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Abstract

In this paper, we study the equivariant nonparametric robust regression estimation relationship be-
tween a functional dependent random covariable and a scalar response. We consider a new robust
regression estimator when the scale parameter is unknown. The consistency result of the proposed
estimator is studied, namely the uniform almost complete convergence (with rate). Thus, suitable
topological considerations are needed, implying changes in the convergence rates, which are quan-
tified by entropy considerations. The benefits of considering robust estimators are illustrated on
two real data sets where the robust fit reveals the presence of influential outliers.
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1. Introduction

Studying the relationship between a random variable Y and a set of covariates X in comparison
with usual regression methods is a very relevant topic and at the same time it considered a com-
mon problem in nonparametric statistics, and there are several ways to explain this relationship.
In many applications, the covariates X can be seen as functions recorded over a period of time
instead of finite-dimensional vectors, (see Ferraty and Vieu (2006)) for an extensive discussion on
nonparametric statistics for functional data.

In this general framework, statistical models adapted to infinite-dimensional data have been re-
cently studied. We refer to Ramsay and Silverman (2002), Ramsay and Silverman (2005) and
Ferraty and Vieu (2006) for a description of different procedures for functional data. Linear non-
parametric regression estimators in the functional setting, that is, estimators based on a weighted
average of the response variables, have been considered by several authors such as Benhenni et
al. (2007) and Ferraty et al. (2006), who also considered estimators of the conditional quantiles.
The literature on robust proposals for nonparametric regression estimation is sparse. Motivated
by its flexibility when data are affected by outliers, the robust regression was widely studied in
nonparametric functional statistics. Indeed, it was firstly introduced by Azzedine et al. (2008)
who proved the almost-complete convergence of this model in the independent and identically
distributed (i.i.d.) case. Since this work, several results on the nonparametric robust functional re-
gression were realized (see, for instance, Attouch et al. (2010), Attouch et al. (2012), Attouch et al.
(2019), Gheriballah et al. (2013), Boente and Vahnovanb (2015) and references therein for some
key references on this topic). Notice that all these results are obtained when the scale parameter is
supposed to be known.

In this sense, we extend some of the previous works in two directions. On the one hand, we gen-
eralize the proposal given in the Euclidean case by Boente and Fraiman (1989a) to provide robust
equivariant estimators for the regression function in the functional case, that is, in the case where
the covariates are in an infinite-dimensional space. On the other side, we extend the proposal given
in Azzedine et al. (2008) to allow for an unknown scale, and heteroscedastic models are provided
in Boente and Vahnovanb (2015). The main goal of this paper is to study the uniform convergence
of this nonparametric estimator with an unknown scale parameter when the explanatory variable
X is valued in infinite dimension space and the observations (Xn, Yn)n≥1 are strongly mixing.

The paper is organized as follows. In Section 2, we state our notation and introduce the robust
equivariant estimators. Section 3 contains the main results of this paper, namely, the uniform con-
vergence consistency and uniform convergence rates over compact sets of the equivariant local
M-estimators. In Section 4, we examine the performances of our proposed estimator with two real
data sets applications.
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2. Basic definitions and notation

Consider Zi = (Xi, Yi)i=1···n be n copies of random vector, identically distributed as (X, Y ) and
is valued in F × R, where F is a semi-metric space, d denoting the semi-metric. For any x ∈ F ,
we consider a real-valued Borel function ψ, and stated the model of the covariation between Xi

and Yi. Our nonparametric regression function, denoted by θx is implicitly defined as a zero with
respect to (w.r.t.) t of the following equation.

Let us define (X, Y ) be a random element in F × R and let

Ψ(x, t, σ) = E
(
ψ

(
Y − t
σ

)
/X = x

)
, (1)

where ψ : R×R is an odd, bounded and continuous function satisfying some regularity conditions
to be stated below. In the following, we assume that Equation (1) allows θ as a unique solution(see,
for instance, (Boente and Fraiman (1989a)) for sufficient conditions for existence and uniqueness
of θ). In addition, our robustification method allows us to consider the functional nonparametric
regression model with a scale of the error assumed to be unknown, where σ(.) is a measure of
spread for the conditional distribution of Y given X = x. We return to Stone (2005) for other
examples of the function ψ.

The conditional scale measure can be taken as the conditional median of the absolute deviation
from the conditional median, that is,

s(x) = MED(|Y −m(x)|/X = x) = MADc(F
x
Y (.)), (2)

where m(x) = MED(Y/X = x) is the median of the conditional distribution.

Note that s(x), which corresponds to a robust measure of the conditional scale, usually equals
σ(X) up to a multiplicative constant, when ε = σ(X)u with u independent of X . For instance, the
median of the absolute deviation is usually calibrated so that MAD(φ) = 1, where φ states for the
distribution function of a standard normal random variable. In this case, when the errors u have a
Gaussian distribution, we x have that s(x) = MADc(F

x
Y (.)) = σ(x). To obtain estimators of θ(x)

we plug into (1) an estimator of F x
Y (y), which will be taken as F̂ (y/X = x). Denote by ŝ(x) a

robust estimator of the conditional scale, for instance, ŝ(x) = MADc

(
F̂ (./X = x)

)
, the scale

measure defined in (2) evaluated in F̂ (y/X = x) . With this notation, the robust nonparametric
estimator of θ(x) is given by the solution θ̂(x) of Ψ̂(x, t, ŝ(x)) = 0, where

Ψ̂(x, t, σ̂) =

∫
ψ

(
y − t
σ̂

)
dF̂ (y/X = x) =

n∑
i=1

wi(x)ψ

(
Yi − t
σ̂

)
, (3)

where wi(x) =
K
(
d(Xi,x)
hk

)
n∑
i=1

K

(
d(Xi, x)

hk

) .
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3. Main results

Uniform convergence results and uniform convergence rates over compacts for the local M-
estimators are derived under some general assumptions that are described below. From now on,
a.co−→ and a.co stand for almost complete convergence while a.s−→ stands for almost sure conver-
gence.

Throughout this paper, when no confusion will be possible, we will denote by C and C ′ some
strictly positive generic constants. x is a fixed point in F and Nx denotes a fixed neighborhood
of x. We consider SR ⊂ R and SF ⊂ F compact subsets of non empty interior. For r > 0, let
B(x, r) =: {x′ ∈ F/d(x′, x) < r}.

In order to define the strong mixing property, introduce the following notations. Denote by Fk1 the
σ-algebra generated by (X1, Y1), . . . , (Xk, Yk) and F∞k+n that generated by (Xk+n, Yk+n), . . . .

Let’s define, for any n ≥ 1,

α(n) = sup
A∈Fk1

sup
B∈F∞k+n

{|P(A ∩B)− P(A)P(B)|} . (4)

The process (Xn, Yn)n≥1 is said to be strongly mixing if

lim
n→∞

α(n) = 0. (5)

There exists many processes fulfilling the strong mixing property. We quote, here, the usual ARMA
processes which are geometricaly strongly mixing, i.e., there exists ρ ∈ (0, 1) and a > 0 such
that, for any n ≥ 1, α(n) ≤ aρn (see, e.g., Rio (2000) for more detail).

Before giving the main asymptotic result, we need some assumptions.

(H1) Let’s denote by φx(h) = P(X ∈ B(x, h)) = P[X ∈ {x′ ∈ ε; d(x, x′) < h}], and we
suppose that φx(h) is continuous, strictly increasing in a neighborhood of 0 and φx(0) = 0.

(H2) The function Ψ is such that

i) The function Ψ(x, t, σ) is of class C2 on [θx − τ, θx + τ ], τ > 0.
ii) ∀(a1, a2) ∈ [θx − τ, θx + τ ]× [θx − τ, θx + τ ], ∀(x1, x2) ∈ Nx ×Nx,

|Ψ(x1, a1, σ)−Ψ(x2, a2, σ)| ≤ Cdγ1(x1, x2) + |a1 − a2|γ1 , γ1, γ2 > 0.

iii) For each fixed t ∈ [θx − τ, θx + τ ], the function Ψ(x, t, σ) is continuous at the point x.

