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Abstract 
 
A new family of inverse probability distributions named inverse Rayleigh family is introduced 
to generate many continuous distributions. The shapes of probability density and hazard rate 
functions are investigated. Some Statistical measures of the new generator including moments, 
quantile and generating functions, entropy measures and order statistics are derived. The 
Estimation of the model parameters is performed by the maximum likelihood estimation 
method. Furthermore, a simulation study is used to estimate the parameters of one of the 
members of the new family. The data application shows that the new family models can be 
useful to provide better fits than other lifetime models.  
 
Keywords:  Inverse Rayleigh distribution; Quantile function; Reliability; Entropy; Mean 

Residual Life, Parameters estimation, Simulation. 
 
MSC 2010 No.: 60E05, 62F10 
 
 
 
1. Introduction 
 
In fact, many classical distributions used for modeling data in several lifetime data analysis. 
Recent developments stress on the definition of the new families of distributions that extend 
most probability distributions and feed enormous flexibility in modeling data. Hence, some 
generated families of distributions have been presented by adding one or more parameters to 
generate new distributions. Eugene et al. (2002) studied beta-G (B-G), Zografos and 
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Balakrishanan (2009) discussed gamma-G and transformed-transformer (T-X) investigated by 
Alzaatreh et al. (2013). Recently, Bourguignon et al. (2014) introduced Weibull-G and Burr 
generalized family of distributions is discussed by Alizadeh et al. (2017), Odd Frѐchet-G 
family by Haq and Elgarhy (2018), generalized odd Burr III family by Haq et al. (2019). 
 
This paper is classified as follows: In Section 1, the inverse Rayleigh generated (IR) family of 
probability distributions is discussed. Three models from our new family are discussed in 
Section 3. In Section 4, some important mathematical formulas of the IR family are derived. 
Distribution of order statistics is deduced in Section 5 and the estimation of the model 
parameters is performed in Section 6. In Section 7, a simulation study is organized to the IR-
W model to evaluate the adequacy of estimates as a member of the newly generated family. In 
Section 8, an application to real data investigates the performance of the new models. Some 
conclusions are introduced in Section 9. 
 
2. The IR Family 
 
In this Section, The IR family is provided. The PDF of the IR family is derived. Additionally, 
reliability, hazard rate, and cumulative hazard rate functions are obtained and studied the 
behaviors and curved shapes of some models from the new family.  
 
The inverse Rayleigh (IR) distribution was presented by Voda (1972), the estimation of 
negative moments to IR distribution investigated by Mohsin and Shahbaz (2005) and different 
methods of estimation have been numerically by Soliman et al. (2010). Recently, Ahmed 
(2014) studied a transmuted inverse Rayleigh distribution, Rehman and Dar (2015) introduced 
exponentiated inverse Rayleigh distribution and Khan and King (2017) suggested transmuted 
new generalized inverse Weibull.  
 
The PDF (t; )r   and cdf (t; )R   of IR distribution with one parameter θ are given by 

 

𝑟(𝑡; 𝜃) = 2𝜃𝑡ିଷ𝑒
ି

ഇ

೟మ ; 𝑡 > 0, 𝜃 ∈ ℝ ,                                                                                (1) 
 

𝑅(𝑡; 𝜃) = 𝑒
ି

ഇ

೟మ .                                                                                                                (2) 
 
The Inverse Rayleigh distribution is used in enormous applications, particularly survival 
analysis and it is a popular model used in economics. Since IR distribution has only one 
parameter and so it does not present extreme flexibility for analyzing different types of lifetime 
data. Our study aims to deduce a new family of distributions using the IR family. 
 
