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Abstract

Some population is made of n individuals that can be of P possible species (or types) at equilib-
rium. How are individuals scattered among types? We study two random scenarios of such species
abundance distributions. In the first one, each species grows from independent founders according
to a Galton-Watson branching process. When the number of founders P is either fixed or random
(either Poisson or geometrically-distributed), a question raised is: given a population of n individ-
uals as a whole, how does it split into the species types? This model is one pertaining to forests
of Galton-Watson trees. A second scenario that we will address in a similar way deals with forests
of increasing trees. Underlying this setup, the creation/annihilation of clusters (trees) is shown to
result from a recursive nucleation/aggregation process as one additional individual is added to the
total population.

Keywords: Branching processes; Galton-Watson trees; Increasing trees; Poisson and geometric
forests of trees; Combinatorial probability; Canonical and grand-canonical species
abundance distributions; Singularity analysis of large forests
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1. Introduction

In the following, we will make the following tacit identifications. A branching tree is understood
as a branched population of individuals of a given type or species, at equilibrium. The type of a
branching tree is the one carried by its founder. By equilibrium, we mean the steady state after
all productive individuals in the tree have exhausted their lifetimes. The node of a tree is thus an
individual of this population. An internal node is a node (individual) that was once productive. A
leaf is a node (individual) that went sterile. The size of this tree (its total progeny) is the number
of individuals (nodes) constituting this population at equilibrium. We shall consider both Galton-
Watson trees (Harris 1963) and increasing trees (Bergeron at al. 1992) with zero or one lifetimes.

Central to our purpose are also forests of trees. The number of trees in a forest corresponds to the
number of species in a population made of many species. Given a forest (population) with n nodes
(individuals) in total at equilibrium, how many constitutive trees (species) is it made of and what
are their sizes? We shall consider the cases when there are either a fixed number p of species or
when this number is random, say P , with P either Poisson or geometrically distributed. In this
manuscript, we shall consider both forests of Galton-Watson trees and forests of increasing trees.
Species abundance distribution problems of a similar flavor have been addressed in Engen (1974)
and Engen (1978).

We start with Galton-Watson trees with a single founder for which the probability generating func-
tion Φ (z) of the total progeny is given by a functional equation. We compute the probability mass
function of its total progeny when the branching mechanism is either binomial, Poisson or negative
binomial distributed. In the supercritical cases for which there is a chance to observe a giant tree,
an expansion of the extinction probability can be derived from such considerations. When dealing
with Galton-Watson trees forests with a fixed number p of trees, we compute the canonical species
occupancy distributions (with or without repetitions) given n nodes in total in a forest with p trees.
We show that these probability mass functions are explicit in the three examples discussed above,
as well as the typical mass function of each species. For general Galton-Watson trees, only a large
n asymptotic estimate of these probabilities is available, as a result of the probability generating
function Φ (z) of the total progeny having generically a (branch point) power singularity of or-
der −1/2: the probability generating function Φ (z) of the total progeny takes a finite value at its
singularity branch point.

Then, we move to a grand canonical situation when the number of trees P is random, either (a)
Poisson or (b) geometrically distributed. A key issue in this setup is the computation of the joint
probability to observe a forest (population) with p trees (species) and n nodes (individuals) in total.
This allows to compute the conditional probability to observe a forest made of Pn trees, given it
has n nodes in total.

We show that in the Poisson forest case (a), Pn converges in distribution, in the large population
regime n → ∞, to some P∞ which is shifted Poisson distributed. The distribution of the number
of size−m trees are also investigated in this limit.
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766 T. Huillet

When dealing with the geometric forest case (b), we show that a phase transition takes place in
the following sense: in a subcritical regime, Pn converges in distribution, as n → ∞, to some
P∞ which is shifted "squared-geometric" distributed, whereas in a (super-) critical regime, n−1Pn
converges almost surely, as n → ∞, to some fixed fraction. The origin of this critical behavior
results from Φ (z) being finite at its singularity point.

In a second part of this manuscript, we address similar issues when the trees under concern are now
random increasing trees. These are weighted random versions of enumerative increasing trees, first
introduced in Bergeron et al. (1992). Increasing trees are those labeled trees whose nodes are
labeled in increasing order from root to leaves; being more constrained, they are less likely to be
observed than their free Galton-Watson counterparts. The probability generating function Φ (z)
of the total progeny in an increasing tree setup is now amenable to the solution of a nonlinear
differential equation. We compute the probability mass function of its total progeny when the
branching mechanism is either binomial, Poisson or negative binomial distributed, in which cases
the nonlinear differential equation can be solved explicitly. In the first two cases, the (polynomial
and exponential) branching mechanisms have no singularity at finite distance of the origin and
this induces a power singularity of positive order in the first case and logarithmic singularity in
the second case for Φ (z): the probability generating functions of the total progeny diverges at
its induced singularity point located at some finite distance of the origin. In the third negative
binomial case, the branching mechanism has a singularity at finite distance of the origin and this
induces a power singularity of negative order for Φ (z): the probability generating function of the
total progeny is finite at its induced singularity point. In the increasing tree setup, the type of the
singularity of Φ (z) depends on the branching mechanism, in contrast with the universal behavior
(with power singularity of order −1/2) observed for Galton-Watson trees.

When dealing with increasing trees forests with a fixed number p of trees, we can compute the
large n canonical species occupancy distributions (with or without repetitions) given n nodes in
total in a forest with p trees.

When dealing with random forests with P increasing trees, we show that the joint probabilities
to observe a forest (population) with p trees (species) and n nodes (individuals) in total can be
obtained by recurrence when considering the transition from n to n+1. More specifically, suppose
a given population of n individuals that are of p different types. A new individual pops in and
either nucleates (forms a new species by itself) or aggregates q out of the p species to form a new
population with n+1 individuals and p−q+1 species. This scenario of clusters formation indicates
that the creation/deletion of clusters (trees) can be obtained from a recursive nucleation/aggregation
model as one additional individual is added to the total population. It is specific to forests of
increasing trees.

Due to the greatest variability of the singularity type of Φ (z) in the increasing tree context, we
show that:

- for the binomial with degree d branching mechanism: the number Pn of trees in a forest with n
nodes in total grows like n1/d in the Poisson forest case (a), whereas it always grows like n in the
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geometric forest case (b).

- for the Poisson branching mechanism: the number Pn of trees in a forest with n nodes in total
grows like log n in the Poisson forest case (a), whereas it always grows like n in the geometric
forest case (b).

- for the negative binomial branching mechanism: in the Poisson case (a), Pn converges in distri-
bution, as n → ∞, to some P∞ which is shifted Poisson distributed, whereas, when dealing with
the geometric forest case (b), a phase transition takes place: in a subcritical regime, Pn converges
in distribution, as n → ∞, to some P∞ which is shifted ‘squared-geometric’ distributed, whereas
in a (super-) critical regime, n−1Pn converges almost surely, as n → ∞, to some fixed fraction.
This critical behavior also results from Φ (z) being finite at its singularity point in this case.

The main constructive tools are Lagrange inversion formula and asymptotic singularity analysis of
the coefficients of probability generating functions with power-logarithmic singularities of given
orders (see the short Appendix).

2. Forests of Galton-Watson trees

In a discrete Galton-Watson (GW) process, some founder gives birth to a random number M of
offspring at the next generation, each daughter proceeding similarly independently of its sisters,
and so on till some daughter is found sterile. Let then

E
(
zM
)

= φ (z) , (1)

be the branching probability generating function (pgf) of this GW process with φ (0) 6= 0 (non-
extinction possible). We assume φ (with φ (1) = 1) has convergence radius z+ > 1 (possibly
with z+ = ∞) and we let µ = E (M) = φ′ (1) < ∞ and σ2 =Var(M) < ∞. We also let
πk = P (M = k). We avoid the trivial case where φ (z) is an affine function of z. Starting from
a single founder, the birth and death process is iterated indefinitely, ending up in a population
with a total random amount N (1) of descendants (the asymptotic total progeny of founder 1 at
equilibrium). A productive individual in the tree will produce M > 0 offspring at each step,
including itself, meaning that a productive individual passes to the next generation and generates
M − 1 daughters in such a reproduction event. If M = 1, the reproduction event is reduced to
itself in a self-regeneration process. As a result, the only individuals that one "sees" after the whole
lifetime of the tree was exhausted are the leaves (corresponding to nodes at which the death event
M = 0 takes place). Clearly then, denoting Nm (1) the number of nodes of the tree with outdegree
m, the number of leaves N0 (1) with outdegree 0 obey

N0 (1) = 1 +
∑
m≥1

(m− 1)Nm (1) ,

together with of course N (1) =
∑

m≥0Nm (1) .

4
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2.1. GW tree with a single founder and the survival probability (Harris 1963)

The GW process is subcritical if µ < 1, critical if µ = 1 and supercritical if µ > 1. As indicated
above, we let N (1) be the asymptotic total progeny of a single founder at equilibrium. Then,
with πn = P

(
N (1) = n

)
and E

(
zN(1)

)
=
∑

n≥1 πnz
n, the pgf Φ (z) = E

(
zN(1)

)
obeys the

functional equation of a Lagrangian distribution (see Consul and Famoye (2006)),

Φ (z) = zφ (Φ (z)) , with Φ (0) = 0. (2)

We have Φ (1) = P
(
N (1) <∞

)
= ρe, the extinction probability of Nt (1). It obeys

ρe = φ (ρe) , (3)

with ρe = 1 if µ ≤ 1, ρe = 1 − ρe > 0 if µ > 1. If µ < 1, m = EN (1) = 1/ (1− µ) < ∞,
otherwise if µ ≥ 1, m = ∞. In the critical case when µ = 1, N (1) < ∞ with probability 1
but m = EN (1) = ∞ as a result of N (1) displaying heavy tails. In the supercritical case when
µ > 1, m = ∞ because with some positive probability ρe, the tree is a giant tree with infinitely
many nodes or branches (one more node than branches in a tree corresponding to the root).

Whenever one deals with a supercritical situation with ρe = Φ (1) < 1, defining the pgf of Ñ (1) =
N (1) | N (1) <∞ to be

Φ̃ (z) =
Φ (z)− Φ (1)

1− Φ (1)
,

we have

Φ̃ (z) = zφ̃
(

Φ̃ (z)
)

and φ̃ (z) =
φ (z)− ρe

1− ρe
,

where φ̃ (z) is the modified subcritical branching mechanism obeying µ̃ = φ̃′ (1) = φ′ (ρe) < 1.
Conditioning a supercritical tree on being finite is amenable to a subcritical tree problem so with
extinction probability 1. But this requires the computation of ρe which can be quite involved in
general. Indeed however (with [zn] f (z) denoting the coefficient in front of zn in the power-series
expansion of f (z) at 0), by Lagrange inversion formula

πn = [zn] Φ (z) = P
(
N (1) = n

)
=

1

n

[
zn−1

]
φ (z)n , (4)

so that

ρe = P
(
N (1) <∞

)
=
∑
n≥1

P
(
N (1) = n

)
=
∑
m≥0

1

m+ 1
[zm]φ (z)m+1 ,

is the power series expansion of the extinction probability ρe in the supercritical case. There is an
estimate of ρe when the GW process is nearly supercritical (µ slightly above 1). Let ρe = 1 − ρe
be the survival probability and f (z) = φ (z)− z, with

f (1) = 0, f ′ (1) = µ− 1 and f
′′

(1) = E (M (M − 1)) = σ2 + µ2 − µ ∼
µ∼1+

σ2.