(H3) i) ψ is a monotone function w.r.t. the second component.

ii) ψ : R → R is an odd, strictly convex and increasing function, continuously differentiable
with bounded derivative ψ, such that ξ(u) = uψ′(u).

iii) For each fixed t ∈ [θx − τ, θx + τ ], E
[
ψ
(
Y−t
σ

)
/X
]
< C <∞, a.s.

4
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(H4) The kernel K is a bounded nonnegative function with support [0,1), such that
|
∫ 1

0
K(u)du| <∞, and satisfies Lipschitz condition of order γ1 > 0,

∃LK <∞, |K(u)−K(v)| ≤ LK |u− v|γ1 ,

and

i) If K(1) = 0, K is a differentiable with derivative K ′ and

−∞ < inf
u∈[0,1]

K ′(u) ≤ sup
u∈[0,1]

K ′(u) = ‖K ′‖∞ < 0.

ii) If K(1) > 0, there exist two real constants C1, C2, 0 < C1 < C2 <∞ such that

0 < C1I[0,1] < K < C2I[0,1] <∞.

(H5) Let SF be a compact of F such that:

i) F (y/X = x) is symmetric around θx.
ii) F (y/X = x) has a unique median m(x).
iii) For each y fixed F (y/X = x) is a uniformly continuous function of x in a neighborhood of

SF .
iv) The following equicontinuity condition holds,

∀ε > 0,∃δ > 0; |u− v| < δ ⇒ sup
x∈SF
|F (u/X = x)− F (v/X = x)| < ε.

(H6) The functions φx and ΓSF are such that:

i) ∃ C > 0 and ∃ η0 > 0 such that for all η < η0, φ
′
x(η) < C. If K(1) = 0, the function φx

satisfy the additional condition:

∃ C > 0, and ∃ η0 > 0, such that ∀ 0 < η < η0

∫ η

0

φx(u)du > Cηφx(η).

ii) For n large enough,

(log(n))2

nφx(h)
< ΓSF

(
log(n)

n

)
<
nφx(h)

log(n)
.

(H7) The sequence h = hn is such that hn → 0,

nφx(hn)→∞ and
nφx(hn)

log(n)
as n→∞.

(H8) i) ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SF × SF ,

|F (y1/X = x1)− F (y2/X = x2)| ≤ C (d(x1, x2)γ1 + C|y1 − y2|γ2) .

ii) The function F (y/X = x) is uniformly Lipschitz in a neighborhood SF ofF , and there exists
a constant C > 0 and γ1 > 0, such that, for x1, x2 ∈ SF ,

sup
y∈R
|F (y/X = x1)− F (y/X = x2)| ≤ Cdγ1(x1, x2).

5
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(H9) The Kolmogov’s ε-entropy of SF , satisfy
∞∑
i=1

n exp

{
(1− β)ΓSF

(
log(n)

n

)}
<∞ for some β > 1. (6)

(H10) The sequence (Xi, Yi)i∈N satisfies:
i) ∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.
ii) {

∀i 6= j,∀t ∈ [θx − τ, θx + τ ] , E
[
ψ
(
Yi−t
σ

)
ψ
(
Yj−t
σ

)
| Xi, Xj

]
≤ C <∞,

P ((Xi, Xj) ∈ B(x, r)×B(x, r)) = ϕx(r) > 0.

iii) There exists η > 0, such that

Cn2(2−a)/(a+1)+η ≤ max
(
φ2
x(r), ϕx(r)

)
≤ n2a/(2−a)p,

where a > max
(

5/2, 4p+1+
√

24p+1
p−1

)
.

The quantity ΓS(ε) = log(Nε(S)), where Nε(S) denote the minimal number of open balls in F of
radius ε which is necessary to cover SF . This concept was introduced by Kolmogorov in the mid-
1950s (see Kolmogorov and Tikhomirov (1959)) and it represents a measure of the complexity of
a set, in sense that, high entropy means that much information is needed to describe an element
with an accuracy ε.

3.1. Uniform strong convergence results

In this section, we will obtain uniform convergence results over compact sets of the regression
estimator θ̂ defined as a solution of Ψ̂(x, t, ŝ(x)) = 0. Theorem 3.1 generalizes the result obtained
in Lemma (6.5) in Ferraty and Vieu (2006). Note that it is the functional version of Theorem (3.1)
in Boente and Fraiman (1991).

Theorem 3.1.

Let SF ⊂ F be a compact set. Assume that (H1), (H4), (H5)iii)iv), (H6) and (H7) holds. Then,
we have that

sup
x∈SF
|F̂ (y/X = x)− F (y/X = x)| a.s→ 0 as n→ 0. (7)

Proof:

The proofs are analogous to the one given in Boente and Vahnovanb (2015). Moreover, to prove
Theorem 3.1 and 3.2, we need to fixing some notation.

Given fixed y ∈ R, we denote by W j
i = I(−∞,y](Yi), and for j = 0, 1,

υ̃j(x) =
1

n

n∑
i=1

W j
i

Ki(x)

EK1(x)
, ∀n ≥ 1, (8)

6
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υj(x) =
1

n

n∑
i=1

W j
i

Ki(x)

φx(h)
, (9)

with

Ki(x) = K

(
d(x,Xi)

h

)
,

hence,

F̂ (y/X = x) =
υ̃1(x)

υ̃0(x)
.

As in Collomb (1982), we have the following bounds:
supx∈SF |F̂ (y|X = x)− F (y|X = x)| ≤ 1

infx∈SF υ̃0(t)
supx∈SF |υ̃1(x)− E(υ̃1(x))|

+
1

inf
x∈SF

υ̃0(t)
sup
x∈SF
|υ̃0(x)− E(υ̃0(x))|

+
1

inf
x∈SF

υ̃0(x)
sup
x∈SF
|E(υ̃1(x))− F (y/X = x)E(υ̃0(x))|.

To prove (7), we need to show that, ∀y ∈ R,

sup
x∈SF
|υ̃j(x)− E(υ̃j(x))| a.co→ 0, (10)

sup
x∈SF
|E(υ̃1(x))− F (y/X = x)E(υ̃0(x))| → 0, (11)

and for some a > 0, we have ∑
n≥1

P
(

inf
x∈SF

υ̃0(x) < a

)
<∞. (12)

Note that Lemmas (4.3) and (4.4) in Ferraty and Vieu (2006), the assumptions (H1), (H4) and
(H6) imply that there exists a constants such that

∀x ∈ SF , ∃ 0 < C < C ′ <∞, Cφx(h) < E [K1(x)] < C ′φx(h). (13)

Then, if C̃ = 1/C, we have

|υ̃j(x)− E(υ̃j(x))| ≤ C̃|υj(x)− E(υj(x))|.

Therefore, to obtain (10), it will be enough to show that

sup
x∈SF
|υj(x)− E(υj(x))| a.co→ 0. (14)

Note that E[υ0(x)] = 1, and using the fact that

inf
x∈SF

υ̃0(x) ≥ inf
x∈SF

E[υ0(x)]− sup
x∈SF
|υ̃0(x)− E[υ̃0(x)]|,

we can deduce (14) and (12) by using the following Lemmas.

7
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Lemma 3.1.