Depending on the transformer (T-X) generator (Alzaatreh et al. (2013)) and by integrating the 
PDF of IR distribution as the following: 
 

𝐹(𝑥; 𝜃, 𝜂) = ∫ 2𝜃𝑥ିଷ𝑒
ି

ഇ

ೣమ

ಸ(ೣ;ആ)

భషಸ(ೣ;ആ)

଴
𝑑𝑡 = 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ},                              (3)

     

then the IR PDF function will be  
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𝑓(𝑥; 𝜃, 𝜂) = 2𝜃
𝑔(𝑥; 𝜂)

𝐺ଶ(𝑥; 𝜂)
([𝐺(𝑥; 𝜂)]ିଵ − 1) 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ} 

; 𝑥 ≥ 0, 𝜃, 𝜂 > 0.                                                                                                             (4) 
 
The reliability function is defined as 
  

𝑆(𝑥; 𝜃, 𝜂) = 1 − 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ}.                                                                               (5) 
 
Also, the hazard rate and cumulative hazard rate functions are 
 

ℎ(𝑥; 𝜃, 𝜂) =
2𝜃

𝑔(𝑥; 𝜂)
𝐺ଶ(𝑥; 𝜂)

([𝐺(𝑥; 𝜂)]ିଵ − 1) 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ}

1 − 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ}
, 

                                                                                              

                                          

(6) 
 

𝐻(𝑥; 𝜃, 𝜂) = − 𝑙𝑛(1 − 𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ}). 
 

3. Special Models  
 
IR-uniform, IR-Weibull, and IR- Fréchet are discussed in this Section as special cases from our 
family. 
 
3.1. IR-Uniform  
 
By taking the baseline distribution is the uniform, then the Probability density function (PDF) 
and hazard rate functions (HRF) of the IR-uniform (IRU) distribution will be 

 

𝑓(𝑥; 𝜃, 𝑏) =
2𝜃𝑏

𝑥ଶ
൬

𝑏

𝑥
− 1൰ 𝑒𝑥𝑝 ቊ−𝜃 ൬

𝑏

𝑥
− 1൰

ଶ

ቋ ; 0 < 𝑥 < 𝑏 < ∞, 𝜃 > 0, 

 

ℎ(𝑥; 𝜃, 𝛼) =

మഇഀ

ೣమ ቀ
ഀ

ೣ
ିଵቁ ௘௫௣൜ିఏቀ

ഀ

ೣ
ିଵቁ

మ
ൠ

ଵି௘௫௣൜ିఏቀ
ഀ

ೣ
ିଵቁ

మ
ൠ

. 

 
 
3.2. IR -Weibull  
 
Replacing the uniform distribution in the previous Section by the Weibull model, then the PDF 
and HRF of IR-Weibull (IRW) are acquired, respectively as 
 

𝑓(𝑥; , 𝜃, 𝜆, 𝛼) = 2𝜃𝜆𝛼𝑥ఈିଵ𝑒ିఒ௫ഀ
(−𝑒ିఒ௫ഀ

)ିଶ ቀ
ଵ

ଵି௘షഊೣഀ − 1ቁ 𝑒𝑥𝑝 ൜−𝜃 ቀ
ଵ

ଵି௘షഊೣഀ − 1ቁ
ଶ

ൠ  

                                                                                                            ; 𝑥 > 0, 𝜃, 𝜆, 𝛼 > 0. 
 

ℎ(𝑥; 𝜃, 𝜆, 𝛼) =
2𝜃𝜆𝛼𝑥ఈିଵ𝑒ିఒ௫ഀ

ቀ
1

1 − 𝑒ିఒ௫ഀ − 1ቁ 𝑒𝑥𝑝 ൜−𝜃 ቀ
1

1 − 𝑒ିఒ௫ഀ − 1ቁ
ଶ

ൠ

൤1 − 𝑒𝑥𝑝 ൜−𝜃 ቀ
1

1 − 𝑒ିఒ௫ഀ − 1ቁ
ଶ

ൠ൨ (1 − 𝑒ିఒ௫ഀ)ଶ

. 
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3.3. IR-Fréchet 
 

Considering the prior distribution is the Fréchet (Fréchet (1927)) as in Sections 2.2 and 2.3, 
the PDF is defined as 
 

𝑓(𝑥; 𝜃, 𝛼, 𝛽) = 2𝜃𝛼ିଷ𝛽ିଷ𝑥ଷ(ఈାଵ)𝑒ଶఉ௫షഀ
൫1

− 𝛼𝛽𝑥ିఈିଵ𝑒ିఉ௫షഀ
൯𝑒𝑥𝑝 ቊ−𝜃 ൬

1

𝛼𝛽𝑥ିఈିଵ𝑒ିఉ௫షഀ − 1൰
ଶ

ቋ ; 0, 𝛼, 𝛽, 𝜃 > 0. 