We have

ρe = φ (ρe)⇔ f (1− ρe) = 0.
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As a result of

f (1− x) ∼ f (1)− xf ′ (1) +
1

2
x2f

′′
(1) ,

we get the small survival probability estimate ρe ∼ 2 (µ− 1) /σ2 when the GW process is nearly
supercritical. As a function of µ − 1, ρe is continuous at 0 (ρe = 0 if µ − 1 ≤ 0), but with a
discontinuous slope. As µ→∞, clearly ρe → 1.

A full power-series expansion of ρe in terms of µ − 1 > 0 can also be obtained as follows: define
φ (z) by φ (z) = 1 + µ (z − 1) + φ (1− z), so with φ (0) = 0. The equation ρe = φ (ρe) becomes

φ (ρe)

ρe
= µ− 1.

Lagrange inversion formula gives ρe =
∑

n≥1 ρn (µ− 1)n with

ρn =
1

n

[
xn−1

](φ (x)

x2

)−n
.

Note ρ1 = 2/φ′′ (1) with φ′′ (1) ∼ σ2 when µ is slightly above 1. To the first order in µ − 1, we
recover ρe ∼ 2 (µ− 1) /σ2. The second-order coefficient is found to be ρ2 = 4/3 ·φ′′′ (1) /φ′′ (1)3 .
Let us check these formulas on an explicit example.

Example 2.1.

If φ (z) = 1/ (1 + µ (1− z)), with µ > 1, the fixed point ρe = 1/µ is explicitly found. Here
φ (x) /x2 = µ2/ (1 + µx) with ρn = µ−(n+1). Thus, consistently, ρe =

∑
n≥1 ρn (µ− 1)n =

1− 1/µ and, owing to φ′′ (1) = 2µ2 and φ′′′ (1) = 6µ3, ρ2 = µ−3 = 4/3 · φ′′′ (1) /φ′′ (1)3 .

2.2. GW tree with a fixed number p > 1 of founders: canonical species abundance
distributions

Let N (p) = N∞ (p) be now the total progeny of p independent founders, so with E
(
zN(p)

)
=

Φ (z)p . We view the progenies of each of the p founders as the progenies of p distinct species.
Let

(
Nn,p (1) , ..., Nn,p (p)

)
be the vector of the progenies given p distinct species and N (p) = n

individuals in total. Then, with (n1, ..., np) positive integers summing to n,

P
(
Nn,p (1) = n1, ..., Nn,p (p) = np

)
=

∏p
q=1 [z

nq
q ] Φ (zq)

[zn] Φ (z)p
=

∏p
q=1 πnq

P
(
N (p) = n

) , (5)

gives the joint species abundance distribution among types when n and p are fixed. This probability
mass function is exchangeable. The typical one-dimensional marginal distribution in particular
read (n1 ∈ {1, ..., n− p+ 1}):

P
(
Nn,p (1) = n1

)
= [zn1 ]Φ(z)[zn−n1 ]Φ(z)p−1

[zn]Φ(z)p

=
P(N(1)=n1)P(N(p−1)=n−n1)

P(N(p)=n)
,

(6)

clearly with E
(
Nn,p (1)

)
= n/p.
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A second important sampling formula is the following, dealing with repetitions: let
(Pn,p (m) ;m = 1, ..., n) be the number of species with m representatives in a population with
total size n and p distinct species (the number of size−m trees). Then, for all p1, .., pn ≥ 0, non-
negative integers, obeying

∑n−(p−1)
m=1 pm = p,

∑n−(p−1)
m=1 mpm = n (the number of such p’s is the

number of partitions of n into p summands),

P (Pn,p (1) = p1, ..., Pn,p (n) = pn) =

(
p

p1···pn

)∏n
m=1 π

pm
m

[zn] Φ (z)p
. (7)

In all cases, we are left with the problem of computing, say the normalizing denominator of Equa-
tion (7), which can be obtained by Lagrange inversion formula as:

[zn] Φ (z)p = P
(
N (p) = n

)
=
p

n

[
zn−p

]
φ (z)n for all n ≥ p. (8)

Both abundance distributions (5) and (7) are explicit whenever one is able to compute
P
(
N (p) = n

)
= [zn] Φ (z)p for all n, p ≤ n, in particular πm = P

(
N (1) = m

)
= [zm] Φ (z).

This will be the case in the examples of the forthcoming section.

Remark 2.1.

Note in passing that P
(
N (p) <∞

)
= ρe (p) = ρpe. So

P
(
N (p) <∞

)
=
∑
n≥p

P
(
N (p) = n

)
= p

∑
m≥0

1

m+ p
[zm]φ (z)m+p ,

is the power series expansion of the extinction probability ρe (p) of a population with p species in
the supercritical case.

2.3. Three explicit examples

• Let M ∼bin(d, α), α ∈ (0, 1) and d integer ≥ 2, so with

φ (z) = (1− α + αz)d , (9)

with mean µ = dα. By Stirling formula, with n ≥ p, with zc = (d−1)d−1

α(1−α)d−1dd
≥ 1,

P
(
N (p) = n

)
=
p

n

[
zn−p

]
φ (z)n =

p

n

(
nd

n− p

)
αn−p (1− α)n(d−1)+p

∼ 1√
2π

p

n3/2

(
d− 1

d

)−1/2(
1− α

α (d− 1)

)p
z−nc ,

when p is fixed and n → ∞. We note zc = w (µ− 1) /µ, where w (x) = (1 + x/ (1− d))1−d,
w (x) ∼ 1 + x as x → 0+, precising how zc depends on µ − 1. The function zc (µ) attains its
minimum 1 if µ = dα = 1 (α = 1/d). If µ = dα = 1, therefore, (corresponding to the critical
case)

P
(
N (p) = n

)
∼

n→∞

p√
2π (1− α)

n−3/2,

7
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a pure power law (with tail index 1/2) and with no geometric cutoff. The tail exponent being
smaller than one, N (p) has no finite mean as expected. Note that this probability is proportional
to p. Finally,

ρe (p) = P
(
N (p) <∞

)
=
∑

n≥pP
(
N (p) = n

)
=
∑

n≥p
p
n

(
nd
n−p

)
αn−p (1− α)n(d−1)+p

= p (1− α)pd
∑

m≥0
1

m+p

(
(m+p)d
m

) (
α (1− α)d−1

)m
,

is the series expansion of the extinction probability. This probability is 1 if α = αc = 1/d. When
α − αc is small and positive (the just supercritical case), with ρe (p) = 1 − ρe (p): ρe (p) ∼
2p (µ− 1) /σ2. In the present case, ρe (p) ∼ p 2d2

d−1
(α− αc) .

Remark 2.2.

(i) The latter model is related to the Flory-Stockmayer binomial model (randomly branched poly-
mers with degree-(d+ 1) functional monomers, see Flory (1941a), Flory (1941b)), if d = 2, Stock-
mayer (1943) for any integer d and also Simkin and Roychowdhury (2011)): in this model with
one founder p = 1, the Φ (z) obtained above from the bin(d, α) generating model φ is in fact the
pgf of first generation polymers. Here, each monomer with d functional units (arms) is identified
to a node of a Galton-Watson tree. Independently of one another, each of the d functional units has
a probability α to be attached to a second generation functional unit and so on. At generation 0
however, a seed monomer with full d+ 1 functional units gives birth to a random number (so with
distribution bin(d+ 1, α)) of first generation such polymers, all with pgf Φ (z). The true size of
the Flory branched polymer has thus distribution given by the modified pgf

Φ (z)→ z (1− α + αΦ (z))d+1 .

This translates the fact that the seed monomer can have up to d + 1 activated functional units
whereas all its descendants only up to d, the first and subsequent generation trees growing away
from the seed monomer, thereby presenting only d possible free arms. In the supercritical case with
dα > 1, there is a positive probability that the Flory tree (polymer) is a giant one with infinitely
many monomers (the gelation transition).

(ii) With Φ (z) solving Φ (z) = z (1− α + αΦ (z))d and defining

Φd (z) = Φ
(
zd
)1/d

,

we get that Φd (z) solves

Φd (z) = z
(

1− α + αΦd (z)d
)

= zφd (Φd (z)) ,

corresponding to the branching mechanism φd (z) = 1− α+ αzd. So Φd (z) is the pgf of the total
progeny, say Nd (1), of a branching process whose offspring per capita is either d with probability
α or 0 (with probability 1 − α), so all or nothing. We clearly have P

(
Nd (1) = n

)
> 0 only for

those n = md+ 1, m ≥ 0 (the number of tree branches being multiple of d), so Φd

(
z1/d

)
is well-

defined together with Φ (z) = Φd

(
z1/d

)d. We can deduce the main properties of the new model
generated by φd from the previous one generated by the binomial φ.

8
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• Poisson model: M ∼Poi(µ), mean µ > 0. This model occurs in the Press-Schechter description
of gravitational clustering (Sheth (1996)). Consider now the branching mechanism

φ (z) = e−µ(1−z). (10)

This pgf can be obtained while putting α = µ/d and letting d → ∞ in the binomial model φ (the
Poisson limit of the binomial distribution). Here

[zn] Φ (z)p = P
(
N (p) = n

)
=
p

n

[
zn−p

]
e−µn(1−z)

=
p

n

(µn)n−p

(n− p)!
e−µn,

a Borel-Tanner distribution (Borel if p = 1) (see Tanner (1961)). By Stirling expansion, with
n ≥ p:

P
(
N (p) = n

)
∼ p√

2π
µ−p

(
eµ−1

µ

)−n
n−3/2,

which in the critical case µ = 1 reduces to P
(
N (p) = n

)
∼ p√

2π
n−3/2. We note zc = eµ−1/µ =

w (µ− 1) /µ, where w (x) = ex, w (x) ∼ 1 + x as x→ 0.

Remark 2.3.

As an illustration of Equation (6) in this Poisson model context, with n1 ∈ {1, ..., n− p+ 1}:

P
(
Nn,p (1) = n1

)
=

[zn1 ] Φ (z) [zn−n1 ] Φ (z)p−1

[zn] Φ (z)p

=
p− 1

pn1

(
n− p
n1 − 1

)(
n1

n− n1

)n1−1(
n− n1

n

)n−p−1

,

is the typical abundance distribution of species 1.

• Negative binomial model for M : Let (θ, 1/λ) be the shape and scale parameters of a Gamma
random variable on the real half-line. Suppose M is now given as a Gamma(θ, 1/λ)-Poisson
mixture. With λ = α/β, θ > 0, α, β such that α + β = 1 and [θ]k = Γ (θ + k) /Γ (θ) =
θ (θ + 1) ... (θ + k − 1),

φ (z) = (1 + λ (1− z))−θ =
(

1−αz
β

)−θ
,

πk =
[
zk
]
φ (z) = βθ [θ]k z

k
+/k! ∼

k→∞
βθkθ−1zk+/Γ (θ) ,

(11)

where z+ = 1/α. M has mean µ = θλ. When θ = 1, the mixing distribution is Exp(1/λ) dis-
tributed and φ (z) is the pgf of a geometric random variable with success parameter α.