Let, SF ⊂ F , be a compact set of non empty interior. Assume (H1), (H4) and (H6). Then, for
j = 0, 1, we have

a) For any ε > 0,

sup
y∈R

sup
x∈SF

P{|υj(x)− E[υj(x)]| > ε} ≤ C exp

− ε2nφx(h)

2C ′‖K‖2
∞

(
1 + 2ε

C′‖K‖∞

)
+ Cnr−1

(r
ε

)
.

b) For any ε > 0,

P{ sup
x∈SF

P|υj(x)− E[υj(x)]| > ε} ≤ Nρ(SF) exp

(
− ε2nφx(h)

a1(1 + εa2)

)
+ Cnr−1

(r
ε

)
.

c) There exists c > 2 such that, for any ε0 > c and n ≥ n0, we have
supy∈R P

{
θ−1
n supx∈SF P|υj(x)− E[υj(x)]| > ε0

}
≤ exp

(
− ε20

8(1+ε0)
ΓSF

(
log(n)
n

))
+n(log n)−2

(
4C(log n)2

nε

)a+1

.

Proof:

Proof of Part a).
Let’s denote by Zi = W j

i Πi−E(W j
i Πi), where |W j

i | ≤ 1 and Πi = Ki(x)/φx(h), the kernel K is
bounded, and let C1 = ‖K‖∞, such that

Dn(x) = υj(x)− E[υj(x)]. (15)

Thus,

Dn(x) =
1

nφx(h)

n∑
i=1

[
W j
i Ki(x)− E

[
W j
i Ki(x)

]]
, for j = 0, 1.

We have
1

nφx(h)

[
W j
i Ki(x)− E

[
W j
i Ki(x)

]]
≤ 1

nφx(h)
[Ki(x)− E [Ki(x)]] ,

and denote by

∆i(x) =
1

φx(h)
[Ki(x)− E [Ki(x)]] .

We need to evaluate the variance term S2
n(x),

S2
n(x) =

n∑
i=1

n∑
j=1

cov|∆i(x),∆j(x)| =: S2∗
n (x) + nV ar[∆1(x)],

where

S2∗
n (x) =

n∑
i=1

∑
j 6=i

cov|∆i(x),∆j(x)|.

8
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Next, we evaluate the asymptotic behavior of S2∗
n (x).

Following Masry (2005), we define the sets

L1 = {(i, j) such that 1 ≤ |i− j| ≤ mn},
and

L2 = {(i, j) such that mn + 1 ≤ |i− j| ≤ n− 1},
where, mn −→∞, as n→∞ .

Let, E1 and E2 , be the sums of the covariances over L1 and L2 , respectively. Then

S2∗
n (x) =

∑
L1

|cov(∆i(x),∆j(x))|︸ ︷︷ ︸
J1

+
∑
L2

|cov(∆i(x),∆j(x))|︸ ︷︷ ︸
J2

.

We stared by J1,

J1 =
∑

|i−j|≤mn

|cov(∆i(x),∆j(x))|,

where

cov(∆i(x),∆j(x)) =
1

φ2
x(h)

cov(Ki(x)− E[Ki(x)], Kj(x)− E[Kj(x)]).

So

J1 ≤
1

φ2
x(h)

∑
L2

|E[Ki(x)Kj(x)]− E2[K1(x)]|

≤ C̃nmnφx(h)
1−a
a n

−1

a .

For J2, we have

J2 =
∑

|i−j|≥mn

|cov(∆i(x),∆j(x))|.

We use Davydov-Rio’s inequality (Rio (2000), p. 87) for mixing processes, to leads, for all i 6= j ,

cov|∆i(x),∆j(x)| ≤ 4α(|i− j|).
Finally,

J2 ≤ Cn2m−an .

So ∑
i6=j

|cov(∆i(x),∆j(x))| = Cnmnφx(h)
1−a
a n

−1

a + C̃n2m−an .

Choosing mn =
(
φx(h)
n

)− 1

a

, then,

J1 + J2 = Cnφx(h)−
1

an
1

aφx(h)
a+1

a n
−1

a + C̃n2

((
φx(x)

n

)− 1

a

)−a
= Cnφ−1

x (h) +
C̃n

φx(h)
.

9
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Putting C = 2C2/n and C̃ = 4C1ε/nφ
2
x(h), we conclude that

S2
n(x) ≤ 2C2

φx(h)

(
1 +

4εC1/φx(h)

2C2/φx(h)

)
.

Then, applying Fuk-Nagaev’s inequality, (see Ferraty and Vieu (2006), p. 237, Proposition A.11),
we can get

P{|υj(x)− E[υj(x)]| > ε} = P(| 1
n

n∑
i=1

Zi| > ε)

= ≤ C

exp
− ε2nφx(h)

2C2

(
1 + 2ε

C′C1

)
+ nr−1

(r
ε

) .

Proof of Part (b).
Let’s denote by ρ = ρn > 0 a numeric sequence such that, ρn → 0. Consider a covering of SF by

balls of radius ρ , i.e., SF ⊂
l⋃

k=1

B(xk, ρ), where l = Nρ(SF).

Let, Dn(x) = υj(x) − Eυj(x), where υj(x) = (1/n)
n∑
i=1

W j
i Ki(x)/φx(h), and for all x ∈ x ∈

B(xk, ρ), consider

k(x) = arg min
k∈1,2........Nρ(SF )

d(x− xk).

Then,

Dn(x) = D̃n(x) +Dn(xk).

Therefore,

sup
x∈SF
|υj(x)− E [υj(x)] | ≤ max

1≤k≤l
|Dn(xk)|+ max

1≤k≤l
sup

x∈SF∩B(xk,ρ)

|D̃n(x)|,

it entails that

P
(

sup
x∈SF
|υj(x)− E [υj(x)] | > ε

)
≤ λn + δn,

where δn = P
(

max
1≤k≤l

|Dn(xk)| >
ε

2

)
and λn = P

(
max
1≤k≤l

sup
x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
.

Using the obtained result in part a), leads to

λn ≤
l∑

k=1

P
(
|Dn(xk)| >

ε

2

)
≤ l sup

x∈SF
P
(
|Dn(x)| > ε

2

)

≤ l

{
exp

(
− ε2nφx(h)

8C2

(
1 + C3

ε
2

))+ nr−1
(r
ε

)}
,
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where C3 = 2/C ′‖K‖∞ and C2 = C ′‖K‖2
∞.

Then, the proof of the part b) can be obtained by using the following inequality

δn ≤
l∑

k=1

P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
≤ l max

1≤k≤l
P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
.

We consider two cases K(1) = 0 and K(1) > 0.

We begin by K(1) = 0, where K is Lipschitz of order one in [0, 1]. We have that

|D̃n(x)| =

∣∣∣∣∣ 1

nφx(h)

n∑
i=1

(
W j
i Ki(x)−W j

i Ki(xk)
)
− E

[
1

nφx(h)

n∑
i=1

(
W j
i Ki(x)−W j

i Ki(xk)
)]∣∣∣∣∣

≤ 1
nφx(h)

∑n
i=1 {|Ki(x)−Ki(xk)|+ E|Ki(x)−Ki(xk)|} ,

when

1

φx(h)

n∑
i=1

|Ki(xk)−Ki(xk)| =
1

φx(h)

n∑
i=1

|Ki(xk)−Ki(xk)| IB(x,h)∪B(xk,h)(Xi).

Thus, we conclude,

sup
x∈SF∩B(xk,ρ)

|D̃n(x)| ≤ Cρ

hφx(h)
sup
x∈SF

{
1

n

n∑
i=1

IB(xk,h)∪B(xk,h)(Xi) + E(IB(xk,h)∪B(xk,h)(X1))

}

≤ Cρ

hφx(h)
sup
x∈SF

{
1

n

n∑
i=1

IB(xk,h+ρ)(Xi) +
1

n

n∑
i=1

E(IB(xk,h+ρ)(Xi))

}

≤ Cρ

hφx(h)
sup
x∈SF

{
1

n

n∑
i=1

(
IB(xk,h+ρ)(Xi) + EIB(xk,h+ρ)(X1)

)}
. (16)

We denote by Zi = ρ
hφx(h)

IB(xk,h+ρ)(Xi), and suppose that

φx(h+ ρ) ≤ φx(h) + Cρ ≤ 2φx(h). (17)

Therefore,

ρ

hφx(h)

{
1

n

n∑
i=1

IB(xk,h+ρ)(Xi) + E(IB(xk,h+ρ)(Xi))

}
≤ 1

n

n∑
i=1

|Zi − E[Zi]|.

