫ Xi

max
j 6=i

νjXj

νi

tni−1dtIAi(XXX)

= Xq
i IAi(XXX) +

qXq
i

ni

1−

max
j 6=i

νjXj

νiXi

ni IAi(XXX)

= Xq
i

1 +
q

ni

1−

max
j 6=i

νjXj

νiXi

ni

 IAi(XXX).

Clearly,

ξqU(XXX) =
k∑
i=1

Vi(XXX).

It follows that

Eµµµ [ξqU(XXX)] = Eµµµ

[
k∑
i=1

Vi(XXX)

]

=
k∑
i=1

Eµµµ [µqi IAi(XXX)]

= Eµµµ [µqL] .

Since XXX = (X1, ..., Xk) is a complete and sufficient statistics, the estimator ξU(XXX) is a risk unbi-
ased estimator of µL. �

6
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In the following remarks we provide the UMRU estimator of the scale parameter µL obtained from
the preceding theorem.

Remark 3.1.

Consider sample sizes are equal, i.e., n1 = n2 = · · · = nk = n (say), and ν1 = ν2 = · · · = νk = 1.
Then, the UMRU estimator of µL is

ξU(XXX) = X[k]

[
1 +

q

n

{
1−

(
X[k−1]

X[k]

)n}] 1

q

.

The UMRU estimator depends only on two largest order statistics.

Proof:

In the equation (8) if we substitute n1 = n2 = · · · = nk = n we get the above UMRU estimator. �

Remark 3.2.

Using the entropy loss function, i.e., for q = −1, the UMRU estimator of µL is

ξU(XXX) =
k∑
i=1

niXi[
(ni − 1) +

(
max
j 6=i

νjXj

νiXi

)ni]IAi(XXX). (9)

Proof:

Substituting -1 in place of q in the equation (8) we get the result. �

The next result leads to the generalized Bayes estimator of µL with respect to the GSL function as
defined in (4).

Theorem 3.2.

Assume the noninformative prior distribution

Πµµµ(µ1, ..., µk) =

{
1

µ1,...,µk
, if µµµ ∈ Ω,

0, otherwise.
(10)

Then, the natural estimator ξN,2(XXX) is the generalized Bayes estimator of µL under the GSL func-
tion (4).

Proof:

Consider the noninformative prior distribution (10) for µµµ = (µ1, ..., µk), then the posterior distri-
bution of µµµ, givenXXX = xxx has the probability density function

Πp
µµµ(µ1, ..., µk

∣∣xxx) =

{
Πk
i=1

nix
ni
i

µ
ni+1

i

, if xi < µi, i = 1, ..., k,

0, otherwise.
(11)

7
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The posterior risk of an estimator ξ under the GSL function (4), which can be written as

rp(ξ,xxx) = EΠp

[{(
ξ

µL

)q
− q ln

(
ξ

µL

)
− 1

} ∣∣XXX = xxx

]
. (12)

The generalized Bayes estimator of µL, denoted by ξGB(XXX), which minimizes the posterior risk
(12), is as follows

ξGB(xxx) =
k∑
i=1

[
EΠp

(
1

µqi

∣∣XXX = xxx

)]− 1

q

IAi(XXX).

Using the posterior density (11), we obtained the generalized Bayes estimator of µL is given by

ξGB(xxx) =
n∑
i=1

[
(q + ni)x

q
i

ni

] 1

q

IAi(XXX) = ξN,2(XXX).

Hence, the result follows. �

4. Inadmissibility results

This section is devoted to the sufficient condition for inadmissability of a scale invariant estimator
of scale parameter µL using the GSL function (4), for k = 2 uniform populations. It also gives
dominated estimators in those cases, where the results satisfy the sufficient conditions. For this
purpose, consider the class of scale invariant estimator of the form

ξψ(X1, X2) = X2ψ(Y ),

where Y = X1

X2
and ψ(.) is a non-negative real valued function defined on R+.

The following theorem is to study sufficient condition for inadmissibility of an estimator of µL
using the application of Brewster and Zidek (1974) technique, under the GSL function (4).

Theorem 4.1.