By Stirling formula, with n ≥ p,

P
(
N (p) = n

)
= p

n
[zn−p]φ (z)n = p

n
βnθαn−p

[nθ]n−p
(n−p)!

∼ p√
2π

(α (θ + 1))−p
(
θ+1
θ

)−1/2
(

θθ

αβθ(θ+1)θ+1

)−n
n−3/2.
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We note zc = θθ/
(
αβθ (θ + 1)θ+1

)
= w (µ− 1) /µ,where w (x) = (1 + x/ (θ + 1))θ+1, w (x) ∼

1 + x as x→ 0.

If µ = θλ = θα/β = 1 (critical case)

P
(
N (p) = n

)
∼

n→∞

p√
2π (1 + λ)

n−3/2,

a pure power law with no geometric cutoff. A striking feature is that it has the same shape as in the
binomial case, up to a constant. Consequently,

ρe (p) = P
(
N (p) <∞

)
=
∑

n≥pP
(
N (p) = n

)
= p

αp

∑
n≥p

1
n

(
αβθ

)n [nθ]n−p
(n−p)!

= pβpθ
∑

m≥0
(αβθ)m

m+p

[nθ]
m

m!
,

is the series expansion of the extinction probability. This probability is 1 if θ = β/α (or α =
1/ (1 + θ)) showing that ∑

m≥0

zm

m+ p

[nθ]m
m!

=
1

p (z (1 + θ))p
,

if the latter series converges. Thus, P
(
N (p) <∞

)
= 1 if θ ≤ β/α and if θ > β/α :

P
(
N (p) <∞

)
=

pβpθ

p (αβθ (1 + θ))p
= (α (1 + θ))−p = ρe (p) .

With θc = β/α, if θ − θc is small,

ρe (p) = 1− pα (θ − θc) + pO
(
(θ − θc)2) .

2.4. GW tree with a random number P of founders

So far, we assumed that the number of species p was known. We shall now randomize p, so deal
with a random number P of founders with pgf φ0 (z) = E

(
zP
)
, a classical issue in the grand

canonical ensemble (Demetrius (1983)). We shall assume that P has a finite mean µ0.

Let then N =N∞ (P ) be the total progeny of a population with P founders. We have E
(
zN
)

=
Ψ (z) = φ0 (Φ (z)) and P (N <∞) = φ0 (ρe) . By Lagrange inversion formula,

[zn] Ψ (z) = P (N = n) =
1

n

[
zn−1

]
(φ′0 (z)φ (z)n) . (12)

With π0
m = P (P = m), φ0 (z) =

∑
m≥0 π

0
mz

m entails φ′0 (z) =
∑

m≥1 mπ
0
mz

m−1 =
z−1

∑
m≥1 mπ

0
mz

m = µ0z
−1φ∗0 (z) , where φ∗0 (z) is the pgf of a size-biased version P ∗ of P :

φ∗0 (z) = E
(
zP∗
)

= zφ′0 (z) /µ0.

We let π∗m = mπ0
m/µ0 the probability system of P ∗ ≥ 1. So P (N = 0) = π0

0 and for n ≥ 1,

[zn] Ψ (z) = P (N = n) =
µ0

n
[zn] (φ∗0 (z)φ (z)n) .
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Thus, as required, by the convolution formula and Equation (8),

P (N = n) =
µ0

n

n∑
p=1

π∗p ·
[
zn−p

]
φ (z)n

= µ0

n∑
p=1

π∗p
p
P
(
N (p) = n

)
=

n∑
p=1

π0
pP
(
N (p) = n

)
.

2.5. General GW tree case: back to p = 1

The above three models for φ are some of the rare ones for which πn = P
(
N (1) = n

)
can be

explicitly computed. However, for a general (aperiodic and different from an affine function, see
Remark below) φ obeying: φ has convergence radius z+ > 1 (possibly z+ = ∞) and π0 > 0, a
similar large n estimate can be obtained in general. For such φ’s indeed, the unique positive real
root to the equation

φ (τ)− τφ′ (τ) = 0, (13)

exists, with ρe = 1 < τ < z+ if µ < 1, τ = 1 if µ = 1 and ρe < τ < 1 < z+ if µ > 1.

Remark 2.4.

When φ (z) = α+ αz is affine, the number τ below is rejected at∞ and the following analysis of
the corresponding Φ (z) is invalid. This case deserves a special treatment (see below).

The point (τ, φ (τ)) is indeed the tangency point to the curve φ (z) of a straight line passing through
the origin (0, 0). Let then zc = τ/φ (τ) = 1/φ′ (τ) ≥ 1. The searched Φ (z) solves ψ (Φ (z)) = z,
where ψ (z) = z/φ (z) obeys ψ (τ) = zc, ψ

′ (τ) = 0 and ψ′′ (τ) = − τφ′′(τ)

φ(τ)2
< ∞. Thus, ψ (z) ∼

zc + 1
2
ψ′′ (τ) (z − τ)2 else z ∼ zc + 1

2
ψ′′ (τ) (Φ (z)− τ)2 (a branch-point singularity). It follows

that Φ (z) displays a dominant power-singularity of order −1/2 at zc with Φ (zc) = τ in the sense

Φ (z) ∼
z→zc

τ −

√
2φ (τ)

φ′′ (τ)
(1− z/zc)1/2 . (14)

By singularity analysis therefore (see Flajolet and Odlyzko (1990) and Flajolet and Sedgewick
(1993) and the Appendix),

P
(
N (1) = n

)
= [zn] Φ (z) ∼

n→∞

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc , (15)

to the dominant order in n. When µ = φ′ (1) → 1 (critical case) then both τ and zc → 1 and the
above estimate boils down to a pure power-law with [zn] Φ (z) ∼

n→∞
1√

2πφ′′(1)
n−3/2. It can more

precisely be checked that when |µ− 1| � 1, z−1
c ∼ 1− (µ− 1)2 .

Note finally that with F (λ) = log φ
(
e−λ
)

the log-Laplace transform of M , τ > 0 is also the
solution to F ′ (− log τ) = 1.
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A power-series expansion of τ and zc in terms of the variable µ − 1 can formally be obtained.
Define φ (z) by φ (z) = 1 +µ (z − 1) +φ (1− z), so with φ (0) = 0. With τ = 1− τ , the equation
φ (τ)− τφ′ (τ) = 0 giving τ becomes

δ (τ) = φ (τ) + (1− τ)φ
′
(τ) = µ− 1.

By Lagrange inversion formula, we get:

1/ τ = τ (µ− 1) =
∑

n≥1 τn (µ− 1)n , where

τn =
1

n

[
xn−1

](δ (x)

x

)−n
.

2/ zc = 1/φ′ (1− τ) = z (τ) = zc (µ− 1) =
∑

n≥1 zn (µ− 1)n , where

zn =
1

n

[
xn−1

](
z′ (x)

δ (x)

x

)−n
.

Example 2.2.

Let us briefly work out the explicit geometric case, where φ (z) = β/ (1− αz) , with convergence
radius z+ = 1/α. The rv M has mean µ = α/β and variance σ2 = α/β2 = µ/β.

If µ < 1 (α < 1/2) : ρe = 1 < τ = 1/ (2α) < z+ = 1/α. We have φ (τ) = 2β and zc =
1/ (4αβ) > 1. Note zc < z+.

If µ = 1 (α = 1/2) : ρe = 1 = τ < z+ = 2. We have φ (τ) = 1 and zc = 1.

If µ > 1 (α > 1/2) : ρe = β/α < τ = 1/ (2α) < 1 < z+ = 1/α < 2. We have φ (τ) = 2β and
zc = 1/ (4αβ) > 1. Note zc ≶ z+ if α ≶ 3/4 and ρe = 1/µ with ρe ∼ 2 (µ− 1) /σ2 as µ → 1+

(α→ (1/2)+).

2.5.1. The pure power-law case (geometric tilting)

Define the tilted new pgf Φc (z) = Φ (zzc) /Φ (zc) and let N c (1) be the random variable such
that Φc (z) = E

(
zNc(1)

)
. With φc (z) = zcφ (τz) /τ = φ (τz) /φ (τ) defining a new rescaled

branching pgf, we have

Φc (z) = zφc (Φc (z)) . (16)

Thus, N c (1) is the tree size of a GW process with one single founder when the generating branch-
ing mechanism is φc (z). We note φc (1) = 1, φ′c (1) = zcφ

′ (τ) = 1 (a critical case with extinction
probability ρe,c = 1, the smallest positive root of ρe,c = φc (ρe,c)) and the convergence radius of φc
is z+/τ > 1. As a result, Φc (z) ∼

z→1
1 − τ−1

√
2φ(τ)
φ′′(τ)

(1− z)1/2 , with singularity displaced to the
left at 1, so that

P
(
N c (1) = n

)
= [zn] Φc (z) ∼

n→∞
τ−1

√
φ (τ)

2πφ′′ (τ)
n−3/2. (17)
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The geometric cutoff appearing in the probability mass of N (1) has been removed and we are left
with a pure power-law case. This means that looking at the tree size pgf Φc (z) generated by the
critical branching mechanism φc (z) = zcφ (τz) /τ , Φc (z) exhibits a power-singularity of order
−1/2 at zc = 1 so that the new tree size probability mass has pure power-law tails of order 1/2. In
particular E

(
N c (1)

)
=∞. In the explicit geometric example above, where φ (z) = β/ (1− αz),

it can be checked that φc (z) = 1/ (2− z) ; when dealing with φ (z) = (β/ (1− αz))θ, φc (z) =
(θ/ (θ + 1− z))θ. Similarly, when dealing with the binomial pgf φ (z) = (1− α + αz)d, φc (z) =
(1− 1/d+ z/d)d and when dealing with the Poisson pgf φ (z) = e−µ(1−z), φc (z) = e−(1−z).

Binomial (polynomial) and Poisson (exponential) models are examples of φ having convergence
radius z+ = ∞. For the negative binomial model, φ exhibits a power-singularity of positive order
θ > 0 at z+ = 1/α with 1 < z+ <∞, so with φ (z+) =∞.

Here is now a family of φ’s with a power-singularity of negative order −α, α ∈ (0, 1) . Let α, λ ∈
(0, 1) and z+ > 1. Define the Sibuya pgf (see Sibuya (1979)),

h (z) = 1− λ (1− z/z+)α and φ (z) =
h (z)

h (1)
.

It can be checked that this φ is a proper pgf with convergence radius z+ and which is finite at
z = z+ > 1, with φ (z+) = 1

h(1)
> 1. Note that for k ≥ 1,

πk =
[
zk
]
φ (z) =

λ

h (1)
(−1)k−1

(
α

k

)
zk+ ∼

k→∞

λα

h (1)
k−(α+1)zk+/Γ (1− α) .

The latter singularity expansion of Φ applies to this branching mechanism φ as well.