 
and its HRF is 
 

ℎ(𝑥; 𝜃, 𝛼, 𝛽)

=

2𝜃𝛼ିଷ𝛽ିଷ𝑥ଷ(ఈାଵ)𝑒ଶఉ௫షഀ
൫1 − 𝛼𝛽𝑥ିఈିଵ𝑒ିఉ௫షഀ

൯𝑒𝑥𝑝 ቊ−𝜃 ൬
1

𝛼𝛽𝑥ିఈିଵ𝑒ିఉ௫షഀ − 1൰
ଶ

ቋ

ቈ1 − 𝑒𝑥𝑝 ቊ−𝜃 ൬
1

𝛼𝛽𝑥ିఈିଵ𝑒ିఉ௫షഀ − 1൰
ଶ

ቋ቉

. 

The IRU, IRW and IRF models are illustrated by Figures 1, 2 and 3. 

  
Figure 1: The PDF and HRF of IRU model 

 
 

Figure 2: The PDF and HRF of IRW model 
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Figure 3: The PDF and HRF of IRF model 
 
 
4. Mathematical properties 

 
Some mathematical formulas of IR family are computed in this Section. 
 
4.1. Mathematical Expansions 

 
The PDF, cdf, and reliability are deduced in closed forms in this sub-Section. 
Using the rule of exponential function as a power series 
 

𝑒𝑥𝑝{−𝜃([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ} = ∑
(ିଵ)೔ఏ೔

௜!

∞
௜ୀ଴ ([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ௜.                                      (7)

                                     
The cdf of the IR family can be written as 
 

𝐹(𝑥; 𝜃, 𝜂) = ∑
(ିଵ)೔ఏ೔

௜!

∞
௜ୀ଴ ([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ௜.                                                                         (8)

                                                            
By Substituting from (7) into PDF (4), we can get to 

 

 

𝑓(𝑥; 𝜃, 𝜂) = ∑
ଶ(ିଵ)೔ఏ೔శభ

௜!

∞
௜ୀ଴ ([𝐺(𝑥; 𝜂)]ିଵ − 1)ଶ௜ାଶ ௚(௫;ఎ)

ீమ(௫;ఎ)
; 𝑥 ≥ 0, 𝜃 > 0, 𝜂 > 0.            (9)

                          
By applying the binomial theorem 
 

    
2 22 21

0

2 2
( ; ) 1 ( ; )

ii j

j

i
G x G x

j
 

 



 
   

 
 .                                                                    (10) 

 
Substituting from (10) into (9), the PDF will be 
 

 
2 2

( 2)
,

0 0

( ; , ) ( ; ) ( ; ) ; 0, , 0,
i

j
i j

i j

f x W g x G x x     
 

 

 

  
                                 

              (11) 
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where 
1

,

2 22( 1)
,

!

i i

i j

i
W

ji

   
  

 
also we can rewrite the cdf in (8) as follows 

 

 
2

0 0

2 ( 1)
( ; , ) ( ; ) ,

!

i ii
j

i j

i
F x G x

j i

  




 

  
  

 


                                                                        (12) 
and 

 
2

,
0 0

( ; , ) ( ; )
i

j

i j
i j

F x G x   




 

 ,                                                                                    (13) 

 

where ,

2 ( 1)

!

i i

i j

i

j i


  

  
 

. 

 
By differentiating Equation (13), we obtain 
 

2

, ( )
0 0

( ; , ) ( ; ).
i

i j j
i j

f x h x   



 


                                                                               

(14) 

 
Here, ( ) ( ; )jh x   denotes the PDF of the exponential model with power parameter (-j). Equation 

(14) expresses that the IR density can be written as a mixture of exponential densities. So, 
several mathematical properties of the new family can be obtained based on the properties of 
the exponential distribution. 
 

4.2. The Quantile function and Median  
 
Quantile functions are used to obtain the percentiles of the model. The quantile function of the 
IR family ( )Q u  is computed by inverting Equation (3). 
 
