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Abstract

This paper aims to provide a numerical method for solving systems of fractional (Caputo sense) dif-
ferential equations (FDEs). This method is based on the fractional finite difference method (FDM),
where we implemented the Grünwald-Letnikov’s approach. This method is computationally very
efficient and gives very accurate solutions. In this study, the stability of the obtained numerical
scheme is given. The numerical results show that the proposed approach is easy to be imple-
mented and are accurate when applied to system of FDEs. The method introduces promising tool
for solving many systems of FDEs. Two examples are given to demonstrate the applicability and
the effectiveness of our method.

Keywords: System of FDEs; Fractional FDM; Grünwald-Letnikov’s approach; Stability analy-
sis
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1. Introduction

FDEs are introduced during various phenomena, such as finance, applied mathematics, bio-
engineering, fluid mechanics, viscoelasticity, biology, physics and engineering (Podlubny (1999)).
However, many researchers remain unaware of this field. Consequently, considerable attention has
been given to the solutions of FDEs of physical interest. Most FDEs do not have exact solutions,
therefore, it is important to develop efficient numerical schemes to approximate solutions (Gupta
and Gupta (2008)-He (1999), Khader (2011), Khader (2018)-Meerschaert and Tadjeran (2006),
Smith (1965), and Sweilam et al. (2011)).

The Caputo fractional derivative operator Dα of order α is defined in the following form:

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α−m+1
dt, α > 0, x > 0.

For more details on the field of fractional derivatives definitions and its properties see Diethelm
(2010), Samko et al. (1993).

The main aim of this work is to apply the Legendre collocation method and the fractional FDM to
solve numerically systems of FDEs. The proposed method discretizes the introduced problem to a
system of algebraic equations thus greatly simplifying the problem.

In this article, we consider the following general form of the non-linear system of FDEs:

Dνixi(t) = fi(t;x1, x2, ..., xn), i = 1, 2, ..., n, 0 ≤ t ≤ 1, (1)

with the following initial conditions:

x
(r)
i (0) = cri , 0 ≤ r ≤ dνe. (2)

The existence and uniqueness of this initial value problem for the system of FDEs (1) have been
proved in details via Daftardar and Babakhani (2004). Many authors considered this system to
solve it using different numerical methods, for example, the differential transform method (Ertürk
and Momani (2008)) and the Adomain decomposition method (Jafari and Daftardar (2006)).

2. Grünwald-Letnikov’s approach to Caputo’s fractional derivative

In this section, we will introduce the definition of Grünwald-Letnikov fractional derivative (Pod-
lubny (1999)).
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Definition 2.1.

The Grünwald-Letnikov’s approach can be defined as:

dαy(t)

dtα
= lim

h−→0

1

hα

[ t

h
]∑

i=0

(−1)i
(
α
i

)
y(t− ih), (3)

and the shifted Grünwald-Letnikov fractional derivative is defined as:

dαy(t)

dtα
= lim

h−→0

1

hα

[ t

h
]+1∑
i=0

(−1)i
(
α

i

)
y(t− (i− 1)h), (4)

where [t/h] means the integer part of t/h.

Lemma 2.2. (Jafari et al. (2012))

Assume that y(t) satisfies some smoothness conditions e.g., y(t) can be written in the form of a
power series for | t |< ρ, with arbitrary constant ρ. The Grünwald-Letnikov formula holds for each
0 < r < ρ and a series of step size h with τ

h
∈ N,

Dα
Ry(τ) =

1

hα
∆α
hy(nh) +O(h), (h −→ 0),

where,

∆α
hy(nh) =

n∑
i=0

(−1)i
(
α
i

)
y(tn−i). (5)

In case of Caputo’s operator, we have (for 0 < α ≤ 1):

Dαy(τ) =
1

hα
∆α
hy(nh)− τ−α

Γ(1− α)
y(0) +O(h), (h −→ 0). (6)

The most favorable case here is the initial values for Caputo’s differential equation are given to be
zero. The numerical formula (6) is used to solve numerically more problems, for example. This
formula is implemented to solve the Bagley-Torvik equation (Podlubny (1999)). It also has been
applied to solve the fractional-order heat equation (Scherer and Kalla (2008)). In this paper, we
intended to extend the implementation of this formula to solve a system of FDEs.

3. Numerical implementation

In this section, we will solve numerically a system of FDEs using the Grünwald-Letnikov FDM.
To achieve this task we consider the following two examples.

Example 3.1.

We consider the following system of two linear FDEs:
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Dα x(t) = x(t) + y(t),

Dβ y(t) = −x(t) + y(t),
(7)

the parameters α and β refer to the fractional orders of time derivative with 0 < α, β ≤ 1. We also
assume the following initial conditions:

x(0) = x0 = 0, y(0) = y0 = 1. (8)

Now, we will implement the fractional FDM by using the approximate formula (6) to discretize
the considered system (7). First, we rewrite the system (7) as follows:

Dαx(tn) = x(tn) + y(tn),
Dβy(tn) = −x(tn) + y(tn).

(9)

Secondly and more importantly, we use the uniform grid tn = nh, where n = 0, 1, ...,M,Mh = T
and use the abbreviations xn and yn for approximation of the true solutions x(tn) and y(tn) in the
grid point tn. By applying the definition of the shifted Grünwald-Letnikov fractional derivative (6)
to our system (9), we obtain:

1

hα

n+1∑
i=0

(−1)i θαi xn+1−i −
(nh)−α

Γ(1− α)
x0 = xn + yn,

1

hβ

n+1∑
i=0

(−1)i θβi yn+1−i −
(nh)−β

Γ(1− β)
y0 = −xn + yn,

(10)

where θpi =

(
p

i

)
, p = α or β.