2.5.2. Number of leaves (sterile individuals)

In the branching population models just discussed it is important to control the number of leaves in
the GW tree with a single founder because leaves are nodes (individuals) of the tree (population)
that gave birth to no offspring (the frontier of the tree as sterile individuals), so responsible of its
extinction. Leaves are nodes with outdegree zero, so let N

0
(1) be the number of leaves in a GW

tree with N (1) nodes. With Φ (z0, z) = E
(
z
N

0
(1)

0 zN(1)
)

the joint pgf of
(
N

0
(1) , N (1)

)
, clearly

solves the functional equation

Φ (z0, z) = z (π0 (z0 − 1) + φ (Φ (z0, z))) . (18)

With N
0

n (1) = N
0

(1) | N (1) = n, we have

E
(
z
N

0

n(1)
0

)
=

[zn] Φ (z0, z)

[zn] Φ (1, z)
,
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where Φ (1, z) = Φ (z). It is shown using this in Drmota (2009) (Th. 3.13, page 84) that, under our
assumptions on φ,

1
n
E
(
N

0

n (1)
)
→
n→∞

m0 = π0

φ(τ)
,

1
n
σ2
(
N

0

n (1)
)
→
n→∞

σ2
0 = π0

φ(τ)
− π2

0

φ(τ)2
− π2

0

τ2φ(τ)2φ′′(τ)
,

N
0

n(1)−m0n
σ0

√
n

d→
n→∞

N (0, 1) .

(19)

As n → ∞, 1
n
N

0

n (1) converges in probability to m0 < 1, the asymptotic fraction of nodes in a
size n tree which are leaves. For the geometrically generated tree with φ (z) = β/ (1− αz), it can
be checked that m0 = 1/2, whereas for the Poisson generated tree with pgf φ (z) = eµ(z−1), m0 =
e−1. For the negative binomial tree generated by φ (z) = (β/ (1− αz))θ, m0 = (θ/ (θ + 1))θ and
for the Flory tree generated by the pgf φ (z) = (1− α + αz)d, m0 = ((d− 1) /d)d .

Almost sure convergence and large deviations: The functional equation solving Φ (z0, z) may
be put under the form

Φ (z0, z) = zφz0 (Φ (z0, z)) ,

where φz0 (z) = π0 (z0 − 1) + φ (Φ (z0, z)), with z0 viewed as a parameter. Let τ (z0) solve
φz0 (τ (z0))− τ (z0)φ′z0 (τ (z0)) = 0, else

π0 (z0 − 1) + φ (τ (z0))− τ (z0)φ′ (τ (z0)) = 0,

with τ (1) = τ . We have ([zn] Φ (1, z))1/n → zc = 1/φ′ (τ) and ([zn] Φ (z0, z))
1/n → zc (z0) =

1/φ′ (τ (z0)), therefore

E
(
z
N

0

n(1)
0

)1/n

=

(
[zn] Φ (z0, z)

[zn] Φ (1, z)

)1/n

→ a (z0) =
φ′ (τ (1))

φ′ (τ (z0))
.

This shows by Gärtner-Ellis theorem (Ellis (1985)), that, for all ρ ∈ (0, 1)

lim
n→∞

1

n
logP

(
1

n
N

0

n (1)→ ρ

)
= f (ρ) ,

where, with F (λ) = log a
(
e−λ
)
, f (ρ) = infλ∈R (ρλ− F (λ)) < 0. The function f is the large

deviation rate function, as the Legendre transform of the concave function F . The value of ρ for
which f (ρ) = 0 is F ′ (0). We conclude that as n→∞

1

n
N

0

n (1)
a.s.→ ρ∗ = F ′ (0) . (20)

Example 2.3.

With φ (z) = β/ (1− αz), τ (z0) =
z0−
√
z0

α(z0−1)
, so with

1/φ′ (τ (z0)) =
1

αβ
(
√
z0 + 1)

−2 and 1/φ′ (τ (1)) =
1

4αβ
,
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leading to α (z0) = 4
(√

z0 + 1
)−2 and F (λ) = log 4 − 2 log

(
1 + e−λ/2

)
with F ′ (0) = 1/2. So

here 1
n
N

0

n (1)
a.s.→ 1/2 (not only in probability). One can check

f (ρ) = − log 4− 2 (ρ log ρ+ (1− ρ) log (1− ρ)) ,

is the Cramér’s large deviation rate function for this example.

2.5.3. Forests of trees: back to a random number P of trees (species)

Let φ0 (z) with µ0 = φ′0 (1) < ∞ be such that Ψ (z) = φ0 (Φ (z)) has itself a dominant power-

singularity at zc of order −1/2, so with Ψ (z) ∼
z→zc

φ0 (τ) + φ′0 (τ)
√

2φ(τ)
φ′′(τ)

(1− z/zc)1/2. Then,

with N the total number of nodes of the forest

P (N = n) = [zn] Ψ (z) ∼
n→∞

φ′0 (τ)

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc .

Note that zc = 1 when τ = 1 and φ′ (1) = 1 in which critical case [zn] Ψ (z) ∼
n→∞

µ0

√
1

2πφ′′(1)
n−3/2. For all branching mechanism φ with convergence radius z+ > 1 and all φ0

such that Ψ (z) = φ0 (Φ (z)) still has a dominant singularity at zc, the law of the size N of the
forest of trees has a power-law factor which is n−3/2, so independent of the model’s details (a uni-
versality property). Note that zc and the scaling constant in front of n−3/2z−nc are model-dependent
though, both requiring the computation of τ .

2.6. Random Poisson or geometric number of founders

Trees are the connected components of some forest. Let Ψ (z) = φ0 (Φ (z)) , where φ0 (z) is either
(a): φ0 (z) = e−µ0(1−z) (Poissonian forest) or (b): φ0 (z) = β0/ (1− α0z) (geometric forest). In
case (a), the total number of nodes (individuals) in the forest (population) has a compound Poisson
(infinitely divisible) distribution, whereas in case (b) this number is compound geometric dis-
tributed (geometrically infinitely divisible). Geometrically infinitely divisible rvs form a subclass
of infinitely divisible rvs (see Aly and Bouzar (2000)).

In the sequel we shall address the following problems under both (a) and (b) forest models:

- given a random forest withy n nodes in total (a population with n individuals in total), how many
trees (species) is it made of?

- given a random forest withy n nodes in total (a population with n individuals in total), what
are the sizes of its constituting trees and how many trees (species) with given size (number of
representatives) are they in the sample?

The answers to these questions follow from the computation of the joint probability
P (N = n, P = p) to observe a forest (population) with p trees (species) and n nodes (individ-
uals).
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2.6.1. The numbers of trees in a random forest with n nodes

Let us distinguish the two cases.

Case (a). With

Φ (z) = E
(
zN(1)

)
, (21)

we let π• = (πn)n≥1, where πn = P
(
N (1) = n

)
. The total size N of the forest is

N =

P (µ0)∑
p=1

N
(p)

(1) , (22)

a compound Poisson random variable involving N
(p)

(1) iid copies of N (1). We have

Ψ (z) = E
(
zN
)

= e−µ0(1−Φ(z)), (23)

and

Ψ (z) = e−µ0(1−Φ(z)) = e−µ0

(
1 +

∑
n≥1

σn (µ0)
zn

n!

)
, (24)

which defines σn (µ0). In the development of Ψ (z), σn (µ0) is a degree-n polynomial in µ0 with

[µp0]σn (µ0) = Bn,p (c•) =
n!

p!
[zn] Φ (z)p ,

known as the “exponential” Bell polynomial in the variables c• = •!π•. We have Bn,p (c•) = 0 if
p > n. With the boundary conditions

Bn,0 (c•) = B0,p (c•) = 0, n, p ≥ 1 and B0,0 (c•) = 1,

we get in particular

Bn,1 (c•) = cn = n!πn and Bn,n (c•) = cn1 = πn1 . (25)

We also have (see Comtet (1970) and Pitman (2006)):

Bn,p (c•) =
∗∑

Ωc• (p1, .., pn) , p ≤ n,

where the latter star-sum is over the integers p1, .., pn ≥ 0 obeying
n∑

m=1

pm = p,

n∑
m=1

mpm = n,

and

Ωc• (p1, .., pn) = n!
n∏

m=1

cpmm
pm!m!pm

= n!
n∏

m=1

πpmm
pm!

. (26)
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Clearly Ωc• (p1, .., pn) are the Boltzmann weights of the forest configurations with n nodes in total,
p constituting trees and pm trees of size m, m = 1, ..., n. We have

Ωc• (p1, .., pn) =
n!

p!

(
p

p1 · · · pn

) n∏
m=1

πpmm ,

and the (canonical) probabilities to observe such configurations are (note their multinomial char-
acter and see Equation (7))

Ωc• (p1, .., pn)

Bn,p (c•)
=

(
p

p1···pn

)∏n
m=1 π

pm
m

[zn] Φ (z)p
.

It also holds that

σn (µ0) =
n∑
p=1

Bn,p (c•)µ
p
0. (27)

We thus have
P (N = n) = [zn] Ψ (z) = e−µ0σn (µ0) ,
P (P = p) = e−µ0µp0/p! (Poisson (µ0) ),

(28)

so that the joint probability of N and P reads

P (N = n, P = p) = e−µ0µp0Bn,p (c•) /n!. (29)

It can be checked as required that:

P (N = n) =
n∑
p=1

P (N = n, P = p) = e−µ0

n∑
p=1

µp0Bn,p (c•) /n! = e−µ0σn (µ0) /n! and

P (P = p) =
∑

n≥pP (N = n, P = p) = e−µ0µp0
∑

n≥pBn,p (c•) /n!

= e−µ0µp0
p!

∑
n≥p [zn] Φ (z)p |z=1= e−µ0µp0

p!
Φ (1)p (Poisson (µ0) ).

Concerning the conditional rvs Pn = (P = p | N = n) and Np = (N = n | P = p)

P (Pn = p) = µp0Bn,p(c•)
σn(µ0)

, p = 1, ..., n,

P (Np = n) = p!Bn,p (c•) /n!, n ≥ p, independent of µ0.
(30)

From the definition of σn (µ0) in Equation (27), we obtain,

E
(
zPn
)

=
σn (zµ0)

σn (µ0)
and E

(
zNp
)

= Φ (z)p . (31)

In particular Np is, as required, the sum of p iid rvs with common pgf Φ (z). We have

[zn] Ψ (z) = e−µ0σn (µ0) /n! ∼
n→∞

φ′0 (τ)

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc .

Owing to φ′0 (τ) = µ0e
µ0(τ−1), then σn (µ0) ∼ n!µ0e

µ0τ
√

φ(τ)
2πφ′′(τ)

n−3/2z−nc and we conclude from
Equation (31) that

E
(
zPn
)

=
σn (zµ0)

σn (µ0)
∼

n→∞
ze−µ0τ(1−z),
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the pgf of a shifted Poisson(µ0τ) rv with mean µ0τ . Thus, given a Poissonian forest with N = n

nodes, the number of GW trees Pn of the forest obeys

Pn
d→

n→∞
1 + Poi (µ0τ) . (32)

Case (b). Assume φ0 (z) = β0/ (1− α0z) (geometric), with µ0 = α0/β0.

Proceeding similarly as in the Poisson case, we have Ψ (z) = β0

(
1 +

∑
n≥1 σn (α0) zn

n!