Assume that ξψ(X1, X2) = X2ψ(Y ) provides a scale-invariant estimator of µL, where Y = X1

X2

and ψ(.) is a non-negative real valued function defined on R+. Consider the function ψ1 on R+ as:

ψ1(Y ) =


(
n1+n2+q
n1+n2

) 1

q

, if 0 < Y < ν,

Y
(
n1+n2+q
n1+n2

) 1

q

, if Y ≥ ν.

where ν = ν2
ν1

. Further, define the estimator ξψ∗ by ξψ∗(X1, X2) = X2ψ∗(Y ), where

ψ∗(Y ) =

ψ1(Y ), if ψ(Y ) ≤ ψ1(Y ),

ψ(Y ), if ψ(Y ) > ψ1(Y ).
(13)

Then, the estimator ξψ is inadmissible, and is dominated by ξψ∗ with respect to GSL function if
Pµµµ (ψ1(Y ) > ψ(Y )) ≥ 0 for all µµµ = (µ1, µ2) ∈ R2

+, and strict inequality holds for some µµµ ∈ R2
+.

8
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Proof:

For µ1, µ2 ∈ R2
+, consider the risk difference:

∆(µµµ) = R(µµµ, ξψ)−R(µµµ, ξψ∗)

= Eµµµ

[(
X2ψ(Y )

µL

)q
−
(
X2ψ∗(Y )

µL

)q
− q ln

(
ψ(Y )

ψ∗(Y )

)]
= Eµµµ

[(
X2

µL

)q
(ψq(Y )− ψq∗(Y ))− q ln

(
ψ(Y )

ψ∗(Y )

)]
= Eµµµ [Dµµµ(Y )] ,

where, for y ∈ R+ and µ ∈ R2
+,

Dµµµ(y) = (ψq(y)− ψq∗(y))Eµµµ

[(
X2

µL

)q ∣∣Y = y

]
− q ln

(
ψ(Y )

ψ∗(Y )

)
. (14)

The conditional p.d.f. of X2, given Y = y, is

fX1|Y (x1|y) =


(n1+n2)x

n1+n2−1
2

µ
n1+n2
2

, if 0 < x2 < µ2, y <
µ1

µ2
,

(n1+n2)yn1+n2x
n1+n2−1
2

µ
n1+n2
1

, if 0 < x2 <
µ1

y
, y ≥ µ1

µ2
.

Let ϑ = µ1

µ2
, and let ν = ν2

ν1
. In derivation of Eµµµ

[(
X2

µL

)q ∣∣Y = y
]
, there are two cases which

follows:
Case-I: when y > ν

E

((
X2

µL

)q ∣∣∣Y = y

)
=


n1+n2

n1+n2+q
1
ϑq
, if y < ϑ,

n1+n2

n1+n2+q
1
yq
, if y ≥ ϑ.

Case-II: when y ≤ ν

E

((
X2

µL

)q ∣∣∣Y = y

)
=


n1+n2

n1+n2+q
, if y < ϑ,

n1+n2

n1+n2+q

(
ϑ
y

)q
, if y ≥ ϑ.

It is observed from Case-I and Case-II that, for ϑ < ν

E

((
X2

µL

)q ∣∣∣Y = y

)
=


n1+n2

n1+n2+q
, if 0 < y < ϑ,

n1+n2

n1+n2+q

(
ϑ
y

)q
, if ϑ ≤ y < ν,

n1+n2

n1+n2+q
1
yq
, if 0 < ν ≤ y,

(15)

and, for ϑ ≥ ν

E

((
X2

µL

) ∣∣∣Y = y

)q
=


n1+n2

n1+n2+q
, if 0 < y < ν,

n1+n2

n1+n2+q
1
ϑq
, if ν ≤ y < ϑ,

n1+n2

n1+n2+q
1
yq
, if 0 < ϑ ≤ y.

