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Abstract

The aim of this paper is to study the asymptotic behavior of solutions to a class of fourth-order
neutral differential equations. We discuss the stability, boundedness and square integrability of
solutions for the considered system. The technique of proofs involves defining an appropriate Lya-
punov functional. Our results obtained in this work improve and extend some existing well-known
related results in the relevant literature which were obtained for nonlinear differential equations
of fourth order with a constant delay. The obtained results here are new even when our equation
is specialized to the forms previously studied and include many recent results in the literature.
Finally, an example is given to show the feasibility of our results.

Keywords: Lyapunov functional; Neutral differential equations of fourth order; Uniform asymp-
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1. Introduction

The study of qualitative properties of differential equations has a long history, and qualitative theo-
ries have been developed for various kinds of ordinary differential equations. It is well known that
the qualitative analysis of differential equations is related to both pure and applied mathematics.
Its applications to various fields such as science, engineering, and ecology have been extensively
developed.

Applications of neutral differential equations include electrodynamics, control systems, neutron
transportation, mixing liquids and population models and many other fields in real life. Asymp-
totic behavior and stability of solutions of such systems play an important role when one studies
qualitative properties of those systems.

In literature we find some results concerning second order differential equations of neutral type
(Guiling et al. (2014)), but in the case of third and fourth order of neutral type there are very few
results. While for the delay differential equations, the literature of third and fourth order is full of
results on qualitative properties (boundedness, stability, square integrability) (see Abou-El-Ela et
al. (2009), Bereketoglu (1998), Remili and Beldjerd (2017), Remili and Oudjedi (2016), Greaf et
al. (2015), Kang et al. (2010), Rahmane and Remili (2015), Remili and Beldjerd (2016), Sadek
(2004), Sinha (1973), Tejumola and Tchegnani(2000), Tunç (2010)). Some of the previous results
inspire us to study.

2. Assumptions and main results

In this article, we develop the conditions under which all the solutions of the following equation
are stable, bounded and square integrable:

(q(t) (x′′′ (t) + ρx′′′ (t− r)))′ + a (t)x′′′(t) + b (t)x′′(t) + c (t)x′(t)

+ d (t)h (x (t)) = p(t, x(t), x′(t), x′′(t), x′′′(t)), (1)

where ρ and r are positive constants to be determined later and a(.), b(.), c(.), d(.), q(.) and h(x) are
continuous functions depending only on the arguments shown and h′(x) exists and is continuous.

For the sake of convenience we introduce the following notation,

X(t) = x(t) + ρx(t− r).

By a solution of (1) we mean a continuous function x : [tx,∞)→ R such that X(t) ∈
C3([tx,∞),R) and which satisfies Equation (1) on [tx,∞). Without further mention, we will as-
sume throughout that every solution x(t) of (1) under consideration here is continuable to the right
and nontrivial, i.e, x(t) is defined on some ray [tx,∞). Moreover, we assume that (1) possesses
such solutions.
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Suppose that there exist positive constants a0, b0, c0, d0, a1, b1, c1, d1, h0, q0, q1, δ and δ0 such that
the following conditions hold,

i) 0 < a0 ≤ a (t) ≤ a1, 0 < b0 ≤ b (t) ≤ b1, 0 < c0 ≤ c (t) ≤ c1, 0 < d0 ≤ d (t) ≤ d1,
0 < q0 ≤ q (t) ≤ q1 < 1 and d′ (t) ≤ 0 for t ≥ 0.

ii) h (0) = 0 ,
h (x)

x
≥ δ > 0 for x 6= 0.

iii) h0 −
a0δ0
d1
≤ h′ (x) ≤ h0

2
for x ∈ R.

iv) b0 >
c1
a0

+
a1h0d1
c0

+
δ0
a0

= κ.

The following lemma will be useful in the proof of the next theorem.

Lemma 2.1. (Hara (1974))

Let h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t)− h′(x) ≥ 0 (δ(t) > 0). Then,

2δ(t)H(x) ≥ h2(x) , where H(x) =

∫ x

0

h(s)ds.

The main objective of this paper is to prove the following theorem.

Theorem 2.2.

Further to assumptions (i)-(iv), assume that there are positive constants η1 and η2 such that the
following conditions are satisfied

H1)
∫ +∞
0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |q′ (t)| − d′ (t)) dt < η1.