)
, where

σn (α0) =
∑n

p=1 p!Bn,p (c•)α
p
0. We find

P (N = n, P = p) = β0α
p
0Bn,p (c•) p!/n!,

P (N = n) = β0σn (α0) /n! and P (P = p) = β0α
p
0,

(33)

leading to E
(
zPn
)

= σn(zα0)
σn(α0)

. We have Ψ (z) = β0/ (1− α0Φ (z)) with a singularity at zc (α0)

uniquely defined by Φ (zc (α0)) = 1/α0.

Recalling Φ (z) has a singularity at zc = τ/φ (τ) ≥ 1 with Φ (zc) = τ , three cases arise:

- (subcritical) If zc (α0) > zc, else 1/α0 > τ , then the dominant singularity of Ψ (z) is still at zc,
the singularity of Φ (z) . Then,

[zn] Ψ (z) = β0σn (α0) /n! ∼
n→∞

φ′0 (τ)

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc .

Owing to φ′0 (τ) = α0β0/ (1− α0τ)2 = φ′0 (α0, τ), we conclude

E
(
zPn
)

=
σn (zα0)

σn (α0)
∼

n→∞

φ′0 (α0z, τ)

φ′0 (α0, τ)
= z

(1− α0τ)2

(1− α0τz)2 .

In the pgf at the right-hand-side the factor (1− α0τ)2 / (1− α0τz)2 is the pgf of the sum S of
two independent geometric random variables with same mean α0τ/ (1− α0τ). Thus, provided
1/α0 > τ , given a geometric forest with N = n nodes, the number Pn of its constituting trees
obeys, after shifting by one:

Pn
d→

n→∞
1 + S. (34)

- (supercritical) If zc (α0) < zc, else 1/α0 < τ , then the singularity of Ψ (z) is shifted to the left
of zc, at zc (α0), with Ψ (z) ∼

z→zc(α0)
β0 (1− z/zc (α0))−1. The nature of the singularity of Ψ is

dictated by that of φ0. Thus,

[zn] Ψ (z) = β0σn (α0) /n! ∼
n→∞

β0zc (α0)−n ,

and, with aα0
(z) = zc (α0) /zc (zα0) ,

E
(
zPn
)

=
σn (zα0)

σn (α0)
∼

n→∞
aα0

(z)n ,
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else E
(
zPn
)1/n →

n→∞
aα0

(z). Thus, given a supercritical geometric forest with N = n nodes, the
mean number of its constituting trees Pn grows like n and

1

n
Pn

a.s.→
n→∞

p∗, where p∗ = a′α0
(1) . (35)

Note that zc (α0) can in principle be obtained by Lagrange inversion formula as

zc (α0) =
∑
n≥1

α−n0

n

[
zn−1

](Φ (z)

z

)−n
.

When α0 crosses the critical value 1/τ (µ0 > 1/ (τ − 1)), there is a drastic qualitative change in
the large n behavior of Pn, which is reminiscent of a phase transition.

- (critical) In the critical case 1/α0 = τ , the two singular expansions of Φ (z) and of φ0 (z) at zc
should be composed. With φ0 (z) = (1− 1/τ) / (1− z/τ), and Φ (z) ∼ τ−

√
2φ(τ)
φ′′(τ)

(1− z/zc)1/2,
zc = τ/φ (τ) = 1/ (α0φ (1/α0)) = zc (α0), we get

Ψ (z) ∼ (τ − 1)

√
φ′′ (τ)

2φ (τ)
(1− z/zc)−1/2 ,

and [zn] Ψ (z) = β0σn (α0) /n! ∼
n→∞

(τ − 1)
√

φ′′(τ)
2πφ(τ)

n−1/2z−nc . Thus, E
(
zPn
)1/n →

n→∞
a (z) =

zc(α0)
zc(zα0)

= zφ(1/(α0z))
φ(1/α0)

.

An explicit example: Suppose φ (z) = π0 +π2z
2 (the binary branching mechanism with π0 +π2 =

1). Then,

Φ (z) =
1−
√

1− 4π0π2z2

2π2z
,

with, for each n even, P
(
N (1) = n

)
= 0 and for each n = 2m+ 1, odd:

[zn] Φ (z) = P
(
N (1) = n

)
=

1

n

[
zn−1

]
φ (z)n =

1

n

√
π0

π2

(
n
n−1

2

)
(
√
π0π2)

n
.

The equation Φ (zc (α0)) = 1/α0 yields

zc (α0) =
α0

1− π0 (1− α2
0)
.

On the other hand, τ =
√
π0/π2 leading to zc = 1/

(
2
√
π0π2

)
. Here, zc (α0) > zc if and only if

α0 <
√
π2/π0.

- (supercritical) If zc (α0) < zc (else α0 >
√
π2/π0), then

aα0
(z) =

zc (α0)

zc (zα0)
=

1− π0

(
1− (zα0)2)

z (1− π0 (1− α2
0))

,

with a′α0
(1) = (π0α

2
0 − (1− π0)) / (1− π0 (1− α2

0)) ∈ (0, 1).
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- (critical) If zc (α0) = zc (else α0 =
√
π2/π0), then

a (z) =
zc (α0)

zc (zα0)
=
zφ (1/ (α0z))

φ (1/α0)
=
z + z−1

2
= cosh (log z) .

2.6.2. Trees’ sizes in a random forest with n nodes

Introduce

Φµ (z) =
∑
n≥1

µnπnz
n,

where the µn’s marks the size-n trees. Note Φµ (z) = Φ (z) +
∑

n≥1 (µn − 1) πnz
n.

Case (a).

As above, µ0 will mark the number of trees in the forest.

With P = (P1, ..., Pm, ...) the vector of size-m trees satisfying P =
∑

m≥1 Pm and N =∑
m≥1 mPm, we have,

Ψ (z, µ) = E
(
zNµP

)
= e−µ0(1−Φµ(z)), (36)

and, upon introducing σn (µ0, µ)

Ψ (z, µ) = e−µ0

(
1 +

∑
n≥1

σn (µ0, µ)
zn

n!

)
. (37)

Note that, as required:

If µn = µn, Φµ (z) = Φ (µz) and Ψ (z, µ) = E
(
zNµ

∑
m≥1

mPm
)

= E
(

(zµ)N
)
.

If µn = µ, Φµ (z) = µΦ (z) and Ψ (z, µ) = E
(
zNµ

∑
m≥1 Pm

)
= E

(
zNµP

)
.

In the development of Ψ (z, µ), σn (µ0, µ) is a degree-n polynomial in µ0 with [µp0]σn (µ0, µ) =
Bn,p ((µc)•), the exponential Bell polynomial now in the variables

(µc)• = µ••!π• = µ•c• with c• = (1c)• = •!π•.

We have Bn,p ((µc)•) = 0 if p > n and (see Comtet (1970) and Pitman (2006)):

Bn,p ((µc)•) =
∗∑

Ω(µc)•
(p1, .., pn) , p ≤ n,

where the latter star-sum is over the integers p1, .., pn ≥ 0 obeying
n∑

m=1

pm = p,

n∑
m=1

mpm = n,
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and

Ω(µc)•
(p1, .., pn) = n!

n∏
m=1

πpmm
pm!

µpmm . (38)

Then,

σn (µ0, µ) =
n∑
p=1

Bn,p ((µc)•)µ
p
0, (39)

where Bn,p ((µc)•) = n!
p!

[zn] Φµ (z)p . From the definition of σn (µ0, µ) in Equation (39), with
Pn = (P1, ..., Pn | N = n), we obtain,

E
(
zPnµPn

)
=
σn (zµ0, µ)

σn (µ0,1)
and E

(
µPn

)
=
σn (µ0, µ)

σn (µ0,1)
. (40)

Remark 2.5.

Defining Pn,p = (P1, ..., Pn | N = n, P = p), the tree sizes when both n and p are held fixed

E
(
µPn,p

)
=

[µp0]σn (µ0, µ)

[µp0]σn (µ0,1)
=
Bn,p ((µc)•)

Bn,p (c•)
, (41)

consistently with Equation (7).

With τ (µ) = τ +
∑

n≥1 (µn − 1) πnz
n
c , we have

Φµ (z) = Φ (z) +
∑
n≥1

(µn − 1) πnz
n ∼
z→zc

τ (µ) +

√
φ (τ)

2πφ′′ (τ)
(1− z/zc)1/2 ,

so that

[zn] Ψ (z, µ) = e−µ0σn (µ0, µ) /n! ∼
n→∞

φ′0 (τ (µ))

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc .

Owing to φ′0 (τ) = µ0e
µ0(τ−1) = φ′0 (µ0, τ) and observing τ (1) = τ , we conclude

E
(
zPnµPn

)
= σn(zµ0,µ)

σn(µ0,1)
∼

n→∞
eµ0(z−1) φ

′
0(zµ0,τ(µ))
φ′0(µ0τ)

= eµ0(z−1) µ0zeµ0z(τ(µ)−1)

µ0eµ0(τ(1)−1)

= zeµ0(zτ(µ)−τ) = zeµ0τ(z−1)eµ0z(τ(µ)−τ) = zeµ0τ(z−1)
∏n

m=1 e
µ0z(µm−1)πmzmc .

(42)

In particular (z = 1),

E
(
µPn

)
∼

n∏
m=1

eµ0(µm−1)πmzmc and E
(
µPn(m)
m

)
∼ e−µ0πmzmc (1−µm). (43)

This means that given a Poissonian forest with N = n nodes, the numbers of its size-m trees
Pn (m), m = 1, ..., n, are asymptotically independent. Furthermore, for each m = 1, ..., n, Pn (m)
obeys

Pn (m)
d→

n→∞
Poi (µ0πmz

m
c ) , (44)
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a Poisson rv with mean λm = µ0πmz
m
c . When m is large close to n, recalling πm =

P
(
N (1) = m

)
∼

m→∞

√
φ(τ)

2πφ′′(τ)
m−3/2z−mc , the mean value λm approaches µ0

√
φ(τ)

2πφ′′(τ)
m−3/2 so

that the larger m, the smaller λm. Of concrete interest is also the probability that there are no
size-m trees in the Poissonian forest. This event occurs with probability exp (−µ0πmz

m
c ) and it

approaches 1 when m is large close to n. Large size-m trees have a small average size λm because
with a large probability they are not there.

Case (b). Recalling Φ (z) has a singularity at zc = τ/φ (τ) ≥ 1 with Φ (zc) = τ , three cases arise:

- (subcritical) If zc (α0) > zc, else 1/α0 > τ , then the singularity of Ψ (z) is still at zc, the singu-
larity of Φ (z) . Then,

[zn] Ψ (z, µ) = β0σn (α0, µ) /n! ∼
n→∞

φ′0 (τ (µ))

√
φ (τ)

2πφ′′ (τ)
n−3/2z−nc .

Owing to φ′0 (τ) = α0β0/ (1− α0τ)2 = φ′0 (α0, τ), we conclude

E
(
zPnµPn

)
=
σn (zα0, µ)

σn (α0,1)
∼

n→∞

φ′0 (zα0, τ (µ))

φ′0 (α0τ)
= z

(1− α0τ)2

(1− α0zτ (µ))2 .