We can deduce that

P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
≤ P

(
1

n

n∑
i=1

|Zi − E[Zi]| >
ε

4C

)
.

Moreover, we apply Fuck-Nagaev’s exponential inequality, (Proposition A.11 in Ferraty and Vieu
(2006)), to get

P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
≤ C(A1(x) + A2(x)), (18)
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where

A1(x) =

(
1 +

ε2

rS2
n

)−r
2

and A2(x) = nr−1
(r
ε

)a+1

. (19)

Firstly, we must calculate the term

S2
n(x) =

n∑
i=1

n∑
j=1

|cov(Λi(x),Λj(x))| = S2∗
n (x) + nV ar(Λ1(x)),

where

S2∗
n =

∑
i6=j

|cov(Λi(x),Λj(x))|,

and Λi = IB(xk,h+ρ)(Xi) + EIB(xk,h+ρ)(X1).

Next, we evaluate the asymptotic behavior of S2∗
n (x).

Following the decomposition used in Masry (2005), we define the sets

F1 = {(i, j) such that 1 ≤ |i− j| ≤ νn},

and

F2 = {(i, j) such that νn + 1 ≤ |i− j| ≤ n− 1},

where νn −→ ∞, as n → ∞ . Let, Γ1 and Γ2, be the sums of covariances over F1 and F2,
respectively.

Hence,

S2∗
n (x) =

∑
F1

|cov(Λi(x),Λj(x))|︸ ︷︷ ︸
Γ1

+
∑
F2

|cov(Λi(x),Λj(x))|︸ ︷︷ ︸
Γ2

.

We stared by evaluate the term Γ1. Note that

cov(Λi(x),Λj(x)) = cov(IB(xk,h+ρ)(Xi) + EIB(xk,h+ρ)(Xj), IB(xk,h+ρ)(Xj) + EIB(xk,h+ρ)(Xj))

= E[IB(xk,h+ρ)(Xi)IB(xk,h+ρ)(Xj)] + E[IB(xk,h+ρ)(Xi)]E[IB(xk,h+ρ)(Xj)].

Thus,

|cov(Λi(x),Λj(x))| ≤ C1E
(
IB(xk,h+ρ)×B(xk,h+ρ)(Xi, Xj)

)
+ C1E[IB(xk,h+ρ)(Xi)]E[IB(xk,h+ρ)(Xj)]

≤ C1P ((Xi, Xj) ∈ B(xk, h+ ρ)×B(xk, h+ ρ))

+C1P (Xi ∈ B(xk, h+ ρ))P (Xj ∈ B(xk, h+ ρ)) .

Under the assumptions (H2), (H4) and (H10− i), we have

Γ1 ≤ Cnνnφx(h+ ρ)

((
φx(h+ ρ)

n

) 1

a

+ φx(h+ ρ)

)
≤ Cnνnφx(h+ ρ)

a+1

a n−
1

a .

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [2020], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol15/iss2/8



858 Attouch et al.

For F2, we can write

Γ2 =
∑
|i−j|≥νn

|cov(Λi(x),Λj(x))|,

by Davydov-Rio’s inequality (Rio (2000), p. 87) for mixing processes, we have, for all i 6= j ,

cov|Λi(x),Λj(x))| ≤ 4α(|i− j|).
Then,

Γ2 = C
∑
|i−j|≥νn

α(|i− j|),

and by α-mixing condition (H10, i), we have∑
Γ2

cov|Λi(x),Λj(x))| ≤ C1n
2α(νn) ≤ C1n

2ν−an .

We put, νn =
(
φx(h+ρ)

n

)−1

a

, we obtain

Γ1 + Γ2 ≤ C̄nφx(h+ ρ)
a+1

a n
1

an
−1

a + Ćn2

((
φx(h+ ρ)

n

)−1

a

)−a
,

where C̄ = C
ρ2

h2nφx(h)2
and Ć =

ρ

nh
ε.

When we replace νn, and we use (17), we can deduce that

Γ1 + Γ2 ≤
ρ2φx(h+ ρ)

h2φx(h)2
+
Cερφx(h+ ρ)

hφx(h)2
≤ C

(
2

ρ2

h2φx(h)
+ 2ε

ρ

hφx(h)

)
.

Finally,

S2
n(x) = O

(
2C

(
ρ2

h2φx(h)
+ ε

ρ

hφx(h)

))
.

We use (19) to conclude that

A1(x) ≤

1 +
ε2

r2Cn
(

2 ρ2

h2φx(h)
+ 2ε ρ

hφx(h)

)
−r

2

≤ exp

− ε2

2C
(

2 ρ2

h2φx(h)
+ 2ε ρ

hφx(h)

)
 .

We put r = (log n)2. Thus,

A2(x) = n(log n)−2

(
(log n)2

ε

)a+1

.

Moreover, we use A1(x) and A2(x), to get

P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
≤ P

(
1

n

n∑
i=1

|Zi − E[Zi]| >
ε

4C

)

≤ exp

(
−ε2nφx(h)

1

32C3
(
2 ρ

2

h2 + ε
2C

ρ
h

))+ n(log n)−2

(
4C(log n)2

nε

)a+1

. (20)
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Then, using the fact that,
ρ

h
→ 0, then, if n ≥ n0, we have

ρ

h
<

(
1

4

)(
1

2 ‖ K ‖∞

)
, and

2ρ2

h2
<

1

4
.

Thus,

32C3

(
2
ρ2

h2
+
εn

2C

ρ

h

)
+ n(log n)−2

(
4C(log n)2

nε

)a+1

≤

8

(
1 + ε

1

‖ K ‖∞

)
+ n(log n)−2

(
4C(log n)2

nε

)a+1

.

Then, the case K(1) = 0 is achieved.

The second case is K(1) > 0. Let’s define

˜̃Dn(x) =
1

n

n∑
i=1

(
W i
j

Ki(x)

φx(h)
−W i

j

Ki(xk)

φx(h)

)
.

Then, |D̃n(x)| ≤ | ˜̃Dn(x)|+E| ˜̃Dn(x)|. As in Lemma 8 of Ferraty et al. (2010), if x ∈ SF∩B(xk, ρ),
we have

| ˜̃Dn(x)| ≤ 1

nφx(h)

{
n∑
i=1

|Ki(x)−Ki(xk)|IB(xk,ρ)∩B(x,ρ)(Xi) +
n∑
i=1

|Ki(x)|IB(xk,ρ)c∩B(x,ρ)(Xi)

+
n∑
i=1

|Ki(x)|IB(xk,ρ)∩B(x,ρ)c(Xi)

}

≤ C
ρ

hφx(h)

1

n

n∑
i=1

IB(xk,ρ)∩B(x,ρ)(Xi)+ ‖ K ‖∞
1

φx(h)

1

n

n∑
i=1

IB(xk,ρ)c∩B(x,ρ)(Xi)

+ ‖ K ‖∞
1

φx(h)

1

n

n∑
i=1

IB(xk,ρ)∩B(x,ρ)c(Xi)

≤ C
ρ

hφx(h)

1

n

n∑
i=1

IB(xk,ρ)(Xi)+ ‖ K ‖∞
1

φx(h)

1

n

n∑
i=1

IB(xk,ρ)c∩B(xk,h+ρ)(Xi)

+ ‖ K ‖∞
1

φx(h)

1

n

n∑
i=1

IB(xk,ρ)∩B(xk,h−ρ)c (Xi) ≤
1

n

n∑
i=1

Zi + Zn,1 + Zn,2,

where Zi is defined in the first case, and Zn,j = 1
n

n∑
i=1

Wi,j where

Wi,1 =‖ K ‖∞
2

φx(h)
IB(xk,ρ)c∩B(xk,h+ρ)(Xi) and Wi,2 = ‖K‖∞

2

φx(h)
IB(xk,ρ)∩B(xk,h−ρ)c(Xi).