H2) |p(t, x, x′, x′′, x′′′)| ≤ |e(t)| and
∫ +∞

0

|e (t)| dt < η2.

Then, there exists a finite positive constant K0 such that every solution x(.) of (1) and their deriva-
tives x′(.), x′′(.), x′′′(.) and X ′′′(.) satisfy

1. |x(t)| ≤ K0, | x′(t)| ≤ K0, |x′′(t)| ≤ K0, |X ′′′(t)| ≤ K0, for all t ≥ 0,

2.
∫ ∞
0

(
x2(s) + x′2(s) + x′′2(s) + x′′′2(s)

)
ds <∞,
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provided that

ρ < min
{
1,

2ε

αh0
,

2εc0
αc1 + αd1λ0

, 2
b0 − κ− ε (a1 + c1)

αb1 + β + αd1λ0 + αd1
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
,

where

α =
1

a0
+ ε , β =

d1h0
c0

+ ε and ε < min

{
1

a0
,
d1h0
c0

,
b0 − κ
a1 + c1

}
. (2)

Proof:

We can write Equation (1) in the differential system form as

x′ = y,
y′ = z,
z′ = w,

W ′ =
1

q(t)

[
− a (t)w +−b (t) z − c (t) y − d (t)h (x) + p(t, x, y, z, w)− q′(t)W

]
.

(3)

System (3) is obtained from Equation (1) by setting

X ′(t) = x′(t) + ρx′(t− r) = y(t) + ρy(t− r) = Y (t),

X ′′(t) = x′′(t) + ρx′′(t− r) = z(t) + ρz(t− r) = Z(t),

X ′′′(t) = x′′′(t) + ρx′′′(t− r) = w(t) + ρw(t− r) = W (t).

We define a functional U = U(t, x, y, z, w) given by

U = e
−1

η

∫ t

0

γ (s) ds
V, (4)

where

γ (t) = |a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |q′ (t)| − d′ (t) ,

the function V = V (t, x, y, z, w) defined by

2V = a (t) z2 + 2βa (t) yz + 2βq(t)yW + 2q(t)zW + 2αc (t) yz + c (t) y2

+ 2d (t)h (x) y + 2αd (t)h (x)Z +
[
βb (t)− αh0d (t)

]
y2 − βq(t)z2 + αq(t)W 2

+ αρd (t) (z (t− r))2 + 2βd (t)H (x) + αb (t) z2

+ µ1

∫ t

t−r
z2 (s) ds+ µ2

∫ t

t−r
w2 (s) ds,

and η is a positive constant, which will be determined later in the proof. By adding and subtracting

4
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some terms we can rewrite 2V as

2V = V1 + V2 + V3 + V4 + a (t)

[
q(t)W

a (t)
+ z + βy

]2
+ c (t)

[
d (t)h (x)

c (t)
+ y + αz

]2
+
d2 (t)h2 (x)

c (t)
+ µ1

∫ t

t−r
z2 (s) ds+ µ2

∫ t

t−r
w2 (s) ds,

where

V1 = 2d (t)

∫ x

0

h (s)

[
d1h0
c0
− 2

d (t)

c (t)
h′ (s)

]
ds,

V2 =
[
αb (t)− βq(t)− α2c (t)

]
z2,

V3 =
[
βb (t)− αh0d (t)− β2a (t)

]
y2 +

[
α

q(t)
− 1

a (t)

]
q2(t)W 2,

V4 = 2εd (t)H (x) + 2αρd (t)h (x) z (t− r) + αρd (t) (z (t− r))2 .

To prove that V is positive definite it suffices to show that V1, V2, V3 and V4 are positives. Remark
that the estimate (2) implies

1

a0
< α < 2

1

a0
and

d1h0
c0

< β < 2
d1h0
c0

. (5)

Then, using conditions (i) through (iv), and inequalities (2) and (5) we obtain the following,

V1 ≥ 2d (t)

∫ x

0

h (s)
d1
c0

[h0 − 2h′ (s)] ds

≥ 4
d0d1
c0

∫ x

0

h (s)

[
h0
2
− h′ (s)

]
ds ≥ 0.

Rearranging V2 we obtain the estimate

V2 = α

[
b (t)− βa (t)− αc (t)

]
z2 + β

[
αa (t)− q(t)

]
z2

≥ α

[
b (t)−

(d1h0
c0

+ ε
)
a (t)−

( 1
a0

+ ε
)
c (t)

]
z2 + β

[
a(t)

a0
− 1

]
z2

≥ α

[
b0 −

a1d1h0
c0

− c1
a0
− ε
(
a1 + c1

)]
z2

≥ α

[
b0 − κ− ε (a1 + c1)

]
z2 ≥ 0.