Putting µ = 1, τ (µ) = τ which yields back E
(
zPn
)

= z (1− α0τ)2 / (1− α0zτ)2. Putting z = 1
and µn = 1 except for µm :

E
(
µPn(m)
m

)
∼ (1− α0τ)2

(1− α0 (τ + (µm − 1) πmzmc ))2 =
1(

1 + α0πmzmc
1−α0τ

(1− µm)
)2 .

The pgf at the right-hand-side is the one of the sum Sm of two independent geometric random
variables with mean α0πmz

m
c / (1− α0τ). Thus, provided 1/α0 > τ , given a geometric forest with

N = n nodes, the number Pn (m) of its size-m trees obeys:

Pn (m)
d→

n→∞
Sm. (45)

Note that E
(
µPn

)
6=
∏n

m=1 E
(
µ
Pn(m)
m

)
so that the Pn (m), m = 1, ..., n, are no longer asymptot-

ically independent.

- (supercritical) With Φµ (z) = Φ (z) +
∑

n≥1 (µn − 1)πnz
n, we have Ψ (z, µ) =

β0/ (1− α0Φµ (z)) with a singularity at zc (α0, µ) uniquely defined by Φµ (zc (α0, µ)) = 1/α0.

Φµ (z) has a singularity at zc ≥ 1 with Φµ (zc) = τ (µ) = τ +
∑

n≥1 (µn − 1) πnz
n
c < ∞. If

zc (α0, µ) < zc, else 1/α0 < τ (µ), then the singularity of Ψ (z, µ) is shifted to the left of zc, at
zc (α0, µ), with Ψ (z, µ) ∼ β0 (1− z/zc (α0, µ))−1 as z → zc (α0, µ). The nature of its singularity
is dictated by that of φ0. Thus,

[zn] Ψ (z, µ) = β0σn (α0, µ) /n! ∼
n→∞

β0zc (α0, µ)−n ,
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and, with aα0
(z, µ) = zc (α0,1) /zc (zα0, µ)

E
(
zPnµPn

)
=
σn (zα0, µ)

σn (α0,1)
∼

n→∞
aα0

(z, µ)n .

This means that E
(
zPnµPn

)1/n →
n→∞

aα0
(z, µ) and E

(
µPn

)1/n →
n→∞

aα0
(µ) =

zc (α0,1) /zc (α0, µ). Thus, given a supercritical geometric forest with N = n nodes, the num-
bers of its size-m trees Pn = (Pn (m) ,m = 1, ..., n) grows like n and 1

n
Pn →

n→∞
p∗ a.s., where

p∗ = ∇µaα0
(1) .

2.7. Relation to enumerative combinatorics

In this section, we emphasize that the probabilistic formulation of GW trees is intimately related
to the one arising in enumerative combinatorics.

Let g (θ) = 1/ (1− θ) and consider the solution of the functional equation

t (θ) = θg (t (θ)) , t (0) = 0,

namely t (θ) =
(
1−
√

1− 4θ
)
/2. The numbers

tn = n! [θn] t (θ) =
n!

n

[
θn−1

]
g (θ)n =

(2n− 2)!

(n− 1)!
,

constitute the number of all rooted plane (ordered) trees with n labeled nodes, known as Catalan
numbers (Comtet (1970)).

Let g (θ) = 1 +
∑

k≥1 gkθ
k, where gk ≥ 0 (and gk > 0 for at least some k ≥ 2) now constitute a

system of weights. Consider now

t (θ) = θg (t (θ)) , t (0) = 0 with t (θ) =
∑
n≥1

tn
n!
θn.

Let Pn be the set of all rooted ordered trees with n labeled nodes. With Nk (τn) the number of
nodes in τn ∈ Pn with outdegree k, we now have

tn = n! [θn] t (θ) =
∑
τn∈Pn

n−1∏
k=0

g
Nk(τn)
k .

For all θ such that t (θ) <∞, with N (1) = |τn|, we can define

P
(
N (1) = n

)
=

θn [θn] t (θ)∑
n≥1 θ

n [θn] t (θ)
=
θn [θn] t (θ)

t (θ)
,

the exponentially-tilted probability to draw a rooted ordered tree of size n. We have

Φ (z) = E
(
zN(1)

)
=
∑
n≥1

znP
(
N (1) = n

)
=

∑
n≥1 z

nθn [θn] t (θ)

t (θ)
=
t (θz)

t (θ)
,
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where Φ (z) (obeying Φ (1) = 1 as in a subcritical case) solves

Φ (z) = zφθ (Φ (z)) , Φ (0) = 0.

Here φθ (z) = g (t (θ) z) /g (t (θ)) is a branching pgf for all values of θ for which g (t (θ)) =
t (θ) /θ < ∞, coinciding with the ones for which t (θ) < ∞, namely θ ∈ (0, θc) , where
θc = inf (θ > 0 : t (θ) =∞) ≤ ∞. It has mean µθ = φ′θ (1) = t (θ) g′ (t (θ)) /g (t (θ)) =
t log g (t)′ |t=t(θ)< 1. Note that mθ = Φ′ (1) = E

(
N (1)

)
is the mean value of N (1) and there is a

one-to-one Legendre-like correspondence between θ and mθ = 1/ (1− µθ) > 0.

Remark 2.6.

- It can be checked that the probability sequence πn = P
(
N (1) = n

)
minimizes the Kullback-

Leibler divergence of θn = [θn] t (θ) = tn/n! with respect to πn, viz

K ({πn} ‖ {θn}) =
∑
n≥1

πn log

(
πn
θn

)
,

under the constraints
∑

n≥1 πn = 1 and
∑

n≥1 nπn = m. Indeed, using Lagrange multipliers

πn =
tnθ

n

t (θ)
,

where θ and m are related by mθ = θt′ (θ) /t (θ) = 1/ (1− µθ) where µθ = φ′θ (1) =
t (θ) g′ (t (θ)) /g (t (θ)) = θg′ (t (θ)) .

- So far we dealt with a single tree generating function t (θ). While considering the generating
functions

(a) eγt(θ),
(b) 1/ (1− γt (θ)) ,

we deal with forests with γ marking the number of its constituting trees. In case (a) the labeled
trees are unordered (indistinguishable) while in case (b) they are ordered (distinguishable). This is
why in the probabilistic setup we considered (a) Poissonian forests and (b) geometric forests (see
Sheth (1996) and Pitman (1998)).

3. Forests of rooted labeled ordered and increasing trees

3.1. Combinatorial increasing trees

We start with the notion of increasing trees first introduced in Bergeron et al. (1992).

Let g (θ) = 1/ (1− θ) and consider the solution to the ordinary differential equation

t′ (θ) = g (t (θ)) , t (0) = 0,

namely t (θ) = 1−
√

1− 2θ. The numbers

tn = n! [θn] t (θ) = (2n− 3)!! = 2−(n−1) (2n− 2)!

(n− 1)!
,
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constitute the number of all rooted plane (ordered) increasing trees with n nodes as those trees
whose nodes can be labeled in increasing order for all path from root to leaves (see Bergeron et
al. (1992) and Drmota (2009)). Due to the increasingness constraint, such trees are less numerous
than the ones of simply generated trees (compare the latter numbers with the Catalan numbers).

Let g (θ) = 1 +
∑

k≥1 gkθ
k, where gk ≥ 0 (and gk > 0 for at least some k ≥ 2) constitute a system

of weights. Consider now

t′ (θ) = g (t (θ)) , t (0) = 0 with t (θ) =
∑
n≥1

tn
n!
θn.

Let Pn be the set of all rooted ordered and increasing trees with n nodes. With Nk (τn) the number
of nodes in τn ∈ Pn with outdegree k, we now have

tn = n! [θn] t (θ) =
∑
τn∈Pn

n−1∏
k=0

g
Nk(τn)
k .

For all θ < θc such that t (θ) <∞, with N (1) = |τn|, we define

P
(
N (1) = n

)
=

θn [θn] t (θ)∑
n≥1 θ

n [θn] t (θ)
=
θn [θn] t (θ)

t (θ)
,

the exponentially-tilted probability to draw a rooted weighted ordered increasing tree of size n. We
have

Φ (z) = E
(
zN(1)

)
=
∑
n≥1

znP
(
N (1) = n

)
=

∑
n≥1 z

nθn [θn] t (θ)

t (θ)
=
t (θz)

t (θ)
,

where Φ (z) (obeying Φ (1) = 1) solves

Φ′ (z) = mθφθ (Φ (z)) , Φ (0) = 0.

Here mθ = θg (t (θ)) /t (θ) and φθ (z) = g (t (θ) z) /g (t (θ)) is a pgf for all values of θ for which
g (t (θ)) = t′ (θ) < ∞, coinciding with the ones for which t (θ) < ∞, namely θ ∈ (0, θc) , where
θc = inf (θ > 0 : t (θ) =∞) ≤ ∞. Note thatmθ = Φ′ (1) = E

(
N (1)

)
is the mean value ofN (1)

and there is a one-to-one Legendre-like correspondence between θ < θc and mθ = θ log t (θ)′ > 0.
Here also, πn = P

(
N (1) = n

)
minimizes the Kullback-Leibler divergence of θn = [θn] t (θ) =

tn/n! with respect to πn.

3.2. Random increasing trees

From now on, we will therefore consider the tree pgf Φ (z) solution to

Φ′ (z) = mφ (Φ (z)) , with boundary conditions Φ (0) = 0 and Φ (1) = 1, (46)

where φ (z) is any branching mechanism with finite mean µ = φ′ (1) > 0. Stated differently, the
searched Φ (z) solves Φ (0) = 0 and

z =
1

m

∫ Φ(z)

0

dz′

φ (z′)
, with m =

∫ 1

0

dz′

φ (z′)
. (47)
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We have Φ
′′

(1) = m2µ leading to

σ2
(
N (1)

)
= Φ

′′
(1) + Φ′ (1)− Φ′ (1)2 = m (1 +m (µ− 1)) > 0.

Note that µ > 1 entails σ2
(
N (1)

)
> E

(
N (1)

)
(overdispersion of the tree size N (1)), whereas

µ < 1 entails σ2
(
N (1)

)
< E

(
N (1)

)
(underdispersion) andm < 1/ (1− µ) . In this setup, µ > 1

is not in contradiction with Φ (1) = 1 (the a.s. finiteness of the tree), so µ is no longer restricted to
µ < 1 to produce a finite tree. In contrast with GW trees, random increasing trees with µ <∞ go
extinct with probability 1. Note also P

(
N (1) = 1

)
= Φ′ (0) = mφ (Φ (0)) = mφ (0) = mπ0.

3.3. Three explicit examples

As in the GW setup, the increasing trees with binomial, Poisson and negative binomial generators
can be explicitly solved.

• Binomial: φ (z) = (α + αz)d, d ≥ 2 integer with µ = dα, α = 1 − α. With m =(
α−(d−1) − 1

)
/ (α (d− 1)) =

d((d/(d−µ))d−1−1)
µ(d−1)

,

Φ (z) =
1

α

(
(1 + αm (d− 1) (1− z))−1/(d−1) − α

)
=
α

α

((
1− αm (d− 1)αd−1z

)−1/(d−1) − 1
)

=
α

α

(
(1− z/zc)−1/(d−1) − 1

)
.