(16)
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In either cases, for q < 0 using (15) and (16), we get

inf
ϑ∈(0,∞)

E

((
X2

µL

)q ∣∣∣Y = y

)
=


n1+n2

n1+n2+q
, if 0 < y < ν,

n1+n2

n1+n2+q
1
yq
, if ν ≤ y,

=
1

ψq1(y)
, (17)

and for q > 0, we get

sup
ϑ∈(0,∞)

E

((
X2

µL

)q ∣∣∣Y = y

)
=


n1+n2

n1+n2+q
, if 0 < y < ν,

n1+n2

n1+n2+q
1
yq
, if ν ≤ y,

=
1

ψq1(y)
. (18)

It follows from (13), (14), (17) and (18) that, if ψ1(y) ≥ ψ(y), then

Dµµµ(y) = (ψq(y)− ψq∗(y))Eµµµ

[(
X2

µL

)q ∣∣Y ]− q ln

(
ψ(y)

ψ∗(y)

)
Dµµµ(y) = (ψq(y)− ψq1(y))

1

ψq1(y)
− q ln

(
ψ(y)

ψ1(y)

)
≥
(
ψ(y)

ψ1(y)

)q
− q ln

(
ψ(y)

ψ1(y)

)
− 1

≥ 0,

and strict inequality holding for some µµµ ∈ R2
+. If ψ1(y) < ψ(y), then Dµµµ(y)=0. Therefore

R(µµµ, ξψ) ≥ R(µµµ, ξψ∗), for all , µµµ ∈ R2
+,

and strict inequality holds for some µ. This completes the proof. �

Now we conclude the following dominance results for the proposed estimators which are the con-
sequences of the preceding theorem.

Corollary 4.1.

Consider the case k = 2, the UMRU estimator ξU(X) is inadmissible and is dominated by
ξDU (X) = X2 max{ψU(y), ψ1(y)}, where

ψU(y) =


[
1 + q

n2

(
1−

(
y
ν

)n2
)] 1

q

, if 0 < y < ν,

y
[
1 + q

n1

(
1−

(
ν
y

)n1
)] 1

q

, if y ≥ ν,

with respect to GSL function (4) and ψ1(y) is given in Theorem 4.1.
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Proof:

The proof of this corollary follows from the Theorem 4.1 by replacing Ψ∗(y) (given in Theorem
4.1) with ψU(y). �

Corollary 4.2.

Consider the case k = 2, under the GSL function (4), ξN,1(XXX) is the natural estimator of the form
defined in (7). Then, ξN,1(XXX) is inadmissible and is dominated by

ξIDN,1(XXX) =

(
n1 + n2 + q

n1 + n2

) 1

q

ξN,1 (XXX) .

Proof:

The proof of this corollary follows from the fact that
(
n1+n2+q
n1+n2

) 1

q ≥ 1 ∀q, n1, n2. �

Corollary 4.3.

Consider the case k = 2 and q < 0, under the GSL function (4), ξN,2(XXX) is the natural estimator
of the form defined in (7). Then, ξN,2(XXX) is inadmissible and is dominated by

ξIDN,2(XXX) = X2 max{ξN,2(y), ψ1(y)}.

Proof:

This result follows from the fact that, for q < 0, P (ψ1(y) > ξN,2(y)) > 0 ∀ µµµ ∈ R2
+. �

Remark 4.1.

From Corollary 4.1 that the UMRU estimator of µL is inadmissible and is dominated with respect
to GSL function (4) for the case k = 2, n1 = n2 = n and ν1 = ν2 = 1.

Proof:

Proof is obtained directly by Corollary 4.1 by substituting n1 = n2 = n and ν1 = ν2 = 1. �

Remark 4.2.

From Theorem 4.1 the UMRU estimator of µL is improved and dominated with respect to entropy
loss function for the case k = 2, n1 = n2 = n and ν1 = ν2.

Proof:

Proof is obtained directly by Theorem 4.1 by substituting n1 = n2 = n and ν1 = ν2. �

Remark 4.3.

From Corollary 4.2 the natural estimator ξN,1 corresponding to the MLE of µL is inadmissible with
respect to GSL function (4) for the cases k = 2, n1 = n2 = n and ν1 = ν2.
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Proof:

The proof is obtained directly from Corollary 4.2 by substituting n1 = n2 = n and ν1 = ν2. �

Now, we prove the following result.

Theorem 4.2.

Let n1 + n2 + q > 0. Let c1 and c2 be two possible real constants and let ccc = (c1, c2). Suppose that

ci ∈
(

0,
(
n1+n2+q
n1+n2

) 1

q

)⋃((ni+q
ni

) 1

q

,∞
)

, for i = 1, 2. Define the natural-type estimators

ξccc(X1, X2) =

{
c1X1, if X ∈ A1,

c2X2, if X ∈ A2.