Therefore, Wi,j ≤ 2/|K‖∞/φx(h), and let’s consider

Λi,1 =‖ K ‖∞
2

φx(h)

[
IB(xk,ρ)c∩B(xk,h+ρ)(Xi)− E[IB(xk,ρ)c∩B(xk,h+ρ)(Xi)]

]
,
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and

Λi,2 =‖ K ‖∞
2

φx(h)

[
IB(xk,ρ)∩B(xk,h−ρ)c(Xi)− E[IB(xk,ρ)∩B(xk,h−ρ)c(Xi)]

]
.

Thus, for k = 1, 2, we have

S2
ni,k(x) =

n∑
i=1

n∑
j=1

|cov(Λi,k(x),Λj,k(x))| = S2∗
ni,k(x) + nV ar(Λ1(x)) ≤ S2

n(x),

with

S2∗
ni,k =

∑
i6=j

|cov(Λi,k(x),Λj,k(x))|.

Then, we can get

sup
x∈SF∩B(xk,ρ)

˜̃Dn(x) ≤ C

n

n∑
i=1

Zi + Zn,1 + Zn,2.

Notice that,

P

(
sup

x∈SF∩B(xk,ρ)

|D̃n(x)| > ε

2

)
≤ P

(
sup

x∈SF∩B(xk,ρ)

| ˜̃Dn(x)| > ε

4

)

≤ P

(
C

n

n∑
i=1

Zi + Zn,1 + Zn,2 >
ε

4

)
.

Using the result obtained in the case K(1) = 0, we deduce that

P

(
1

n

n∑
i=1

Zi >
ε

8C

)
≤ exp

−ε2nφx(h)
1

128
(

1 + ε 1
16‖K‖∞

)
+n(log n)−2

(
8C(log n)2

nε

)a+1

.

Then, for concluding the proof we use a similar inequality for P(Zn,j >
ε

16
), for j = 1, 2.

We can find the bound of P
(

1
n

∑n
i=1 |Wi,j − E[Wi,j]| > ε

32

)
, for j = 1, 2, by using the Proposition

A.11 in Ferraty and Vieu (2006). If C1 = 4 ‖ K ‖2
∞ and C2 = 4 ‖ K ‖∞, its follows that

P

(
1

n

n∑
i=1

|Wi,j − E[Wi,j]| >
ε

32

)
≤ 2exp

−ε2nφx(h)
1

2048
(
C1

ρ
φx(h)

+ εC2

)


+n(log n)−2

(
4C(log n)2

nε

)a+1

.

Proof of Part c).
The proof is similar to the one given in part b), and then omitted. �

Lemma 3.2.

Let, υ̃j(x) be defined in (8) for j = 0, 1. Under (H1) and (H4), if hn → 0, we have that

15
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a)

sup
y∈R

sup
x∈SF
|E [υ̃1(x)]− F (y/X = x)E [υ̃0(x)]| → 0.

b) If the assumption H8 holds also, we deduce that

sup
y∈R

sup
x∈SF
|E [υ̃1(x)]− F (y/X = x)E [υ̃0(x)]| = O(hη1).

Proof:

Proof of Part b).
Let, Z(x) be a random variable where, Z(x) = d(x,X)/h and PZ(x) his probability function. By
the assumption (H8− ii), and the boundness of K, we get

δ1(x, y) = C

∫
SεF

dγ1(x, u)K

(
d(x, u)

h

)
dPX(u) ≤ Ddγ1

∫
vγ1K(v)dPZ(x)(v)

≤ Ddγ1
∫ 1

0

K(v)dPZ(x)(v) ≤ D1d
γ1φx(h).

Then, for all y ∈ R and x ∈ SF
C1

φx(h)
δ1(x, y) ≤ D1d

γ1φx(h), (21)

which conclude the proof.

The part a) is direct consequence of the result of part b). �

Let, Fn(y/X = x) be a sequence of conditional distribution function verifying

sup
y∈R

sup
x∈SF
|Fn(y/X = x)− F (y/X = x)| → 0. (22)

Then, if F verifies the assumption (H5), there exist a positive constants T1 ≤ T2, such that sn(x) =
MADC(Fn(./X = x)) satisfies

T1 ≤ sn(x) ≤ T2, ∀x ∈ SF , andn > n0.

The proof of this result is analogous to Lemma 3.1 in Boente and Fraiman (1991). Using Lemma
3.1 part b), when ρn = logn

n
, we obtain, for any ε > 0,

P
(

sup
x∈SF
|υj(x)− E [υj(x)] | > ε

)
≤ exp

(
ΓSF (ρn)− ε2nφx(h)

a1(1 + εa2)

)
+ Cnr−1

(r
ε

)

≤ exp

{
−nφx(h)

(
ε2

a1(1 + εa2)
− ΓSF (ρn)

nφx(h)

)}
+ Cnr−1

(r
ε

)
.

On the other hand, H6 ii) implies that, for n > n0,

ΓSF (ρn)

nφx(h)
<

1

2

ε2

a1(1 + εa2)
.
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If we take c = 2a1, we obtain

P
(

sup
x∈SF
|υj(x)− E [υj(x)] |

)
≤ exp

{
−nφx(h)

ε2

c(1 + εa2)

}
+ Cnr−1

(r
ε

)
.

Since, |υ̃j(x)− E [υ̃j(x)] | ≤ C̃|υj(x)− E [υj(x)] |, thus,

P
(

sup
x∈SF
|υ̃j(x)− E [υ̃j(x)] | > C̃ε

)
≤ exp

{
−nφx(h)

ε2

c(1 + εa2)

}
+ Cnr−1

(r
ε

)
.

Then, let A = {infx∈SF υ̃0(x) ≤ 1
2
} and remark that E [υ̃0(x)] = 1, we can deduce that

P(A) ≤ P
(

sup
x∈SF
|υ̃j(x)− E [υ̃j(x)] | > 1

2

)
≤ exp(−Anφx(h)),

where A−1 = 2C̃c(2C̃ + a2).

Therefore, using that
nφx(h)

log(n)
→∞, then supx∈SF |υ̃j(x)− E [υ̃j(x)] | a.co→ 0, for j = 0, 1 and

P
(

inf
x∈SF

υ̃0(x) ≤ 1

2

)
< exp(−Anφx(h)). (23)

This results give the proof of (14), and combined with 3.1.a) and (10), we can deduce that, ∀y ∈ R,

sup
x∈SF
|F̂ (y|X = x)− F (y|X = x)| a.s→ 0. (24)

For each, q ∈ Q, define N = {w ∈ Ω : supx∈SF |F̂ (q/X = x) − F (q/X = x)| 9 0} and
N = ∪q∈QN (q).

Then, (24) implies that P(N ) = 0. Let w ∈ Ω, w ∈ N , then,

sup
x∈SF
|F̂ (q/X = x)− F (q/X = x)| → 0, for all q ∈ Q.

Given ε > 0, by the assumption H5 iii), there exist a, b ∈ Q, such that, F (b/X = x) > 1− ε and
F (a/X = x) < ε, ∀x ∈ SF .

Moreover, the equicontinuity condition of F , given in the hypothesis (H5− iv), entails that there
exist a = y1 < y2 < · · · < yl = b; yi ∈ Q, such that, |F (y/X = x) − F (yi/X = x)| < ε, for
x ∈ SF and for any y.

Let, n0 ∈ N, such that for, n > n0,

max
1≤i≤l

sup
x∈SF
|F̂ (yi/X = x)− F (y/X = x) < ε.