It has a power-singularity of order 1/ (d− 1) at zc = 1/
(
αm (d− 1)αd−1

)
= 1/

(
1− αd−1

)
> 1.

Note Φ (z)→∞ as z → zc. We have

πn = P
(
N (1) = n

)
=
α

α

[1/ (d− 1)]n
n!

z−nc .

Thus, for large n,

[zn] Φ (z) ∼ α

αΓ (1/ (d− 1))
n−(1−1/(d−1))z−nc .

The exponent of the power-law factor is 1− 1/ (d− 1).

Remark 3.1.

The affine case with φ (z) = α + αz (binomial with d = 1), is also instructive. The pgf Φ (z) of
increasing trees generated by this φ is

Φ (z) =
α

α
(emz − 1) =

α

α

(
α−z − 1

)
,

where m = − logα. It is the pgf of a Poisson(m) rv conditioned on being ≥ 1.

This branching mechanism (which was excluded for simply generated GW trees), would have led
to Φ (z) = αz/ (1− αz) in the GW setup; this is the pgf of a Geometric distribution with success
probability α. It has no branch-point singularity.
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• Poisson: φ (z) = e−µ(1−z), µ > 0. With m = (eµ − 1) /µ,

Φ (z) = 1− 1

µ
log (1− µm (z − 1)) = − 1

µ
log

(
1− µmz

1 + µm

)
= − 1

µ
log (1− z/zc) .

It has a pure logarithmic singularity at zc = (1 + µm) /µm = 1/ (1− e−µ) > 1. Note Φ (z)→∞
as z → zc. Thus,

πn = [zn] Φ (z) = µ−1n−1 · z−nc , n ≥ 1,

a Fisher log-series probability mass function.

• Negative binomial: φ (z) = ((1− αz) /β)−θ, θ > 0 with µ = θα/β. with m = β
α
β−(θ+1)−1

1+θ
=

θ
µ

(1+µ/θ)θ+1−1
θ+1

,

Φ (z) =
1

α

(
1−

(
1− (θ + 1)mαβθz

)1/(θ+1)
)

=
1

α

(
1− (1− z/zc)1/(θ+1)

)
.

It has a power-singularity of order −1/ (θ + 1) at zc = 1/
(
αm (θ + 1) βθ

)
= 1/

(
1− βθ+1

)
> 1.

Note∞ > Φ (zc) = 1
α
> 1.

Thus, for large n,

[zn] Φ (z) ∼ −1

αΓ (−1/ (θ + 1))
n−(1+1/(θ+1))z−nc .

When β approaches 0 (µ→∞), zc, α→ 1 and

[zn] Φ (z) ∼
n→∞

−1

Γ (−1/ (θ + 1))
n−(1+1/(θ+1)),

a pure power-law.

The exponent of the power-law factor is model-dependent and universality of the power-law expo-
nent 3/2 is lost: it is respectively 1− 1/ (d− 1), 1 or 1 + 1/ (θ + 1) for the binomial, Poisson and
negative binomial cases. These exponents are dictated by singularity analysis, namely: one minus
the order of the power-singularity of Φ (z) at zc.

For increasing weighting trees whose pgfs obey Φ′ (z) = mφ (Φ (z)) , Φ (0) = 0, Φ (1) = 1, we
have

z =
1

m

∫ Φ(z)

0

dz′

φ (z′)
, with m =

∫ 1

0

dz′

φ (z′)
.

Two cases arises:

∗ If φ is entire, then Φ is singular at

zc =
1

m

∫ ∞
0

dz′

φ (z′)
, with zc − z =

1

m

∫ ∞
Φ(z)

dz′

φ (z′)
, (48)
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giving the behavior of Φ (z) near zc. Here, Φ (zc) = ∞. This behavior is explicit when 1/φ is
integrable.

Example 3.1.

- Binomial: φ (z) = (α + αz)d . Here, zc = 1/
(
1− αd−1

)
and Φ (z) has a power-singularity of

order 1/ (d− 1) with Φ (zc) =∞.

- (Poisson): φ (z) = e−µ(1−z), µ > 0. With zc = (1 + µm) /µm = 1/ (1− e−µ) > 1,

Φ (z) = − 1

µ
log (1− z/zc) , with Φ (zc) =∞.

The power order of the singularity is 0 and Φ (z) has a pure logarithmic singularity at zc of order
1. Note Φ (zc) =∞.

∗ If φ is singular at z = z+, then Φ is singular at

zc =
1

m

∫ z+

0

dz′

φ (z′)
, (49)

leading to

zc − z =
1

m

∫ z+

Φ(z)

dz′

φ (z′)
, with Φ (zc) = z+. (50)

Example 3.2.

- (negative binomial): φ (z) = ((1− αz) /β)−θ, for which z+ = 1/α, consistently gives zc =
1/
(
1− βθ+1

)
and

Φ (z) = z+ − z+

(
mzc (θ + 1) βθ

z+

)1/(θ+1)

(1− z/zc)1/(θ+1) ,

with a power-singularity of order −1/ (θ + 1) at zc and Φ (zc) = z+ < ∞ (note that the order
−1/2 found for generic Galton-Watson trees is obtained when θ = 1 only).

- (Sibuya) When φ (z) = 2 −
√

(2− z), in the Sibuya class with z+ = 2, with zc =
2
m

(
2 log

(
2 +
√

2
)
−
√

2
)
,

Φ (z) = 2−H
(mzc

2
(1− z/zc)

)2

,

whereH is the inverse function ofG (z) = −2 log (1− z/2)−z. Thus, for some explicit constants
C1, C2, to the dominant orders, Φ (z) ∼

z→zc
2 − C1 (1− z/zc) − C2 (1− z/zc)3/2. Thus, Φ′ (z)

displays a power-singularity of order −1/2 at zc, leading to [zn] Φ (z) ≈ n−5/2znc .

For Sibuya with α ∈ (0, 1), Φ (z) ∼
z→zc

2− C1 (1− z/zc)− C2 (1− z/zc)1+α, so Φ′ (z) displays a

power-singularity of order −α at zc and

[zn] Φ′ (z) ≈ n−(α+1)znc , else [zn] Φ (z) ≈ n−(α+2)znc .
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Remark 3.2.

When dealing with a forest of increasing trees with a fixed number p of trees, both abundance dis-
tributions (5) and (7) also hold and are explicit whenever one is able to compute P

(
N (p) = n

)
=

[zn] Φ (z)p for all n, p ≤ n, in particular πm = P
(
N (1) = m

)
= [zm] Φ (z), but now with the

Φ (z) defined by (46). Large n estimates of [zn] Φ (z)p can be found in the binomial, Poisson and
negative binomial generators of increasing trees. For instance, Equation (41) involving Bell poly-
nomials holds with c• = •!π• and π• = [z•] Φ (z), explicit in the large n asymptotics for the three
examples considered.

We shall now consider the case with a random number P of trees, either Poisson or geometric.

3.4. A recursive nucleation/aggregation model of trees creation/deletion

For random forests of increasing weighted trees with P trees, Equation (29) holds with c• = •!π•
and π• = [z•] Φ (z) ,where Φ (z) now solves (46). It turns out however that these joint probabilities
P (N = n, P = p) can be obtained by recurrence, suggesting that the creation/deletion of clusters
(trees) can be obtained from a recursive nucleation/aggregation model as one individual is added.

Case (a). Random Poissonnian forest of increasing trees.

Ψ (z) = E
(
zN
)

= e−µ0(1−Φ(z)) = e−µ0

(
1 +

∑
n≥1

σn (µ0)
zn

n!

)
,

σn (µ0) =
n∑
p=1

Bn,p (c•)µ
p
0,

P (N = n, P = p) = e−µ0µp0Bn,p (c•) /n!.

From Φ′ (z) = mφ (Φ (z)) we get that Σ (z) = eµ0Φ(z) obeys (recall πk = P (M = k))

Σ′ (z) = mµ0φ (Φ (z)) Σ (z) = mµ0

∑
k≥0 πkΦ (z)k Σ (z)

= mµ0

∑
k≥0 πk∂

(k)
µ0 Σ (z) .

Thus,

σn+1 (µ0) = mµ0

∑
k≥0

πk∂
(k)
µ0
σn (µ0) .

With p = 1, ..., n+ 1, we obtain the recurrence

Bn+1,p (c•) =
n∑

q=p−1

aq,pBn,q (c•) with aq,p = m (q)p−1 πq−(p−1),

or equivalently,

(n+ 1)P (N = n+ 1, P = p) =
n∑

q=p−1

bq,pP (N = n, P = q) , (51)
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bq,p = aq,pµ
p−q
0 = mµp−q0 (q)p−1 πq−(p−1).

In particular,

P (N = n, P = n) = e−µ0µn0Bn,n (c•) /n! = e−µ0 (µ0π1)n /n!,
P (N = n, P = 1) = e−µ0Bn,1 (c•) /n! = e−µ0πn,

are respectively the probabilities to observe a Poissonian forest with n singleton root trees and a
Poissonian forest made of one single tree with n nodes.

The number bp−1,p/ (n+ 1) is the nucleation speciation probability, i.e., the probability that, when
adding one individual or node (the transition n → n + 1), it forms a new cluster or species (as
a singleton node tree) by itself. We have bp−1,p/ (n+ 1) = mµ0π0/ (n+ 1) , where we recognize
the term π1 = mπ0.

The numbers bq,p/ (n+ 1), q ≥ p, are the aggregation probabilities, i.e., the merging probability
that this new individual will connect q − (p− 1) clusters (trees), out of q possible, thereby ending
up in the next step with a population made of p clusters (trees). Note that these aggregation prob-
abilities are found to be proportional to πq−(p−1), the probability that these q − (p− 1) trees can
have the new individual as a common ancestor. When an aggregation event takes places indeed,
the new incoming individual n + 1 becomes the common root to the q − (p− 1) trees that it ag-
gregates (there are (q)p−1 ways to chose them), thereby forming a new unique tree. Note that for
a population with n individuals (labeled 1 to n) that has been formed recursively in this way, the
nodes of each tree of the forest are labeled in decreasing order from root to leaves; upon a circular
permutation of the n nodes labels, they can equivalently be arranged in increasing order.

Case (b). Random geometric forest of increasing trees.

In this model, the trees are assumed distinguishable. Proceeding similarly, with φ0 (z) =
β0/ (1− α0z), with σn (α0) =

∑n
p=1 p!Bn,p (c•)α

p
0, we found

P (N = n, P = p) = β0α
p
0Bn,p (c•) p!/n!.

With p = 1, ..., n+ 1

Bn+1,p (c•) =
n∑

q=p−1

aq,pBn,q (c•) with aq,p = m (q)p−1 πq−(p−1),

(n+ 1)P (N = n+ 1, P = p) =
n∑

q=p−1

bq,pP (N = n, P = q) , (52)

bq,p = aq,p
p!

q!
αp−q0 = mαp−q0

p!

q!
(q)p−1 πq−(p−1).