Then, the natural-type estimators ξc are inadmissible for estimating µL with respect to GSL func-
tion (4).

Proof:

It should be noted from Theorem 4.1 that the estimators ξc, for ci ∈
(

0,
(
n1+n2+q
n1+n2

) 1

q

)
, i = 1, 2,

are inadmissible and are dominated by

ξ∗ccc (XXX) =


(
n1+n2+q
n1+n2

) 1

q

X1, if X ∈ A1,(
n1+n2+q
n1+n2

) 1

q

X2, if X ∈ A2.

Further, assume that ci ∈
((

ni+q
ni

) 1

q

,∞
)

for i = 1, 2. It is seen that the risk function of the

estimator ξc is a function of ϑ = µ1

µ2
∈ (0,∞). Therefore, consider the risk function of ξc as

R(ϑ, ξc) = Eµµµ

[(
ξc
µL

)q
− q ln

(
ξc
µL

)
− 1

]
, q 6= 0

=
2∑
j=1

Rj(ϑ, cj) (say),

where

Rj(ϑ, cj) = Eµµµ

[{(
cjXj

µj

)q
− q ln

(
cjXj

µj

)
− 1

}
IAj(X)

]
.

The above risk function is a convex function of c, for a fixed ϑ ∈ (0,∞) and fixed j ∈ {1, 2},
Rj(ϑ, cj) achieves its minimum at c∗j(ϑ) = Mj(ϑ), where

Mj(ϑ) =

 E
(
IAj(XXX)

)
E
((

X1

µj

)q
IAj(XXX)

)
 1

q

, j = 1, 2.
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Now, using the p.d.f. of Xj , as defined in (1), obtain,

M1(ϑ) =


[

1−( n2
n1+n2

)( νϑ)
n1

( n1
n1+q )

{
1−( n2

n1+n2+q )(
ν

ϑ)
n1+q

}
] 1

q

, if ϑ > ν,(
n1+n2+q
n1+n2

) 1

q

, if ϑ ≤ ν,

and

M2(ϑ) =


[

1−( n1
n1+n2

)(ϑν )
n2

( n2
n2+q )

{
1−( n1

n1+n2+q )(
ϑ

ν )
n2+q

}
] 1

q

, if ϑ ≤ ν,(
n1+n2+q
n1+n2

) 1

q

, if ϑ > ν.

It is noticed that M1(ϑ) and M2(ϑ) are non-increasing and continuous function of ϑ ∈ (0,∞).

Therefore, c∗1(ϑ) and c∗2(ϑ) are non-increasing functions of ϑ, and sup
ϑ∈(0,∞)

c∗1(ϑ) =
(
n1+q
n1

) 1

q

and

sup
ϑ∈(0,∞)

c∗2(ϑ) =
(
n2+q
n2

) 1

q

. It is worth noting that, fixed j = {1, 2}, and for any fixed ϑ ∈ (0,∞),

the risk function of Rj(ϑ, c) is a decreasing function of c ∈ (0, c∗j), and is an increasing function

of c ∈ [c∗j ,∞) with c∗j ≤
(
nj+q
nj

) 1

q

. Therefore, for cj ≥
(
nj+q
nj

) 1

q

,

Rj(ϑ, cj) > Rj

(
ϑ,

(
nj + q

nj

) 1

q

)
∀ ϑ ∈ (0,∞).

This implies that

R(ϑ, ξc) =
2∑
j=1

Rj(ϑ, cj)

>
2∑
j=1

Rj

(
ϑ,

(
nj + q

nj

) 1

q

)
= R(ϑ, ξd) ∀ ϑ ∈ (0,∞),

where

ξddd(X1, X2) =


(
n1+q
n1

) 1

q

X1, if X ∈ A1,(
n2+q
n2

) 1

q

X2, if X ∈ A2.