We also have,

V3 ≥ β
(
b0 −

α

β
h0d1 − βa1

)
y2 +

(
α− 1

a0

)
q20W

2

≥ β
(
b0 −

c0
a0
− a1

d1h0
c0
− ε(c0 + a1)

)
y2 + εq20W

2

≥ β
(
b0 − κ− ε(c1 + a1)

)
y2 + εq20W

2 ≥ 0,

5
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and by the estimate of ρ, we have

V4 = 2εd (t)

∫ x

0

h(ξ)dξ + αρd (t)
[
(z (t− r) + h (x))2 − h2 (x)

]
≥ 2εd (t)

∫ x

0

h(ξ)dξ − 2αρd (t)

∫ x

0

h′(ξ)h(ξ)dξ

≥ 2d (t)

∫ x

0

(
ε− αρh0

2

)
h(ξ)dξ

≥ 2d0

(
ε− αρh0

2

)
H(x).

Thus, there exists a positive number D0 such that

2V ≥ D0

(
y2 + z2 +W 2 +H(x)

)
.

By Lemma 2.1 and condition iii) we conclude that there exists a positive number D1 such that

2V ≥ D1

(
x2 + y2 + z2 +W 2

)
. (6)

Thus, V is positive definite. Then, we can find positive definite functions U1(‖ξ‖) and U2(‖ξ‖)
such that U1(‖ξ‖) ≤ V ≤ U2(‖ξ‖). By (4) and inequality (6), we get

U ≥ D2(x
2 + y2 + z2 +W 2), (7)

where D2 =
D1

2
e−

η1
η . Therefore, by conditions H1 and H2 we can find positive definite functions

W1(‖ξ‖) and W2(‖ξ‖) such that W1(‖ξ‖) ≤ U ≤ W2(‖ξ‖).

Now we prove that U̇ is a negative definite function using the following derivative,
d

dt

(
αq(t)W 2(t)

)
= −αq′2 + 2αW (t)

d

dt

(
q(t)W (t)

)
.

Calculating the time derivative of the function V, along any solution (x(t), y(t), z(t), w(t)) of sys-
tem (3), we have

2
.

V (3) = V5 + V6 + V7 + V8 + V9 + 2(βy + z + αW )p(t, x, y, z, w),

where

V5 =− 2

(
d1h0
c0

c (t)− d (t)h′ (x)
)
y2 − 2αd (t)

(
h0 − h′ (x)

)
yz,

V6 =− 2
(
b (t)− αc (t)− βa (t)

)
z2,

V7 =− 2
(
αa (t)− q(t)

)
w2,

V8 =− 2εc (t) y2 − 2αρa(t)wtw − 2αρb(t)zwt − 2αρc (t) ywt + 2αρd (t)h′ (x) yzt

+ µ1z
2 + µ2w

2 − µ1z
2
t − µ2w

2
t + 2αρd (t) ztwt + 2ρq(t)wwt + 2βρq(t)zwt,

and

V9 = d′ (t)
[
2βH (x)− αh0y2 + 2h (x) y + 2αh (x) z

]
+ c′ (t)

[
y2 + 2αyz

]
+b′ (t)

[
αz2 + βy2

]
+ a′ (t)

[
z2 + 2βyz

]
− αq′(t)W 2 − βq′(t)z2

+αρd′ (t) [z (t− r) + h(x)]2 − αρd′ (t)h2(x).

6
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Again using conditions i), iii), iv), and inequalities (2) and (5) we get

V5 ≤ −2 [d (t)h0 − d (t)h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz
≤ −2d (t) [h0 − h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)]
[(
y +

α

2
z
)2
−
(α
2
z
)2]

≤ α2

2
d (t) [h0 − h′ (x)] z2.