In particular, P (N = n, P = n) = β0α
n
0Bn,n (c•) = β0 (α0π1)n, P (N = n, P = 1) =

β0α0Bn,1 (c•) /n! = β0α0πn are respectively the probabilities to have a geometric forest with n
singleton trees and a geometric forest made of one single tree with n nodes.
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3.5. Number of trees in forests of increasing trees with a large number of nodes

We now investigate the number of species in a random forest of increasing trees when the total
population size n goes large in the three examples: binomial, Poisson and negative binomial. Both
cases P Poisson and P geometric are discussed.

I. Binomial increasing trees examples.

Case (a). Poissonian forests.

- Take a binomial increasing tree example with d = 2. With zc = 1/α :

Φ (z) = α
α

(
(1− z/zc)−1 − 1

)
,

Ψ (z) = exp (−µ0 (1− Φ (z))) = e−µ0Σ (z) .

With K = µ0α/α, a saddle point analysis yields (see Flajolet and Sedgewick (1994), p. 29, and
Hwang (1994), Th. 36, p. 147)

σn (µ0) = [zn] Σ (z) ∼ eK/2n−3/4e2
√
Kn

2
√
πK−1/4

z−nc .

Therefore,

E
(
zPn
)1/
√
n

=

(
σn (zµ0)

σn (µ0)

)1/
√
n

→
n→∞

aµ0
(z) = e2

√
µ0α/α(

√
z−1),

so that, almost surely,
1√
n
Pn →

n→∞
a′µ0

(1) =
√
µ0α/α. (53)

We conjecture that if d is any integer with d ≥ 2, the scaling factor in front of Pn is n−1/d.

Case (b). Geometric forests.

With zc = 1/
(
1− αd−1

)
:

Φ (z) = α
α

(
(1− z/zc)−1/(d−1) − 1

)
,

Ψ (z) = β0/ (1− α0Φ (z)) = β0Σ (z) .

The function Ψ (z) always has a simple pole at 1 < z∗ (α0) < zc with

z∗ (α0) = zc

(
1−

(
α0α

α + α0α

)d−1
)
.

Therefore,

σn (α0) = [zn] Σ (z) ∼
n→∞

−α0Φ′ (z∗) (1− z/z∗ (α0))−1 ,

and

E
(
zPn
)1/n

=

(
σn (zα0)

σn (α0)

)1/n

→
n→∞

aα0
(z) =

z∗ (α0)

z∗ (zα0)
,
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with

n−1Pn →
n→∞

a′α0
(1) < 1, almost surely. (54)

II. Poissonian increasing trees examples.

Case (a). Poissonian forests.

- Take a Poissonian increasing tree example. With zc = 1/ (1− e−µ) ,

Φ (z) = − 1
µ

log (1− z/zc) ,
Ψ (z) = exp (−µ0 (1− Φ (z))) = e−µ0Σ (z) ,

where Σ (z) = (1− z/zc)−µ0/µ. We get

σn (µ0) = [zn] Σ (z) = [µ0/µ]n z
−n
c /n!.

Therefore,

E
(
zPn
)

=
σn (zµ0)

σn (µ0)
=

[µ0z/µ]n
[µ0/µ]n

,

so that Pn
d
= 1 +

∑n−1
m=1 Bm, as a sum of independent Bernoulli rvs with success probabilities

(µ0/µ) / (µ0/µ+m). By strong law of large numbers, almost surely,
1

log n
Pn →

n→∞
µ0/µ. (55)

Remark 3.3.

Consider Φ (z, µm) = (µm − 1) πmz
m + Φ (z) , where µm marks the size−m trees. We have

Ψ (z, µm) = exp (−µ0 (1− Φ (z, µm))) = e−µ0Σ (z, µm)

= e−µ0eµ0(µm−1)πmzm (1− z/zc)−µ0/µ ,

and σn (µ0, µm) = [zn] Σ (z, µm) = eµ0(µm−1)πmzm [µ0/µ]n z
−n
c /n!. Thus,

E
(
zPnµPn(m)

m

)
=
σn (zµ0, µm)

σn (µ0, 1)
= ezµ0(µm−1)πmzm

[µ0z/µ]n
[µ0/µ]n

.

Taking z = 1, we get E
(
µ
Pn(m)
m

)
= e(µm−1)µ0πm showing that, given a forest with n nodes, the

number of size−m trees Pn (m) is Poisson distributed with mean µ0πm = (µ0/µ)m−1 · z−mc ,
m = 1, ..., n.

Case (b). Geometric forests.

Φ (z) = − 1
µ

log (1− z/zc) ,
Ψ (z) = β0/ (1− α0Φ (z)) = β0Σ (z) .

The function Ψ (z) always has a simple pole at 1 < z∗ (α0) < zc with

z∗ (α0) = zc
(
1− e−µ/α0

)
.
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Therefore,

σn (α0) = [zn] Σ (z) ∼
n→∞

−α0Φ′ (z∗) (1− z/z∗ (α0))−1 ,

and

E
(
zPn
)1/n

=

(
σn (zα0)

σn (α0)

)1/n

→
n→∞

aα0
(z) =

z∗ (α0)

z∗ (zα0)
=

1− e−µ/α0

1− e−µ/(zα0)
,

with

n−1Pn →
n→∞

a′α0
(1) =

µ

α0 (eµ/α0 − 1)
< 1, almost surely. (56)

III. Negative-binomial increasing trees examples.

Case (a). Poissonian forests.

- Take the negative-binomial increasing tree example. With zc = 1/
(
1− βθ+1

)
> 1:

Φ (z) = 1
α

(
1− (1− z/zc)1/(θ+1)

)
,

Ψ (z) = exp (−µ0 (1− Φ (z))) = e−µ0Σ (z) .

We get Σ (z) = eµ0(1−1/α)eµ0/α(1−z/zc)1/(θ+1)

and

σn (µ0) = [zn] Σ (z) ∼ eµ0(1−1/α)
(

1 +
µ0

α
n−(θ+1)z−nc

)
.

Therefore,

E
(
zPn
)

=

(
σn (zµ0)

σn (µ0)

)
→
n→∞

zeµ0(1−1/α)(z−1),

so that

Pn
d→

n→∞
P∞, (57)

where P∞ is shifted Poisson(µ0 (1− 1/α)) distributed. It can easily be shown, as in the GW trees
case, that if Pn (m) denotes the number of size−m trees in a large population with n individuals
in total, that Pn (m) converges in distribution to a Poisson random variable with mean [zm] Φ (z) .

Case (b). Geometric forests.

Φ (z) = 1
α

(
1− (1− z/zc)1/(θ+1)

)
,

Ψ (z) = β0/ (1− α0Φ (z)) = β0Σ (z) .

Because in this case Φ (zc) = 1/α <∞, three cases arise, reminiscent of a phase transition:

- (subcritical) If α > α0, then Ψ (z) is still singular at zc with

Ψ (z) ∼
z→zc

β0

1− α0/α

(
1− α0

α− α0

(1− z/zc)1/(θ+1)

)
,
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showing that σn (α0) = [zn] Σ (z) ∼
n→∞

αα0

(α−α0)2
n−(1+1/(θ+1))z−nc /Γ (−1/ (θ + 1)) and

E
(
zPn
)

=

(
σn (zµ0)

σn (µ0)

)
→
n→∞

z

(
1− α0/α

1− α0z/α

)2

.

Therefore,

Pn
d→

n→∞
P∞, (58)

where P∞ is shifted squared-geometric distributed.

- (supercritical) If α < α0, then Ψ (z) has a simple pole at 1 < z∗ (α0) < zc with

z∗ (α0) = zc

(
1− (1− α/α0)θ+1

)
.

Therefore,

σn (α0) = [zn] Σ (z) ∼
n→∞

−α0Φ′ (z∗) (1− z/z∗ (α0))−1 ,

and

E
(
zPn
)1/n

=

(
σn (zα0)

σn (α0)

)1/n

→
n→∞

aα0
(z) =

z∗ (α0)

z∗ (zα0)
=

1− (1− α/α0)θ+1

1− (1− α/ (α0z))θ+1
,

with

n−1Pn →
n→∞

a′α0
(1) =

α (θ + 1) (1− α/α0)θ

α0

(
1− (1− α/α0)θ+1

) < 1, (59)

almost surely.

- If α = α0 (critical case), then

Ψ (z) = β0 (1− z/zc)−1/(θ+1) = β0Σ (z) ,

showing that σn (α0) = [zn] Σ (z) ∼
n→∞

n−(1−1/(θ+1))z−nc /Γ (1/ (θ + 1)). In this case,

zc = 1/
(
1− βθ+1

)
= 1/

(
1− (1− α0)θ+1

)
= zc (α0) ,

and

E
(
zPn
)1/n

=

(
σn (zα0)

σn (α0)

)1/n

→
n→∞

aα0
(z) =

zc (α0)

zc (zα0)
=

1− (1− zα0)θ+1

1− (1− α0)θ+1
.

This shows that

n−1Pn →
n→∞

a′α0
(1) =

α0 (θ + 1) (1− α0)θ

1− (1− α0)θ+1
< 1, almost surely. (60)
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4. Conclusion

Let some population be made of n individuals that can be of P possible species (or types) at equi-
librium. One question raised is: How are individuals scattered among types? In a first scenario for
such species abundance distributions, each species grows from independent founders according to
a Galton-Watson branching process. When the number of founders P is either fixed or random
(either Poisson or geometrically-distributed), we address the above question. This model is one
pertaining to forests of Galton-Watson trees. A second scenario that we will address in a similar
way deals with forests of increasing trees. Underlying this setup, the creation/annihilation of clus-
ters (trees) is shown to result from a recursive nucleation/aggregation process as one additional
individual is added to the total population. To proceed, we use singularity analysis of generating
functions.
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Appendix

We briefly recall a general transfer result of singularity analysis (see Flajolet and Odlyzko (1990))
for generating functions with power-logarithmic singularities of given orders a and b.

Let Φ (z) be any analytic function in the indented domain defined by

D = {z : |z| ≤ z1, |Arg (z − zc)| > π/2− η} ,

where zc, z1 > zc, and η are positive real numbers. Assume that, with σ (x) = xa logb x , a and
b any real number (respectively the power and logarithmic singularity exponents or orders of Φ at
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zc), we have

Φ (z) ∼ κ1 + κ2σ

(
1

1− z/zc

)
as z → zc in D, (61)

for some real constants κ1and κ2. Then,

- if a /∈ {0,−1,−2, ...} the coefficients in the expansion of Φ (z) satisfy

[zn] Φ (z) ∼ κ1 + κ2z
−n
c ·

σ (n)

n

1

Γ (a)
as n→∞, (62)

where Γ (a) is the Euler function. Φ (z) presents a power-logarithmic singularity at z = zc. If
b = 0, Φ (z) presents a pure power singularity at z = zc of order a (with power exponent a).

- if a ∈ {0,−1,−2, ...}, the singularity z = zc is purely logarithmic and

[zn] Φ (z) ∼ κ1 + κ2bz
−n
c ·

σ (n)

n · log n

(
1

Γ

)′
(a) as n→∞, (63)

involving the derivative of the reciprocal Euler function at a.

Thus, for power-logarithmic singularities with orders a and b, the asymptotics of the coefficients
can be read from the singular behavior of the generating function under study.
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