Hence, the proof of the theorem. �

Note: If we consider q = 1, then GSL function becomes Stein loss function, and we can conclude
the following results by using similar technique in this article.
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(1)

ξU(XXX) =
k∑
i=1

Xi

1 +
1

ni

1−

max
j 6=i

νjXj

νiXi

ni

 IAi(XXX) (19)

is the UMRU estimator of µL.
(2)

ξGB(xxx) =
n∑
i=1

[
(1 + ni)xi

ni

]
IAi(XXX)

is the generalized Bayes estimator and natural estimator ξN,2(XXX).
(3) It should be noted here that we obtained the Theorem 4.2, Corollary 4.1 and Corollary 4.2 in

this case.
(4) The natural estimators ξccc(X1, X2) which is defined in Theorem 4.2, is inadmissible for esti-

mating µL, if and only if n1+n2+1
n1+n2

≤ c ≤ ni+1
ni

, for i = 1, 2.

Remark 4.4.

Consider equal sample sizes, i.e., n1 = n2 = · · · = nk = n (say), and ν1 = ν2 = · · · = νk = 1.
Then, from (19) that the UMRU estimator of µL is

ξU(XXX) =
X[k]

n

[
n+ 1−

(
X[k−1]

X[k]

)n]
.

This UMRU estimator depends only on two largest order statistics.

Proof:

Consider q = 1. Then, the proof is obtained directly from equation (19) by the substitution of
k = 2 and n1 = n2 = n. �

5. Simulation Study

A simulation study is carried out using the MATLAB Software to evaluate the performance of
the suggested estimators in previous sections under the GSL function. For k = 2 and ϑ = µ2

µ1
,

it can be observed that the risk function of all the estimators depend on (µ1, µ2). The risks of
the estimators ξU(XXX), ξDU (XXX), ξN,1, ξIDN,1 and ξN,2 of scale parameter µL are calculated. For sim-
ulation purpose, we take into account the minimax selection rule δδδν∗ , as defined in Section 2
to choose the best population. It should be noted that the ν∗ = ν∗(n1, n2) is a function of n1

and n2. It is also noticed that ν∗ depends on the different sample sizes n1 and n2, then seen
that δδδν∗ is not same for various configurations of (n1, n2). For various sample sizes, we in-
vestigate the risk performances of the five competing estimators of µL for various values of ϑ.
R1(ϑ) = R(ϑ, ξU(XXX)), R2(ϑ) = R(ϑ, ξDU (XXX)), R3(ϑ) = R(ϑ, ξN,1(XXX)), R4(ϑ) = R(ϑ, ξIDN,1(XXX)),
and R5(ϑ) = R(ϑ, ξN,2(XXX)) represent the risk functions of the different estimators. The risk func-
tions of proposed estimators are graphed for (n1, n2) ∈ {(3, 4), (4, 3), (5, 8), (8, 5)}. The following
observations can be made from the Figures 1− 8 (Appendix (1− 2)) as well as from Tables 1− 8
(Appendix (3− 5)).
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(1) For q = 1, the natural estimator ξN,1 is dominated by all the other estimators.
(2) For q = −1, the natural estimator ξN,1 is dominated by all the other estimators except ξN,2.
(3) The improved estimator ξDU provides marginal improvement over the UMRU estimator ξU .
(4) The improved estimator ξIDN,1 gives considerable improvement over the natural estimator ξN,1.
(5) For 0 < ϑ < 0.8, 1.4 < ϑ and q = 1, the estimator ξN,2 becomes better than all other estimators

for all values of n1, n2.
(6) For 0 < ϑ < 0.6, 1.6 < ϑ and q = −1, the estimator ξN,2 performs better than all other

estimators when the values of n1 and n2 are (3, 4) and (4, 3).
(7) For 0 < ϑ < 0.8, 1.4 < ϑ and q = −1, the estimator ξN,2 performs better than all other

estimators when (n1, n2) is (5, 8) and (8, 5).
(8) The estimators ξU , ξDU and ξIDN,1 perform better for moderate values of ϑ.

Here, it is noted from the overall performance of all the estimators that the performance of ξIDN,1
is satisfactory. Therefore, estimator ξIDN,1 is recommended for use in practical applications.