Therefore,

V5 + V6 ≤ −2
[
b (t)− αc (t)− βa (t)− α2

4
d (t) [h0 − h′ (x)]

]
z2

≤ −2
[
b0 −

( 1
a0

+ ε
)
c1 −

(d1h0
c0

+ ε
)
a1 −

α2

4
(a0δ0)

]
z2

≤ −2
[
b0 −

c1
a0
− d1h0a1

c0
− δ0
a0
− ε (a1 + c1)

]
z2

≤ −2 [b0 − κ− ε (a1 + c1)] z
2 ≤ 0,

V7 ≤ −2 [αa0 − 1]w2 = −2εa0w2 ≤ 0,

and

V8 ≤ −2εc (t) y2 + αρa1w
2
t + αρa1w

2 + αρb1z
2 + αρb1w

2
t + αρc1y

2

+αρc1w
2
t + αρd1λ0y

2 + αρd1λ0z
2
t + µ1z

2 + µ2w
2 − µ1z

2
t − µ2w

2
t

+αρd1z
2
t + αρd1w

2
t + 2ρw2 + βρz2 + 2ρw2

t + βρw2
t − 2ρ|wwt|+ (ρ− ρ2)w2

t

≤ − (2εc0 − αρc1 − αρd1λ0) y2 + (αρb1 + βρ+ µ1) z
2 + (αρa1 + 2ρ+ µ2)w

2

+(αρd1λ0 + αρd1 − µ1) z
2
t + (αρa1 + αρb1 + αρc1 + αρd1 + βρ+ 3ρ− µ2)w

2
t

−ρ2w2
t − 2ρ|wwt|,

where

λ0 = max
{h0

2
,

∣∣∣∣h0 − a0δ0
d1

∣∣∣∣}.
By taking {

µ1 = αρd1λ0 + αρd1,
µ2 = αρa1 + αρb1 + αρc1 + αρd1 + βρ+ 3ρ,

we obtain

V8 ≤ − (2εc0 − αρc1 − αρd1λ0) y2 + (αρb1 + βρ+ µ1) z
2 + (αρa1 + 2ρ+ µ2)w

2

−ρ2w2
t − 2ρ|wwt|.

7
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Then, we have

V5 + V6 + V7 + V8 ≤ −ρ2w2
t − 2ρ|wwt| − (2εc0 − αρc1 − αρd1λ0) y2

−2

[
b0 − κ− ε (a1 + c1)−

1

2
ρ (αb1 + β + αd1λ0 + αd1)

]
z2

−

(
2εa0 − ρ (2αa1 + 5 + αb1 + αc1 + αd1 + β)

)
w2.

Hence, there exists a positive constant D3 such that,

V5 + V6 + V7 + V8 ≤ −2D3

(
y2 + z2 + w2 + ρ2w2

t + 2ρ|wwt|
)

≤ −2D3

(
y2 + z2 +W 2

)
,

provided that

ρ < min
{
1,

2ε

αh0
,

2εc0
αc1 + αd1λ0

, 2
b0 − κ− ε (a1 + c1)

αb1 + β + αd1λ0 + αd1
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
.

Using condition iii) and Lemma 2.1, we obtain

h2(x) ≤ h0H(x),

and consequently

|V9| ≤ −d′ (t)
[
2βH (x) + αh0y

2 +
(
h2 (x) + y2

)
+ α

(
h2 (x) + z2

)
+ αρh2(x)

]
+|c′ (t) |

[
y2 + α

(
y2 + z2

)]
+ |b′ (t) |

[
αz2 + βy2

]
− αq′(t)W 2 − βq′(t)z2

+|a′ (t) |
[
z2 + β

(
y2 + z2

)]
≤ λ2 [|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |q′ (t)| − d′ (t)]

(
y2 + z2 +W 2 +H (x)

)
≤ 2

λ2
D0

[|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |q′ (t)| − d′ (t)]V,

such that λ2 = max
{
2β + (αρ+ α + 1)h0, αh0 + α + 2β + 2, 1 + 2β + 3α

}
.

By taking
1

η
=

1

D0

λ2, we obtain

.

V (3) ≤−D3(y
2 + z2 +W 2) +

1

η

(
|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |q′ (t)| − d′ (t)

)
V

+
(
βy + z + αW

)
p(t, x, y, z, w). (8)

8
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From H2, (7), (8) and the Cauchy-Schwartz inequality, we get
.

U (3) =

(
.