Then, it is easy to see that

max
y∈R

sup
x∈SF
|F̂ (y/X = x)− F (y/X = x) < 2ε, ∀n ≥ n0,

which is the claimed result. �
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3.2. Uniform strong convergence rates

Theorems 3.2 give almost complete convergence rates for the estimators of the empirical condi-
tional distribution and for the local M-estimators of the regression function.

Theorem 3.2.

Let, SF ⊂ F be a compact set. Assume that (H1), (H4), (H5 iii)iv), (H6), (H7), (H8), and (H9)

holds. If γ1 defined in (H8), is such that γ1 <
1
2
, furthermore, assume that,

(
n

log(n)

)1−γ1
φx(h) ≤

C holds. Let θ̂(x) be a robust estimator such that with probability 1, there exists real constants,
0 < T1 < T2, such that, T1 < θ̂(x) < T2, for all x ∈ SF and n > n0.

Then,

sup
x∈SF

sup
y∈R
|θ̂(x)− θ(x)| = Oa.co

(
hη +

√
ΓSF (log(n)/n)

nφx(h)

)
.

Proof:

Suppose that T1 ≤ θ̂ ≤ T2. Thus, for any ε ∈ R,

sup
x∈SF
|Ψ(x, θ(x)+ε, ŝ(x))−Ψ̂(x, θ(x)+ε, ŝ(x))| ≤ 1

T1

‖ψ‖V sup
x∈SF

sup
y∈R
|F (y/X = x)−F̂ (y/X = x)|.

So, if θ̃n = hγ1 +
√

ΓSF (log(n)/n)

nφx(h)
, and for each τ > 0, we have

sup
x∈SF

sup
−τ<ε<τ

|Ψ(x, θ(x) + ε, ŝ(x))− Ψ̂(x, θ(x) + ε, ŝ(x))| = Oa.s(θ̃n).

Then, using the fact that supx∈SF |θ̂(x)− θ(x)| a.s→ 0, we can easily get

sup
x∈SF
|Ψ(x, θ̂(x), ŝ(x))− Ψ̂(x, θ̂(x), ŝ(x))| = Oa.s(θ̃n). (25)

Note that, Ψ(x, θ(x), ŝ(x))−Ψ(x, θ̂(x), ŝ(x))+Ψ(x, θ̂(x), ŝ(x))−Ψ̂(x, θ̂(x), ŝ(x)) = 0 and using
results of (25), we get

sup
x∈SF
|Ψ̂(x, θ(x), ŝ(x))− Ψ̂(x, θ̂(x), ŝ(x))| = Oa.s(θ̃n). (26)

Denote by Ψ′(x, t, σ) = ∂Ψ(x, u, σ)/∂u|u=t. The Mean Value Theorem leads to

Ψ̂(x, θ(x), ŝ(x))− Ψ̂(x, θ̂(x), ŝ(x)) = (θ̂(x)− θ(x))[Ψ(x, ξn, ŝ(x))]), (27)

where ξn(x) ∈ [θ(x), θ̂(x)].

Thanks to assumption (H3− ii), we get

inf
−τ<ε<τ

inf
x∈SF
− ∂

∂u
Ψ(x, θ(x), ŝ(x))|u=a > c0 > 0. (28)

Let N be the set where (26), (28) and supx∈SF |θ̂(x) − θ(x)| −→ 0 hold, then, P(N ) = 0. Since,
for w ∈ N and τ > 0, |ξn − θ(x)| ≤ τ, supx∈SF |Ψ(x, θ(x), ŝ(x))−Ψ(x, θ̂(x), ŝ(x))| = (θ̃n).
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Therefore, we get that

inf
x∈SF
−Ψ′(x, ξn, ŝ(x)) > c0 > 0.

The combination of this result together with (26),(27) and (28) achieves the proof of Theorem
3.2. �

Theorem 3.3.

Let SF ∪ F be a compact set. Assume that (H1), (H4), (H5), (H6), (H7) and (H9) holds.
Moreover, assume that σ and θ are Lipschitz function of order γ1 and γ2 respectively. Then, if
γ = min(γ1, γ2), such that γ > 1, and assume that

h

(
n

log(n)

)1−γ

≤ Cγ for all n ≥ 1 (29)

or

φx(h)

(
n

log(n)

)1−γ

≤ Cγ for all n ≥ 1 for all n ≥ 1 (30)

is fulfilled.

Let, ŝ(x) be a robust scale estimator with probability 1, and θ(x) be the unique solution of
Ψ(x, a, s(x)) = 0. Suppose that exists real constants, 0 < T1 < T2, such that T1 < ŝ(x) < T2 for
all x ∈ SF , and n > n0.

Then, if θ̂(x) is a solution of (3), such that supx∈SF |θ̂(x)− θ(x)| a.so→ 0, we have

supx∈SF |θ̂(x)− θ(x)| = Oa.co

(
hγ +

√
ΓSF (log(n)/n)

nφx(h)

)
.

Proof (Theorem 3.3):

Our goal is to show,

An = sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|Ψ̂(x, θ(x) + ε, σ)−Ψ(x, θ(x) + ε, σ)| = Oa.co(θ̃n).

Let denote

Wi,ε,σ(x) = ψ

(
Yi − θ(x)− ε

σ

)
, υ̃1(x, ε, σ) =

1

n

n∑
i=1

Wi,ε,σ(x)
Ki(x)

EK1(x)
,

and

υ1(x, ε, σ) =
1

n

n∑
i=1

Wi,ε,σ(x)
Ki(x)

φx(h)
.

Since Ψ̂(x, θ(x) + ε, σ) = υ̃1(x, ε, σ)/υ̃0(x), where υ̃0(x) is defined in (10), so

|Ψ̂(x, θ(x) + ε, σ)−Ψ(x, θ(x) + ε, σ)| ≤ 1

infx∈SF υ̃0(x)

[
sup
x∈SF
|υ̃0(x)− Eυ̃0(x)|
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+ sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|υ̃1(x, ε, σ)− Eυ̃1(x, ε, σ)|

+ sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|Eυ̃1(x, ε, σ)−Ψ(x, θ(x) + ε, σ)Eυ̃0(x)|

]
. (31)

By the assumption (H2− ii), and for some constant C > 0, if d(X1, x) < hn < 1, then

sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|Ψ(x1, θ(x) + ε, σ)−Ψ(x, θ(x) + ε, σ)| ≤ C[d(X1, x)γ1 + d(X1, x)γ2 ]

≤ Cd(X1, x)γ,

where γ = min{γ1, γ2}.

Since K1(x) ≤ IB(x,h)(X1), we have, for n large enough,

|Eυ̃1(x, ε, σ)−Ψ(x, θ(x) + ε, σ)Eυ̃0(x)| ≤ E|Ψ(X1, θ(x) + ε, σ)−Ψ(x, θ(x) + ε, σ)| K1(x)

EK1(x)

≤ Chγ.

Therefore, if θ̃n = θn + hγ , then,

B2n = sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|Eυ̃1(x, ε, σ)−Ψ(x, θ(x) + ε, σ)Eυ̃0(x)| ≤ Cθ̃n.

Let An = infx∈SF υ̃0(x) < 1
2

and ε0 > C. Using (31), we conclude that

P(An > 4ε0) ≤ P(An) + P( sup
x∈SF
|υ̃0(x)− Eυ̃0(x)| > ε0θn) + P(B̃1n > ε0θn),

where

B̃1n = sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|υ̃1(x, ε, σ)− Eυ̃1(x, ε, σ)|.

By Lemma 3.1 part b), with ρn = log(n)/n, and using (6), we get∑
n≥1

P(An <∞).

When Lemma 3.1 part c), permit to obtain

P( sup
x∈SF
|υ̃0(x)− Eυ̃0(x)| > ε0θn)) <∞, for ε0 > c.

So, it suffices to show that ∑
n≥1

P(B̃1n > ε0θn) <∞.