6. Conclusion

This article focused on the problem of estimating scale parameter of the selected uniform popula-
tion using the GSL function with unequal sample sizes has been addressed. We have derived the
UMRU and generalized Bayes estimators for scale parameter of the selected uniform population
with respect to the GSL function. We have demonstrated that the scale invariant estimators are
inadmissible. Also, UMRU and natural estimators are inadmissible and dominated. Furthermore,
the comparison among the estimators have been shown using simulation. Through simulation, we
compared the estimators with respect to GSL function. It is observed that the risk function fourth
performs very well and provides significant improvement over the risk function third for the case
q = 1. In this article, we could not find general result giving a sufficient condition for the inadmis-
sibility of scale-invariant estimators, it is an open problem for the general cases k(> 2).
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Appendix 1
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Figure 1. Risk performances of different estima-
tors for (n1, n2) = (3, 4) and q = 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Values of λ

R
is

k 
V

al
ue

s

 

 

R
1
(λ)

R
2
(λ)

R
3
(λ)

R
4
(λ)

R
5
(λ)

Figure 2. Risk performances of different estima-
tors for (n1, n2) = (4, 3) and q = 1
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Appendix 2
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Figure 3. Risk performances of different estima-
tors for (n1, n2) = (5, 8) and q = 1
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Figure 4. Risk performances of different estima-
tors for (n1, n2) = (8, 5) and q = 1
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Figure 5. Risk performances of different estima-
tors for (n1, n2) = (3, 4) and q = −1
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Figure 6. Risk performances of different estima-
tors for (n1, n2) = (4, 3) and q = −1
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Figure 7. Risk performances of different estima-
tors for (n1, n2) = (5, 8) and q = −1
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Figure 8. Risk performances of different estima-
tors for (n1, n2) = (8, 5) and q = −1
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Appendix 3

Table 1. Risk performances of various estimators for q = 1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (3, 4); a∗ = 0.9565

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.04416 0.04399 0.07833 0.05248 0.04189
0.4 0.03598 0.03520 0.06086 0.03748 0.02994
0.6 0.02600 0.02419 0.04094 0.02228 0.02040
0.8 0.01690 0.01445 0.02487 0.01227 0.01711
1.0 0.01188 0.01041 0.01769 0.00908 0.01726
1.2 0.01318 0.01128 0.01999 0.01011 0.01534
1.4 0.01572 0.01363 0.02471 0.01219 0.01442
1.6 0.01796 0.01634 0.02970 0.01505 0.01526
1.8 0.02022 0.01895 0.03356 0.01785 0.01701
2.0 0.02230 0.02124 0.03798 0.02086 0.01881

Table 2. Risk performances of various estimators for q = 1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (4, 3); a∗ = 1.0455

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.02773 0.02769 0.05062 0.03123 0.02724
0.4 0.02479 0.02427 0.04360 0.02525 0.02212
0.6 0.01927 0.01774 0.03137 0.01639 0.01625
0.8 0.01347 0.01138 0.02086 0.01018 0.01447
1.0 0.01209 0.01063 0.01824 0.00939 0.01732
1.2 0.01585 0.01339 0.02359 0.01158 0.01703
1.4 0.02043 0.01810 0.03080 0.01555 0.01762
1.6 0.02426 0.02234 0.03792 0.02010 0.01923
1.8 0.02892 0.02724 0.04580 0.02583 0.02235
2.0 0.03185 0.03051 0.05172 0.03026 0.02500

Table 3. Risk performances of various estimators for q = 1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (5, 8); a∗ = 0.9593

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.01753 0.01753 0.03305 0.02306 0.01743
0.4 0.01696 0.01690 0.03102 0.02117 0.01575
0.6 0.01388 0.01352 0.02335 0.01466 0.01091
0.8 0.00781 0.00708 0.01174 0.00606 0.00649
1.0 0.00384 0.00332 0.00576 0.00287 0.00607
1.2 0.00441 0.00380 0.00713 0.00343 0.00440
1.4 0.00579 0.00539 0.00994 0.00510 0.00490
1.6 0.00665 0.00649 0.01209 0.00665 0.00595
1.8 0.00705 0.00697 0.01308 0.00745 0.00660
2.0 0.00692 0.00688 0.01312 0.00751 0.00665 20
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Table 4. Risk performances of various estimators for q = 1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (8, 5); a∗ = 1.0424