To study the stability of the numerical scheme (10), we state and prove the following two theorems.

Theorem 3.2. (Cai and Liu (2007))

The numerical approximation (10) is consistent with the fractional differential equation (9) and
xm − x(tm) = O(h1+α) and ym − y(tm) = O(h1+β).

Theorem 3.3.

The numerical scheme (10) for the system of FDEs (9) is stable.

Proof:

Let (xn, yn) and (x̄n, ȳn) be two solutions for the numerical scheme (10). Let en = xn − x̄n and
En = yn − ȳn, we have:
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(1− hα)en = −
n+1∑
i=1

(−1)iθαi en−i + hαEn ≤ −
∞∑
i=0

(−1)iθαi en−i, (11)

(1− hβ)En = −
n+1∑
i=1

(−1)iθβi En−i − hβ en ≤ −
∞∑
i=0

(−1)iθβi En−i. (12)

We have (−1)0θp0 = 1, (−1)iθpi < 0, i = 1, 2, ... and
∑∞

i=0(−1)iθpi = 1, p = α or β.
Thus, from (11) and (12), we can find:

‖en‖ ≤ max(‖e0‖, ‖e1‖, ..., ‖en−1‖) ≤ ... ≤ ‖e0‖,

‖En‖ ≤ max(‖E0‖, ‖E1‖, ..., ‖En−1‖) ≤ ... ≤ ‖E0‖.

Therefore, the numerical approximation (10) for solving the system of FDEs (9) is stable. �

Figure 1. The behavior of the exact solution (at α = 1, β = 1) and the numerical solution using the fractional FDM
with h = 0.1

The obtained numerical results of this example by using the proposed method are presented in
Figures 1 and 2. In Figure 1, we presented the behavior of the exact solution (α = β = 1) with the
numerical solution by using the fractional FDM with h = 0.1. Whereas, in Figure 2, we presented
the behavior of the numerical solutions by using the proposed method at (α = 0.7, β = 0.9).
From these figures, we can see that our numerical results are in good agreement with the exact
solution. This gives us indication that the proposed method is good to be implemented for solving
such system of FDEs.

Example 3.4.

We consider the following system of non-linear FDEs:
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Figure 2. The behavior of the numerical solution (at α = 0.7, β = 0.9) using the fractional FDM with h = 0.1

Dα x(t) = 2y2, 0 < α ≤ 1,

Dβ y(t) = tx, 0 < β ≤ 1,

Dγ z(t) = yz, 0 < γ ≤ 1,

(13)

with initial conditions:

x(0) = x0 = 0, y(0) = y0 = 1, z(0) = z0 = 1. (14)

Here, we will implement the fractional FDM by using the approximate formula (6) to discretize
the considered system (13) as follows. First, we rewrite the system (13) as follows:

Dαx(tn) = 2y2(tn),
Dβy(tn) = tnx(tn),
Dγz(tn) = y(tn)z(tn).

(15)

Secondly, we use the uniform grid tn = nh, where n = 0, 1, ...,M,Mh = T and use the abbrevia-
tions xn, yn and zn for approximation of the true solutions x(tn), y(tn) and z(tn) in the grid point
tn.

By applying the definition of the shifted Grünwald-Letnikov fractional derivative (6) to system
(15), we obtain:
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1

hα

n+1∑
i=0

(−1)i θαi xn+1−i −
(nh)−α

Γ(1− α)
x0 = 2y2n,

1

hβ

n+1∑
i=0

(−1)i θβi yn+1−i −
(nh)−β

Γ(1− β)
y0 = tnxn,

1

hγ

n+1∑
i=0

(−1)i θγi zn+1−i −
(nh)−γ

Γ(1− γ)
z0 = ynzn,

(16)

where θpi =

(
p
i

)
, p = α, β, γ.

Figure 3. The behavior of the exact solution (at α = β = γ = 1) and the numerical solution using the fractional FDM
with h = 0.1

The obtained numerical results of this example by using the proposed method are presented in
Figures 3 and 4. In Figure 3, we presented the behavior of the exact solution (α = β = γ = 1)
with the numerical solutions by using the fractional FDM with h = 0.1. Whereas, in Figure 4, we
presented the behavior of the numerical solutions by using the proposed method at (α = 0.8, β =
0.7, γ = 0.6). From these figures, we can see that our numerical results are matching well with
the exact solution. This gives us indication that these two methods are good to be implemented for
solving such system of FDEs.

4. Conclusions

We proposed an efficient computational method for calculating numerical solutions of systems of
FDEs by performing the fractional FDM. The work emphasized our confidence that the method
is reliable technique to handle the linear and non-linear systems of FDEs. On the other hand,
we studied the stability of the numerical scheme which was obtained from the fractional FDM
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Figure 4. The behavior of the numerical solution (at α = 0.8, β = 0.7, γ = 0.6) using the fractional FDM with
h = 0.1

using the Grünwald-Letnikov’s approach. Two illustrative examples are given to demonstrate the
effectiveness of our method. From the solutions obtained by using the suggested method, we can
conclude that these solutions are matching well with the exact solution and show that this approach
can be solved the problem effectively.
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