Note that P(B̃1n > ε0θn) ≤ P(B1n > ε1θn), where ε1 = ε0C, and

B1n = sup
x∈SF

sup
|ε|<τ

sup
T1<σ<T2

|υ1(x, ε, σ)− Eυ1(x, ε, σ)|.

Therefore, we need to prove that, for some c1 and for some ε1 > c1,
∑

n≥1 P(B1n > ε1θn) <∞.
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Let ρn = log(n)/n and x1, · · · , xl, such that, SF∪ ⊂lj=1 B(xj, ρn), where l = Nρn(SF).

Then, if

Sn(x, ε, σ) = υ1(x, ε, σ)− Eυ1(x, ε, σ) and S̃n,k(x, ε, σ) = Sn(x, ε, σ)− Sn(xk, ε, σ),

we have that

Sn(x, ε, σ) = Sn(xk, ε, σ) + S̃n,k(x, ε, σ),

and

P(B1n > ε1θn) = P(supx∈SF sup|ε|<τ supT1<σ<T2
Sn(x, ε, σ) > ε1θn)

≤ P(sup|ε|<τ supT1<σ<T2
max1≤k≤l |Sn = (xk, ε, σ)| > ε1

2
θn)

+ P(supT1<σ<T2
sup|ε|<τ max1≤k≤l) supx∈B(xk,ρn)∩SF |S̃n,k(x, ε, σ)| > ε1

2
θn).

Note that,

|S̃n,k(x, ε, σ)| ≤ |υ1(x, ε, σ)− υ1(xk, ε, σ)|+ |Eυ1(x, ε, σ)− Eυ1(xk, ε, σ)|.

Then, by Lipschitz condition of ψ, we have

|Wi,ε,σ(x1)−Wi,ε,σ(x2)| ≤ cθ‖ψ′‖∞d(x1, x2)γ1/A,

for all ε and T1 < σ < T2, where cθ stands for the Lipschitz constant of θ.

Therefore, if d(xk, x) ≤ ρn < 1, we have

|υ1(x, ε, σ)−υ1(xk, ε, σ)| ≤ ‖ψ‖∞
1

nφx(h)

n∑
i=1

|Ki(x)−Ki(xk)|+
cθ
T1

‖ψ′‖∞
ρnn

nφx(h)

n∑
i=1

|Ki(xk)|.

Denote by, T̃1 = cθ‖K‖∞‖ψ′‖∞/T1, then

max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

sup
T1<σ<T2

sup
|ε|<τ
|υ1(x, ε, σ)− υ1(xk, ε, σ)| ≤ T̃ v1 max

1≤k≤l

ρnn
nφx(h)

n∑
i=1

IB(xk,ρ)(Xi)

+‖ψ‖∞ max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

1

nφx(h)

n∑
i=1

|Ki(x)−Ki(xk)|. (32)

We consider two situation which that γ ≥ 1 or γ ≤ 1.

i) If γ ≥ 1, we have that ρnn < ρn, so the bound (32), leads to

max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

sup
T1<σ<T2

sup
|ε|<τ
|υ1(x, ε, σ)− υ1(xk, ε, σ)| ≤ T̃1 max

1≤k≤l

ρn
nφx(h)

n∑
i=1

IB(xk,ρ)(Xi)

+‖ψ‖∞ max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

1

nφx(h)

n∑
i=1

|Ki(x)−Ki(xk)|,

since we have that∑
i≥1

P( sup
T1<σ<T2

sup
|ε|<τ

max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

|S̃n,k(x, ε, σ)| > ε1
2
θn) <∞. (33)
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ii) If γ < 1 and (29) holds, taking Cγρn/h < 1, we conclude that

max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

sup
T1<σ<T2

sup
|ε|<τ
|υ1(x, ε, σ)− υ1(xk, ε, σ)| ≤ T̃1Cγ max

1≤k≤l

ρn
nhφx(h)

n∑
i=1

IB(xk,ρ)(Xi)

+‖ψ‖∞ max
1≤k≤l

sup
x∈B(xk,ρn)∩SF

1

nφx(h)

n∑
i=1

|Ki(x)−Ki(xk)|,

then (33) can be deduced from the proof of the Lemma 3.1 part c).

iii) If γ < 1 and (30) holds, the sequence θ−1
n ρnn is bounded. Then, defining

Zi =
ρnn

nφx(h)
IB(xk,ρ)(Xi).

There exist c̃ such that for ε1 > c̃, we can write∑
i≥1

P

(
max
1≤k≤l

ρnn
nφx(h)

n∑
i=1

IB(xk,ρ)(Xi) > ε1
θn
4

)
<∞,

which concludes the proof of (33).

Now, we need to find a bound for χn, where

χn = P

(
sup

T1<σ<T2

sup
|ε|<τ

max
1≤k≤l

|Sn(xk, ε, σ)| > ε1
θn
2

)
.

Let, |ε| ≤ τ , a finite covering by intervals Iεj = [εj, εj+1], when |εj+1−εj| < αn with αn = 1/
√
n.

Then, we have at most M1,αn = 2τα−1
n intervals. On the other hand, considered a covering of

T1 < σ < T2 by intervals Iσj = [σj, σj+1], such that, |σj+1 − σj| < αn, where we have M2,αn =
2(T1 − T2)α−1

n intervals. Thus,

χn ≤ χn,1 + χn,2,

with

χn,1 = P
(

max
1≤s≤M2,αn

max
1≤j≤M1,αn

max
1≤k≤l

|Sn(xk, εj, σs)| > ε1
θn
2

)
, (34)

and

χn,2 = P

(
max

1≤j≤M1,αn

max
1≤k≤l

sup
T1<σ<T2

sup
|ε|<τ
|Sn(xk, εj, σs)− Sn(xk, ε, σ)| > ε1

θn
2

)
. (35)

Since |Wi,ε,σ| ≤ ‖ψ‖∞, similar arguments to those used in Lemma 3.1, we obtain

sup
T1<σ<T2

sup
|ε|<τ

max
1≤k≤l

P
(
|Sn(xk, ε, σ)| > θn

ε1
4

)
≤ exp

{
(1− Cε21)ΓSF

(
log(n)

n

)}
.

Moreover, if C2 = 2τ(T1 − T2), we have that

P
(

max
1≤j≤M1,αn

max
1≤s≤M2,αn

max
1≤k≤l

|Sn(xk, εj, σs)| > θn
ε1
4

)
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≤ 2M1,αnM2,αnMρn(SF) exp

{
−Cε21ΓSF

(
log(n)

n

)}

≤ 2C2α
−2
n exp

{
(1− Cε21)ΓSF

(
log(n)

n

)}
.

Taking ε1 such that (1− Cε21) > 1− β, and αn = 1/
√
n, then

χn,1 ≤ 2C2n exp

{
(1− β)ΓSF

(
log(n)

n

)}
.

The result
∑
n≥1

χn,1 <∞ follows as a direct consequence of (6), for n a large enough.

Concerning ∑
n≥1

χn,2 <∞, (36)

note that, if a ∈ I(a)
j , for all T1 < σ < T2, we have

|υ1(xk, εj, σs)− υ1(xk, ε, σ)| ≤ ‖ψ
′‖∞
T1

αn
nφx(h)

n∑
i=1

Ki(xk).

Then, if σ ∈ I(σ)
s , using that ζ(t) = tψ′(t) is bounded, we obtain

|υ1(xk, εj, σs)− υ1(xk, ε, σ)| ≤ ‖ζ‖∞
T1

αn
nφx(h)

n∑
i=1

Ki(xk).

Consequently,

|υ1(xk, εj, σs)− υ1(xk, ε, σ)| ≤ C3
αn

nφx(h)

n∑
i=1

Ki(xk),

where C3 = (‖ψ′‖∞ + ‖ζ‖∞)/T1.