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.00730 0.00730 0.01401 0.00825 0.00729
0.4 0.00710 0.00709 0.01365 0.00794 0.00702
0.6 0.00674 0.00659 0.01221 0.00680 0.00610
0.8 0.00475 0.00417 0.00773 0.00374 0.00436
1.0 0.00382 0.00331 0.00566 0.00285 0.00613
1.2 0.00704 0.00622 0.01038 0.00520 0.00624
1.4 0.01077 0.01015 0.01702 0.00974 0.00796
1.6 0.01333 0.01295 0.02217 0.01371 0.01030
1.8 0.01447 0.01422 0.02493 0.01600 0.01195
2.0 0.01549 0.01534 0.02761 0.01819 0.01340

Table 5. Risk performances of various estimators for q = −1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (3, 4); a∗ = 0.9565

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.06931 0.06828 0.14297 0.08734 0.05885
0.4 0.05672 0.05410 0.10120 0.05575 0.04033
0.6 0.03794 0.03388 0.05882 0.02787 0.03015
0.8 0.02378 0.01952 0.03437 0.01493 0.02961
1.0 0.01644 0.01412 0.02420 0.01141 0.02989
1.2 0.01752 0.01472 0.02680 0.01225 0.02425
1.4 0.02091 0.01738 0.03342 0.01448 0.02087
1.6 0.02451 0.02141 0.04130 0.01841 0.02069
1.8 0.02726 0.02486 0.04800 0.02236 0.02208
2.0 0.03001 0.02793 0.05467 0.02637 0.02373

Table 6. Risk performances of various estimators for q = −1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (4, 3); a∗ = 1.0455

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.03704 0.03691 0.07942 0.04393 0.03524
0.4 0.03339 0.03194 0.06345 0.03242 0.02735
0.6 0.02546 0.02262 0.04328 0.01961 0.02119
0.8 0.01794 0.01474 0.02800 0.01230 0.02259
1.0 0.01608 0.01390 0.02382 0.01122 0.02987
1.2 0.02157 0.01764 0.03102 0.01351 0.03004
1.4 0.02931 0.02505 0.04336 0.01938 0.02954
1.6 0.03642 0.03224 0.05578 0.02612 0.02993
1.8 0.04241 0.03875 0.06792 0.03344 0.03153
2.0 0.04534 0.04243 0.07561 0.03846 0.03338 21
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Appendix 5

Table 7. Risk performances of various estimators for q = −1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (5, 8); a∗ = 0.9593

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.02231 0.02231 0.04886 0.03275 0.02201
0.4 0.02175 0.02157 0.04328 0.02814 0.01892
0.6 0.01716 0.01656 0.02927 0.01719 0.01255
0.8 0.00976 0.00868 0.01460 0.00706 0.00863
1.0 0.00435 0.00374 0.00649 0.00306 0.00844
1.2 0.00517 0.00436 0.00838 0.00380 0.00543
1.4 0.00687 0.00634 0.01217 0.00589 0.00573
1.6 0.00769 0.00740 0.01443 0.00742 0.00660
1.8 0.00802 0.00788 0.01586 0.00841 0.00726
2.0 0.00830 0.00823 0.01666 0.00906 0.00779

Table 8. Risk performances of various estimators for q = −1 and different values of ϑ = ϑ2
ϑ1

(n1, n2) = (8, 5); a∗ = 1.0424

ϑ R(ϑ, ξU) R(ϑ, ξDU ) R(ϑ, ξN,1) R(ϑ, ξIDN,1) R(ϑ, ξN,2)

0.2 0.00846 0.00846 0.01783 0.00993 0.00846
0.4 0.00868 0.00864 0.01777 0.00991 0.00846
0.6 0.00790 0.00766 0.01535 0.00796 0.00688
0.8 0.00555 0.00481 0.00930 0.00422 0.00524
1.0 0.00437 0.00377 0.00655 0.00310 0.00845
1.2 0.00830 0.00724 0.01231 0.00567 0.00841
1.4 0.01279 0.01193 0.02033 0.01072 0.00956
1.6 0.01669 0.01597 0.02824 0.01631 0.01184
1.8 0.01895 0.01840 0.03340 0.02030 0.01414
2.0 0.02062 0.02020 0.03794 0.02381 0.01609
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