V (3) −
1

η
γ (t)V

)
G(t)

≤
(
−D3

(
y2 + z2 +W 2

)
+
(
βy + z + αW

)
p(t, x, y, z, w)

)
G(t)

≤ (β|y|+ |z|+ α|W |) |p(t, x, y, z, w)|
≤ D4 (|y|+ |z|+ |W |) |e(t)|
≤ D4

(
3 + y2 + z2 +W 2

)
|e(t)|

≤ 3D4|e(t)|+
D4

D2

U |e(t)|, (9)

where G(t) = e
−1

η

∫ t

0

γ (s) ds
and D4 = max{α, β, 1}. Integrating (9) from 0 to t, and using

the condition H2 and the Gronwall-Reid-Bellman inequality, we obtain

U(t, x, y, z,W ) ≤ U
(
0, x(0), y(0), z(0),W (0)

)
+ 3D4η2

+
D4

D2

∫ t

0

U
(
s, x(s), y(s), z(s),W (s)

)
|e(s)|ds

≤
(
U
(
0, x(0), y(0), z(0),W (0)

)
+ 3D4η2

)
e

D4

D2

∫ t

0

|e(s)|ds

≤
(
U
(
0, x(0), y(0), z(0),W (0)

)
+ 3D4η2

)
e

D4

D2

η2
= K1 <∞. (10)

In view of inequalities (7) and (10), we get

(x2 + y2 + z2 +W 2) ≤ 1

D2

U ≤ K2
0 , (11)

where K2
0 =

K1

D2

. Clearly (11) implies that

|x(t)| ≤ K0, |y(t)| ≤ K0, |z(t)| ≤ K0, |W (t)| ≤ K0 for all t ≥ 0.

Hence,

|x(t)| ≤ K0, |x′(t)| ≤ K0, |x′′(t)| ≤ K0, |X ′′′(t)| ≤ K0 for all t ≥ 0. (12)

Now, we prove the square integrability of solutions and their derivatives of Equation (1).

First, from (8) we obtain
.

V (3) ≤ −D3(y
2 + z2 + w2) +

1

η
γ (t)V + 2

(
βy + z + αW

)
p(t, x, y, z, w),

thus,
.

U (3) =

(
.

V (3) −
1

η
γ (t)V

)
G(t)

≤
(
−D3

(
y2 + z2 + w2

)
+
(
βy + z + αW

)
p(t, x, y, z, w)

)
G(t). (13)

9
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Now, we define Ft = F (t, x(t), y(t), z(t), w(t)) as

Ft = U + σ

∫ t

0

(
y2(s) + z2(s) + w2(s)

)
ds,

where σ > 0. It is easy to see that Ft is positive definite, since U = U(t, x, y, z, w) is already

positive definite. Using the following estimate e
−
η1
η ≤ G(t) ≤ 1 by H1 and (13) imply

.

Ft(3) ≤ −D3

(
y2(t) + z2(t) + w2(t)

)
e−

η1
η +D4

(
|y(t)|+ |z(t)|+ |W (t)|

)
|p(t, x, y, z, w)|

+σ
(
y2(t) + z2(t) + w2(t)

)
,

where D4 is positive constant. By choosing σ = D3e
−η1
η we obtain

.

Ft(3) ≤ D4

(
3 + y2(t) + z2(t) +W 2(t)

)
|e(t)|

≤ D4

(
3 +

1

D2

U
)
|e(t)|

≤ 3D4|e(t)|+
D4

D2

Ft|e(t)|. (14)

Integrating the last inequality (14) from 0 to t, and using again the Gronwall-Reid-Bellman in-
equality and the condition H2, we get

Ft ≤ F0 + 3D4η2 +
D4

D2

∫ t

0

Fs|e(s)|ds

≤
(
F0 + 3D4η2

)
e

D4

D2

∫ t

0

|e(s)|ds

≤
(
F0 + 3D4η2

)
e

D4

D2

η2
= K2 <∞.

Therefore, ∫ ∞
0

y2(s)ds < K2 ,

∫ ∞
0

z2(s) < K2 and
∫ ∞
0

w2(s)ds < K2,

which implies that∫ ∞
0

x′2(s)ds ≤ K2 ,

∫ ∞
0

x′′2(s)ds ≤ K2 ,

∫ ∞
0

x′′′2(s)ds ≤ K2. (15)

Next, multiply (1) by x(t) and integrate by parts from 0 to t. We obtain∫ t

0

d(s)x(s)h(x(s))ds = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + L0, (16)
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where