Since  
 

1( ) ( )Q u F u , then 

2
1

1

1 .Gxu e

 

  
    

 
Doing some mathematical simplifications, the previous Equation is 
 

1
2

1

ln(1 u)
1 .Gx




                                                                                                      

(15) 

 
By solving Equation (15) numerically the median (Med=Q(0.5)) of IR family of distributions 
can be accessed as the following; 
 

11

2ln(0.5)
1 .Med




 
       
 
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Example 1.  
 
Consider the IRU distribution discussed in subSection (4.1). The quantile function of IRU is 
 

𝑄(𝑢) = 𝛼 ቆ1 + ቀ
ି ௟௡ ௨

ఏ
ቁ

భ

మ
ቇ

ିଵ

,                                                                                        (16) 

 
and the median is 
 

𝑀𝑒𝑑ூோ௎ = 𝑄(0.5) = 𝛼 ቌ1 + ൬
− 𝑙𝑛 0 . 5

𝜃
൰

ଵ
ଶ

ቍ

ିଵ

. 

 

4.3. Skewness & Kurtosis 
 

Here, skewness and kurtosis measures based on quantile function for the IRU are deduced. 
Kenney and Keeping (1962) presented skewness called Bowley skewness which is 
characterized by the following Equation 
 

3 1 1
2

4 4 4
3 1

4 4

Q Q Q
Sk

Q Q

           
     

      
   

,                                                                                          (17) 

 
and Moors (1988) determined the kurtosis coefficient by the relation 
 

7 5 3 1
8 8 8 8

.
6 2
8 8

Q Q Q Q
Ku

Q Q

                
       

      
   

                                                                               (18) 

 
Considering the IRU distribution in example 1, the skewness and kurtosis of IRU distribution 
can be derived by Substituting from (16) into (17) and (18). 
 
4.4. Moments  
 
Moments are an important technique using to study the most characteristics and statistical 
properties of probability distribution like the measures of tendency and the measure of 
dispersion. The nth moment of IR family about the origin will be deduced. The moments ( n ) 
of random variable X can be acquired from PDF (14) as follows 
 

𝜇௡
′ = 𝐸(𝑥௡) = ∑ ∑ 𝜔௜௝ ∫ 𝑥௡ℎ(ି௝)(𝑥; 𝜂)

∞

଴
ଶ௜ାଶ
௝ୀ଴ 𝑑𝑥∞

௜ୀ଴ , 𝜇௡
′ = 𝜔௜,௝𝜓௜,௝,௡; 𝑛 = 1,2, . . . ,       (19)

                                      
 

and 
 

𝜓௜,௝,௡ = ∑ 𝜔௜,௝ ∫ 𝑥௡∞

଴
ℎ(ି௝)(𝑥; 𝜂)𝑑𝑥∞

௜,௝,ୀ଴ . 

7

Hemeda and ul Haq: The Odd Inverse Rayleigh Family of Distributions

Published by Digital Commons @PVAMU, 2020



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 837 

Specifically, the mean of the IR family is computed as follows: 

 
, , ,1,i j i j     

 
where  
 

, 0

, ,1 ( )

0

( ; )
i j

i j i j jx h x dx  




 
  

 
and the variance is 

  
2

, , ,2 , ,1( ) ,i j i j i j i jVar X           
 
where 
 

 
, 0

2
, ,2 ( )

0

( ; ) .
i j

i j jx h x dx 




    

 
Based on (19) skewness and kurtosis coefficients of IR family are  
 

 
3

3 2 1 1
1 3/22

2 1

3 2
,

   


 

    


 
 

and 

 
2 4

4 3 1 2 1 1
2 22

2 1

4 6 3
.

     


 

       


 
 

 
The moment generating function of the IR family is characterized by 
 

0

( ) .
!

r
n

X
n

t
t

n









  

Using (19) 

 

, ,

1

( ) ; .
!

n
i j i j n

X
n

t
t n = 1,2,3,..

n

 






  

 
Example 2.  
 
Consider the PDF and cdf of IRU distribution that is discussed in sub-Section (4.1). The p-th 

moment of IRU is obtained from (11) as follows 
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22 2
2

,
0 0 0

2 1 ( 1) 1 d ,
i

p
p i j

i j

D x exp j x
x x

   
 



 

             
     

   

 
and 

22 2
3

,
0 0 0

2
2

0

2 exp ( 1) 1

exp ( 1) 1 ,

i
p

p i j
i j

p

D x j dx
x

x j dx
x

   



 


 




            
    

          
     

 


 

 
where  
 

   
1

,

2 22( 1)
.