Noting that (1/nφx(h))
n∑
i=1

Ki(xk) = υ0(xk), we get

|Sn(xk, ε, σ)− Sn(xk, ε, σ)| ≤ |υ1(xk, εj, σs)− υ1(xk, εj, σs)|+ E|υ1(xk, εj, σs)− υ1(xk, εj, σs)|

≤ C3
αn

nφx(h)

n∑
i=1

Ki(xk) + C3
αn
φx(h)

EK1(xk)

≤ C3αn|υ0(xk)− Eυ0(xk)|+ 2C3
αn
φx(h)

EK1(xk).

Using the fact that, EK1(xk) ≤ C ′φx(h), αn = 1/
√
n and θ−1

n αn → 0, then ∃n0, such that, for
n > n0, we have θ−1

n αn ≤ min(1/C3, ε1/(16C ′C3)).

Therefore,

θ−1
n |Sn(xk, ε, σ)− Sn(xk, ε, σ)| ≤ C3θ

−1
n αn|υ0(xk)− Eυ0(xk)|+ 2C ′C3θ

−1
n αn
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Figure 1. The hourly measurements of O3,NO and NO2 concentration for the year 2018

≤ |υ0(xk)− Eυ0(xk)|+
ε1
8
.

Then, the right hand side of the last inequality does not depend of σ and a, so we can write

χn,2 ≤ max
1≤k≤l

P
(
|υ0(xk)− Eυ0(xk)| >

ε1
8

)
.

So, for all ε0 > 0, ∑
n≥1

P
(

sup
x∈SF
|υ0(xk)− Eυ0(xk)| > ε0

)
<∞,

this completes the proof of (36) and therefore, the proof of Theorem 3.3. �

4. Real data applications

The main objective of this part is to evaluate the good behavior of the proposed robust estimator for
two real data applications and to show the efficiency of the robust estimator with unknown scale
parameter compared to the one with fixed scale parameter.

4.1. Maximum Ozone Concentration

This section, we are interested in forecasting maximum values of ozone concentration. The data
consist of hourly measurements of ozone (O3) concentration together with additional chemical
measurements such as NO and NO2 concentrations (µg/m3) (see Figure 1) in Leicester University
monitoring site during the period from January 1st to the 31st December for the year 2018, (365
days). Data are available on the website https://uk-air.defra.gov.uk.

The original time series are:

O3,t, NOt and NO2,t, t = 1, . . . , 8760.
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Figure 2. Prediction of the maximum ozone of the last 64 days by classical and robust regression

To fix the ideas, let’s present the mathematical formulation of our prediction problem. Indeed, as-
sume that we aim to predict the maximum air pollutant (Ozone O3) concentration at day i, denoted
by Y , using the curve of the daily emission of the gases observed the day before i − 1. Formally,
we assume that the output variable Y and the input variables are Z =

(
XO3,i−1

, XNOi−1
, XNO2,i−1

)
is linked by the following regression formula,

Yi = r(Zi) + εi, i = 1, . . . , 364,

is cut into 364 daily curves,

Zi =
{

(O3,24(i−1)+t, NO24(i−1)+t, NO2,24(i−1)+t), t ∈ [ 0, 24 [
}
, i = 1, . . . , 364.

Second, we need to select a suitable semi-metric d(., .), kernel K(.), smoothing parameter hopt for
our estimator. For that purpose, we choose the asymmetrical quadratic kernel defined as K(u) =
3
4

(
12
11
− u2

)
I[0,1](u). According to the general guidelines provided in Ferraty and Vieu (2006), we

suggest to use standard PCA semi-metrics as follows:

dPCA (zi, zj) = dPCA
(
xO3,i

, xO3,j

)
+ dPCA

(
xNOi , xNOj

)
+ dPCA

(
xNO2,i

, xNO2,j

)
.

We choose hopt = arg minhCV (h) for the estimator, where CV (h) =
∑n

i=1

(
Yi − θ̂(−i)(Zi)

)2

,

and θ̂(−i)(z) is the solution at t of:
n∑

j=1,j 6=i

wj(x)ψ

(
Yj − t
σ̂

)
= 0.

Finally, we split our sample of 364 days into a learning sample containing the first 300 days and a
testing sample with the last 64 days. Figure 2 shows the results obtained for the ozone prediction
derived from the testing sample. The left panel represents the prediction under the classical method
(Ferraty and Vieu (2006)). The central group represents the prediction by the robust method with-
out scale parameter introduced by Azzedine et al. (2008), while the right panel shows the forecast
under our model (robust with scale parameter).

The error used is the mean of squared error (MSE), expressed by

MSE =
1

64

364∑
i=301

(
Yi − θ̂(Zi)

)2

.
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Figure 3. Sample of 30 daily temperature curves and the associated energy consumption curves

This is illustrated by the MSE = 3.71488 for the classic method, MSE = 3.5238 for the robust
with fixed scale parameter, and MSE = 3.025231 for our proposed estimator.

Another important point for ensuring a good behavior of our method is to introduce the outliers
in this learning sample. We multiply by 100 the response variable of some observations Y . We
observe that the robust method gives better results than the classical method in the presence of
outliers (MSE for the classic is 67.97584, for the robust is 4.671861 and for the robust with scale
parameter 4.15175).

As we can see, the robust with scale parameter method always gives good behavior in the tow
cases, with and without outlier variables.

4.2. Peak electricity demand

The evolution of peak electricity demand can be considered as an essential system design metric
for grid operators and planners. The peak demand forecasting of aggregated electricity demand has
been widely studied in the statistical literature, and several approaches have been proposed to solve
this issue (see, for instance, Chikobvu and Sigauke (2012) and Goia et al. (2010) for short-term
peak forecasting and Hyndman et al. (2010) for long-term density peak forecasting).

In this subsection, we are interested in the estimation of peak demand at the customer level. For a
fixed day d let us denote by (Ed (tj))j=1,...,24 the hourly measurements for the year 2016 (measured
in MWh), retrieved from the smart metering device of a commercial center type of consumer (a
large hypermarket). We have also acquired a dataset containing the historical hourly meteorological
data regarding the temperature (Td (tj))j=1,...,24 (measured in Celsius degrees). The peak demand
observed for the day d is defined as

Pd = max
j=1,...,24

Ed (tj) .

Figure 3 provides a sample of 30 curves of hourly temperature measures and the associated elec-
tricity consumption curves.

Therefore, our sample is formed as follows (Td, Pd)d=1,...,366 ,where Td is the predicted temperature
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Figure 4. Prediction of the last 66 days by three models

curve for the day d and Pd the peak demand observed for the day d. We split our sample of 366
days into a learning sample containing the first 300 days and a testing sample with the last 66 days.

The choice of the kernel, the semi-metric and the bandwidth are similar to these used in the maxi-
mum ozone application.

Figure 4 shows the results obtained for the peak energy prediction derived from the testing sample
for the three models (classical, robust and robust with scale parameter method). The associated
MSE are 0.00102, 0.00098 and 0.00072, respectively, for each methods.

5. Conclusion

We provide in this paper the uniform almost complete consistency with rates of the robust regres-
sion function in case of unknown scale parameter. These results were obtained under sufficient
standard conditions that allows one to explore different structural axes of the subject, such as the
functional naturalness of the model and the data as well as the robustness of the regression function
and the dependency of the observation. The real data applications (Maximum Ozone Concentra-
tion, Peak electricity demand) have also highlighted several attractive features of the robust regres-
sion with unknown scale parameter estimator. In terms of mean squared error (MSE) the proposed
estimator performs competitively in comparison to existing estimators with know scale parameter.

Based on the experience of this paper on robust regression with unknown scale parameter, we guess
that most of the techniques using nonparametric functional kernel smothers could be efficiently
extended. For instance, challenging open questions in this sense could concern as well extensions
to other forms of nonparametric predictors (like functional local linear ones, functional kNN ones,
and many other ones). Extensions to other kinds of prediction models in which a preliminary
kernel stage plays a crucial role (this would include many semiparametric regression models like
functional single index models, and partial linear models, and many other ones).
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