I1(t) = q(t)x′(t)X ′′(t)− q(t)x(t)X ′′′(t)−
∫ t

0

q′(s)x′′′(s)ds− ρ
∫ t

0

q′′(s)x′′(s− r)ds

−
∫ t

0

q(s)x′′2(s)ds− ρ
∫ t

0

q(s)x′′(s)x′′(s− r)ds,

I2(t) = −a(t)x(t)x′′(t) +
∫ t

0

a′′′(s)ds+

∫ t

0

a(s)x′(s)x′′(s)ds,

I3(t) = −b(t)x(t)x′(t) +
∫ t

0

b′′(s)ds+

∫ t

0

b(s)x′2(s)ds,

I4(t) = −
1

2
c(t)x2(t) +

1

2

∫ t

0

c′2(s)ds,

I5(t) =

∫ t

0

x(s)p(t, x(s), x′(s), x′′(s), x′′′(s))ds,

and

L0 = q(0)x(0)X ′′′(0)− q(0)x′(0)X ′′(0) + a(0)x(0)x′′(0)

+b(0)x(0)x′(0) +
1

2
c(0)x2(0).

From (12), (15) and the conditions (i) and (H1), we have

I1(t) ≤ (2 + ρ)q1K
2
0 + (1 + ρ)K2

0

∫ t

0

|q′(s)|ds+ 1

2
ρq1

∫ t

0

x′′2(s)ds

+
1

2
ρq1

∫ t

0

x′′2(s− r)ds,

≤ (2 + ρ)q1K
2
0 + (1 + ρ)K2

0

∫ t

0

|q′(s)|ds+ 1

2
ρq1

∫ t

0

x′′2(s)ds

+
1

2
ρq1K

2
0r +

1

2
ρq1

∫ t−r

0

x′′2(s)ds,

I2(t) ≤ a1K2
0 +K2

0

∫ t

0

|a′(s)|ds+ a1

∫ t

0

x′(s)x′′(s)ds,

≤ a1K2
0 +

1

2
a1x

′2(t) +K2
0

∫ t

0

|a′(s)|ds,

I3(t) ≤ b1K2
0 +K2

0

∫ t

0

|b′(s)|ds+ b1

∫ t

0

x′2(s)ds,

I4(t) ≤
1

2
c1K

2
0 +

1

2
K2

0

∫ t

0

|c′(s)|ds,

I5(t) ≤ K0

∫ t

0

|e(s)|ds.

11
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It follows that

lim
t→+∞

I1(t) ≤ (2 + ρ)q1K
2
0 + (1 + ρ)K2

0η1 + ρq1K2 +
1

2
ρq1K

2
0r = L1,

lim
t→+∞

I2(t) ≤
3

2
a1K

2
0 +K2

0η1 = L2,

lim
t→+∞

I3(t) ≤ K2
0(b1 + η1) + b1K2 = L3,

lim
t→+∞

I4(t) ≤
1

2
c1K

2
0 +

1

2
K2

0η1 = L4, and

lim
t→+∞

I5(t) ≤ K0η2 = L5.

Thus,

lim
t→+∞

(
I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

)
≤

5∑
i=1

Li <∞. (17)

Consequently, (16), (17) and condition iii) give∫ ∞
0

x2(s)ds ≤ 1

d0δ

∫ ∞
0

d(s)x(s)h(x(s))ds

≤ 1

d0δ

5∑
i=0

Li <∞,

which completes the proof of the theorem. �

Remark 2.3.

If p(t, x, y, z, w) = 0, similar to above proof, then inequality (8) becomes

.

V (3) ≤−D3(y
2 + z2 +W 2) +

1

η
γ (t)V. (18)

From H1, (7), (18) and the Cauchy-Schwartz inequality, we get

.

U (3) =

(
.

V (3) −
1

η
γ (t)V

)
e
−1

η

∫ t

0

γ (s) ds

≤ −D3

(
y2 + z2 +W 2

)
e
−1

η

∫ t

0

γ (s) ds

≤ −µ
(
y2 + z2 +W 2

)
,

where µ = D3e
− η1

η . It follows that the only solution of system (3) for which
.

U (3)(t, x, y, z,W ) = 0
is the solution x = y = z = w = 0. The above discussion guarantees that the trivial solution
of Equation (1) is uniformly asymptotically stable, and the same conclusion as in the proof of
Theorem 2.2 can be drawn for square integrability of solutions of Equation (1).
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3. Example

We consider the following fourth order non-autonomous differential equation of neutral type((
et

2e2t + 1
+

2

5

)(
x′′′ (t) +

1

322
x′′′ (t− r)

))′
+
(
e−t sin t+ 2

)
x′′′

+

(
sin (t) + 7et + 7e−t

et + e−t

)
x′′ +

(
e−2t sin3 t+ 2

)
x′

+

(
1

20 cosh t
+

1 + 2 (1 + t2)

20 (1 + t2)

)(
x

x2 + 1
+

x

10

)
=

2 sin t

t2 + (x (t) + x′ (t))2 + (x′′ (t)x′′′ (t))2 + 1
.