!

i i

i j

i
D

ji

   
  

 
 

 
The mean and standard deviation of the IR-U distribution could be simply deduced using the 
above Equation. 

 
4.5. Incomplete moments 

 
The incomplete moments,  𝑚௣

ூ (𝑡) of the IR distribution is defined by 

0

( ) .
t

I r
pm t x f(x; )dx   

 
Substituting from Equation (11), then 
 

 
2 2

(j 2)

, 0
0 00

( ) .
t i tI p p

p i j
i j

m t x f(x; )dx D x g(x; ) G(x; ) dx 
 

 

 

     

 
 
Example 3. 
 
The incomplete r-th moment of the IRU distribution that is introduced in sub-Section (4.1) is 
calculated by the following relation 
 

    2 2 22 1 1
,

0 0 0

( ) 2 1 exp ( 1) 1 d
ti

I p
p i j

i j

m t D x x j x x   
 

  

 

     . 

 

4.6. The Residual Lifetime 
 

Hazard rate, mean residual life and left truncated mean are some functions related to the 
residual lifetime of a unit. These functions acquire the cumulative distribution function 𝐹(𝑋) 
(Zoroa et al. (1990)). 
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Let 𝑋 be a random variable alluding to the lifetime of a unit aged 𝑡. Then 𝑋௧  =  𝑋 −  𝑡 | 𝑋 > 
t refers to the remaining lifetime past that age 𝑡. The cdf 𝐹(𝑥) is determined by the r-th moment 
of the residual life of 𝑋 (Navarro et al. (1998)) as follows 
 

 
1

( ; ) ( ) ( ; ) .
1 ( ; )

p
p

t

m t x t f x dx
F t



   
    

 
Specifically, if 𝑟 = 1, then 𝑚ଵ(𝑡) represents the mean residual life (MRL) function that 
demonstrates the expected life time for a unit that is awake at age 𝑡. The MRL function has 
several applications, for examples; in reliability analysis, production technology and quality 
control. 
 
Example 4.  
 
Considering the IRU distribution and using Equation (11) we can compute the p-th moment of 
the residual life of 𝑋 (for  𝑝 = 1, 2 …) as follows 
 

 

    

2 2
(j 2)

,
0 0

2 2 22 1 1
,

0 0 0

( ) ( ; ) ( )

2 ( ) 1 ( 1) 1 d .

i
p p

i j
i jt t

ti
p

i j
i j

x t f x dx W x t g(x; ) G(x; ) dx

W x t x x exp j x x

 

 

   

 
 

 

 
  

 

   

    

 

 
 

 
4.7. Entropies 

 
The entropy of a random variable 𝑋 is the measure the uncertainty (Rényi (1961)). Two types 
of entropy measures; Rényi and 𝑝 entropies are discussed. The Rényi entropy 𝐼ோ௘௡(𝑆) of a 
random variable X is defined as  

Re

0

1
(s) log ( ; 0, 1.

1
s

nI f x)dx s s
s



  
   

 
Based on Equation (11), the Re (s)nI  takes the following form  
 

   
2 2

( 2)

Re ,
0 00

1
(s) log ( ; ) ( ; ) d .

1

i s s js
n i j

i j

I W g x G x x
s

 
  

 

 

 
    

  

 
The p-entropy, say ( )I p , is determined by 

0

1
( ) log 1 ( ; 0, 1.

1
pI p f x)dx p p

p

 
      

  

 
Using Equation (11), 
 

   
2 2

( 2)

,
0 00

1
( ) log 1 ( ; ) ( ; ) .

1

i p p jp
i j

i j

I p W g x G x dx
p

 
  

 

 

 
    

  
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From Equation (5), the p-entropy is obtained as 
 

( 1)( )

0
0

1
( ) log 1 log ( ; ) .