By taking

p(t, x(t), x′(t), x′′(t), x′′′(t)) =
2 sin t

t2 + (x (t) + x′ (t))2 + (x′′ (t)x′′′ (t))2 + 1

≤ e (t) = 2 sin t

t2 + 1
,

h (x) =
x

x2 + 1
+

x

10
,

h0 −
a0δ0
d1

= −53

10
≤ h′(x) =

1− x2

(1 + x2)2
+

1

10
(x) ≤ h0

2
=

11

10
,

a0 = 1 ≤ a (t) = e−t sin t+ 2 ≤ a1 = 3,

b0 =
13

2
≤ b (t) =

sin (t) + 7et + 7e−t

et + e−t
≤ b1 =

15

2
,

c0 = 1 ≤ c (t) = e−2t sin3 t+ 2 ≤ c1 = 3,

d0 =
1

10
≤ d (t) =

1

20 cosh t
+

1 + 2 (1 + t2)

20 (1 + t2)
≤ d1 =

1

5
,

q0 =
2

5
≤ q(t) =

et

2e2t + 1
+

2

5
≤ q1 =

4

5
,

and by taking

b0 =
13

2
> κ =

d1h0a1
c0

+
c1 + δ0
a0

=
291

50
, for δ0 =

3

2
,

ε =
1

20
< min

{
1

a0
,
d1h0
c0

,
b0 − κ
a1 + c1

}
,

λ0 =
53

10
= max

{
h0
2
,

∣∣∣∣h0 − a0δ0
d1

∣∣∣∣} ,
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we find

α =
21

20
=

1

a0
+ ε,

β =
49

100
=
d1h0
c0

+ ε,

ρ =
1

322

< min
{
1,

2ε

αh0
,

2εc0
α(c1 + d1λ0)

, 2
b0 − κ− ε (a1 + c1)

α(b1 + d1λ0 + d1) + β
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
.

It follows easily that∫ +∞

0

|e (t)| dt =
∫ +∞

0

∣∣∣∣ 2 sin tt2 + 1

∣∣∣∣ dt ≤ ∫ +∞

0

2

t2 + 1
dt = π,∫ +∞

0

|a′ (t)| dt =
∫ +∞

0

∣∣ (cos t) e−t − (sin t) e−t
∣∣ dt ≤ ∫ +∞

0

2e−tdt = 2,∫ +∞

0

|b′ (t)| dt =
∫ +∞

0

∣∣∣∣(et + e−t) cos t− (et − e−t) sin t
(et + e−t)2

∣∣∣∣ dt
≤
∫ +∞

0

(
1

et + e−t
+

et − e−t

(et + e−t)2

)
dt ≤ π

2
,∫ +∞

0

|c′ (t)| dt =
∫ +∞

0

∣∣ 3 (cos t sin2 t
)
e−2t − 2

(
sin3 t

)
e−2t

∣∣ dt
≤
∫ +∞

0

5e−2tdt =
5

2
,

and ∫ +∞

0

(−d′ (t)) dt =
∫ +∞

0

1

20

(
sinh t

cosh2 t
+

2t

(1 + t2)2

)
dt =

1

10
,∫ +∞

0

|q′ (t)| dt =
∫ +∞

0

∣∣∣∣ et

2e2t + 1
− 4e3t

(2e2t + 1)2

∣∣∣∣ dt = 1

3
.

Therefore, ∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)| − d′ (t) + |q′ (t)|) dt < +∞.

Thus all the assumptions of Theorem 2.2 hold, so solutions of (19) are bounded and square inte-
grable.

4. Conclusion

It is well known that the problem of asymptotic behavior of solutions for neutral differential equa-
tions is very important in the theory and applications of differential equations. In the present work,
conditions were obtained for the stability, boundedness and square integrability of solutions for
certain fourth-order neutral differential equations with delay. Using Lyapunov second or direct
method, a Lyapunov functional was defined and used to obtain our results.
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