1

p p b bii q p b i p

i

I q b a g(x; ) G(x; ) G x dx
p

   
      



            
  

 
 

4.8. Useful Order statistics  
 
Let X1, X2, ..., Xn be a random sample from IR family and X1:n, X2:n, ..., Xn:n indicate the order 
statistics obtained from the sample. The PDF of Xr:n is obtained through the following  
 

  1

:
0

1
( ; ) ( 1) ( ; ) ( ; ),

( , 1)

n q
q ss

q n
s

n q
f x F x f x

sB q n q


 



 
        

  

 
where, ( , )   . By using Equations (3) and (4), the PDF of q-th order statistic takes the 
following form 
 

  
   

1

: 2
0

21

2 ( ; )
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 








 
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   
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                               (20) 

 
Since, 
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0

( 1) ( )
exp ( ) ( ; ) 1 ( ; ) 1 ,

!
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
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 

  

 
then (20) will be 
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Using the binomial expansion 
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Therefore, 
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 
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and 
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Specifically, the PDF of the smallest and the largest order statistics X1:n  and  Xn:n are gotten 
from (19) by substituting  𝑟 = 1 and  𝑟 = 𝑛. 
  
 
5. Estimation of Parameters 
 
In this Section, the maximum likelihood estimation method are applied for the parameters of 
IR generated family from complete samples. Let 𝑋ଵ , 𝑋ଶ , … , 𝑋௡ be a simple random sample 
from IR family with observed values 𝑥ଵ , 𝑥ଵ , … 𝑥௡. The log-likelihood function of (4) is 
defined as follows 
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Differentiating ( )ln L   with respect to ( ,  ) and equating the result by zero, the maximum 
likelihood estimators (MLEs) will be obtained. 
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By solving the non-linear Equations 0, 0
 
 

 
 
 

 numerically using one of the statistical 

software packages, the MLEs of will be computed. 

 

6. Simulation Technique  
 
A simulation study is conducted by IR-W model in this Section. Samples of sizes n = 50, 100, 
300 are generated from the distribution and MLEs of the parameters are determined. 1000 
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repetitions are applied to compute the mean square error (MSE)  and bias of estimators using 
the following relations; 

𝐵𝑖𝑎𝑠൫𝛿መ൯ =
ଵ

ଵ଴଴଴
∑ ൫𝛿መ − 𝛿൯ଵ଴଴଴

௜ୀଵ  and 𝑀𝑆𝐸൫𝛿መ൯ =
ଵ

ଵ଴଴଴
∑ ൫𝛿መ − 𝛿൯

ଶଵ଴଴଴
௜ୀଵ  for any parameter 𝛿. 

 

Table 1. MLEs, Mean, Bias and MSE of IRW 
n Parameter Mean Bias MSE Mean Bias MSE 

  Set 1-(0.5,0.5,0.5) Set 2-(0.5,1.5,0.5) 

 Θ 0.641515 0.141515 13.08120 0.214455 -0.285545 18.64590 
50 Α 0.509938 0.009938 0.005625 1.530950 0.030953 0.049971 
 Λ 0.521497 0.021497 0.012623 0.541766 0.041766 0.030885 
 Θ 0.543004 0.043004 0.063241 0.559704 0.059704 0.622025 
100 Α 0.505667 0.005666 0.002677 1.516470 0.016468 0.023628 
 Λ 0.509311 0.009311 0.005619 0.518396 0.018396 0.011354 
 Θ 0.510720 0.010720 0.006869 0.516131 0.016131 0.009403 
300 Α 0.502033 0.002033 0.000859 1.50391 0.003911 0.007675 
 Λ 0.502737 0.002737 0.001758 0.505899 0.005899 0.003158 
n Parameter Mean Bias MSE Mean Bias MSE 

  Set 3-(0.5,0.5,1.5) Set 4-(1.5,0.5,0.5) 

 Θ 1.255790 0.755793 3.478940 0.678165 -0.821835 17.78630 
50 Α 0.510197 0.010197 0.005473 0.510478 0.010478 0.005468 
 Λ 0.642117 -0.857883 8.358350 1.565730 1.065730 1.241970 
 Θ 1.522560 1.022560 7.732070 0.543122 -0.956878 1.337380 
100 Α 0.505131 0.005131 0.002567 0.506074 0.006074 0.002585 
 Λ 0.568834 -0.931166 1.566560 1.532040 1.032040 1.115370 
 Θ 1.532910 1.032910 1.128360 0.510828 -0.989172 0.985217 
300 Α 0.501933 0.001933 0.000853 0.502084 0.002084 0.000862 
 Λ 0.518184 -0.981816 0.974280 1.510980 1.010980 1.037740 

 
From Table 1, we notice that: 

 The bias decreases when the sample size increases to the most values and that shows 
the accuracy of the MLEs of IRW distribution. 

 When the sample size 𝑛 increases, the MSE decreases. That investigates consistency of 
the MLEs of the parameters. 

 

7. Data Application  
 
A real data is provided to investigate the applicability of inverse Rayleigh Weibull (IRW) 
model in practice. The IRW distribution will be fitted to real data and the results with 
transmuted Rayleigh (Merovci (2013)); (TR), exponentiated inverse Rayleigh (Rehman et al. 
(2015)); (EIR), inverse Fréchet Weibull (IFW), inverse Weibull (Mahmoud et al. (2003)); 
(IW), transmuted generalized Rayleigh (Merovci (2014)); (TGR) and Kumaraswamy inverse 
Lindley (Sharma et al. (2016)); (KuIL) distributions will be compared. 

The data are 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 
2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 
2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 
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3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 
3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 (see, Bader and Priest (1982)). 

The estimated parameters for each distribution will be obtained using the maximum-likelihood 
method. The values of statistics: (𝐴∗) and (𝑊∗), Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are calculated. In general, according to Akaike (1974), 
the smaller values of these statistics  give better fit to real data. Table 2 shows the maximum 
likelihood estimates (MLEs) of the model parameters and its standard error (S.E) and Table 3 
shows the goodness measures for estimates of the real data. 

 
Table 2. Estimated parameters for the real data 

Models Estimated Parameters 
TR (β, λ) 1.82396 0.9000 - 
EIL(α., θ) 1.96116 1.50033 - 
IFW(α, λ) 175.287 16.811 - 
IW(α, β) 2.72143 5.43377 - 
TGR(α, β, λ) 6.2143 0.5021 0.1207 
IRW(λ,θ, α) 0.312765 8.92154 1.46555 
KuIL(θ, α, β) 0.270381 127.501 59.1817 

 

Table 3. Goodness measures for estimates 
Models AIC BIC -lnL *A  *W  
IRW(λ,θ,α) 119.092 125.521 56.5458 0.37789 0.073435 
TR (β, λ) 155.572 159.858 75.7858 5.41110 0.906164 
EIL(α., θ) 321.923 326.209 158.961 18.2200 3.704280 
IFW(α, λ) 119.450 123.737 57.7252 0.426601 0.078992 
IW(α, β) 121.804 126.091 58.9021 0.622595 0.101452 
TGR(α, β, λ) 122.640 126.926 59.3200 0.38047 0.084888 
KuIL(θ, α, β) 121.864 182.082 57.9320 0.44866 0.095544 

 

Figure 4 shows the estimated density and empirical cdf of the IRW model for the real data. 
Likewise, from Figure 4 one can see that: the IRW model is more applicable to fitting the data. 
Obviously from these figures; the fitted density for the IRW model is closest to the empirical 
cumulative distribution for the real data. 

 
Figure 4. Estimated density and empirical cdf of the IRW model 
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8. Conclusion 
 
A recently generated family of probability distributions called inverse Rayleigh family is 
proposed. Some of its mathematical-statistical properties including an expansion for the density 
function and explicit expressions for moments, moment generating function, Median, quantile 
function, skewness, and kurtosis are derived. The mean residual life and order statistics of the 
new model are derived. The maximum likelihood method of estimation is embedded for 
estimating the model parameters. We utilized a simulation study to evaluate the finite sample 
behavior. Real data is applying to show the convenience of the proposed distribution. The 
inverse Rayleigh Weibull distribution provides enough flexibility for analyzing different types 
of lifetime data than transmuted Rayleigh, exponentiated inverse Rayleigh, inverse Fréchet 
Weibull, inverse Weibull, and transmuted generalized Rayleigh and Kumaraswamy inverse 
Lindley distributions. 
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