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Abstract 

 

The dynamics regular black holes thin shell wormhole with a phantom energy equation of 

state in Reissner-Nordstrom - De sitter space-time is studied using the Darmois-Israel 

formalism. A mechanical stability analysis is carried out by using the standard perturbation 

method. The stable and unstable static solution depends on the suitable value of parameters. 
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1. Introduction   
 
Regular black holes are the black holes which do not contain space-time singularities. Thin 

-shell wormholes can be constructed from the family of regular black holes (BHs) with 

regular (singularity-free) centers. The singularities are avoided in the interior of BHs while 

the horizon is indeed formed. Bardeen (1968) was the first one proposed a regular BH 

solution with specific ratio of mass and charge. Ayon-Beato and Garcia (1998) investigated 

another regular BH coupled with nonlinear electrodynamics (known as ABG black holes). 

Hayward (2006) analyzed a similar type of regular BHs. Eiroa and Sendra (2013) studied the 

regular phantom black holes as gravitational lenses. Sharif and Iftikhar (2015) studied the 

dynamics of scalar thin-shell for a class of regular black holes. Ghaffarnejad et al. (2018) 
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discussed the gravitational lenses of charged Ayon-Beato-Garcia black holes and nonlinear 

effects of Maxwell field. Borkar and Gayakwad (2014) discussed the evaluation of 

Schwarzschild exterior and interior solutions in Bimetric theory of gravitation. 

 

A mechanical stability analysis of shells was discussed by many authors. Kim (1992) 

analyzed Schwarzschild- De Sitter wormholes, using the cut-and-paste techniques. Poisson 

and Visser (1995) discussed a thin-shell wormhole by pasting together two copies of the 

Schwarzschild metric. Garcia et al. (2012) analyzed generic thin-shell traversable wormholes 

in standard general relativity. Furthermore, Kuhfittig (2014) discussed the stability of 

thin-shell wormholes. Eiroa and Simeone (2011) analyzed the stability of charged 

thin-shells.  Rahaman et al. (2010) studied the thin-shell wormholes from regular charged 

black holes. Eid (2018) has studied Schwarzschild-De Sitter TSW supported by a generalized 

cosmic chaplygin gas. Furthermore, Uchikata et al. (2012) investigated new solutions of 

charged regular black holes and their stability. Halilsoy et al. (2014) studied stability of 

regular Hayward wormhole configurations. Sharif and Mumtaz (2016) have also discussed 

the stability of regular Hayward thin-shell wormholes. 

 

In this paper, the stability of thin-shell wormhole (TSW) from regular black holes (RBHs) 

supported by phantom equation of state is discussed. In Section 2, the dynamics of a regular 

thin-shell wormhole in the framework of Darmois–Israel formalism is derived. The stability 

analysis of regular thin-shell wormhole with phantom energy equation of state is discussed in 

Section 3, and a general conclusion is finally given in Section 4.  

 

2. Dynamics of a radiating thin shell wormhole 
 

The space-time outside and inside the shell is described by: 

 

     ),d  sin (dr   dr (r)F dt (r)F ds 22222-122            (1) 

 

where )(F r are given by: 

 

     
 

q2
-1)(F

2

2

rr

m
r  , )(ar  , 

 

for the Reissner-Nordstrom (RN) space-time outside the shell (denoted by suffix +), and         

 

     
 -1)(F

2

2

L

r
r  , )(ar  , 

 

For De sitter space-time inside the shell (denoted by suffix -), where m is the gravitational 

mass, q is the charge density, 


 3L , and   is the gravitational constant. The intrinsic 

metric at the throat   is given by: 

 

     ),d  sin (dr   dr )( dds 2222222   a         (2) 

 

with the proper time  of the shell. The time evolution of the shell )(a is described by 

equation )(ar  . Applying the cut- and- paste technique, Israel (1966), to matter on , the 
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extrinsic curvatures associated with the two sides of the shell are: 

 

      𝐾𝑖𝑗
± = −𝑛𝛾

± (
𝜕2𝑥𝛾

𝜕𝜉𝑖𝜕𝜉𝑗 + Γ𝛼𝛽
𝛾 𝜕𝑥𝛼

𝜕𝜉𝑖

𝜕𝑥𝛽

𝜕𝜉𝑗 ) ⋮Σ,            (3) 

 

where


n are the unit normal 4-vector to  in M , with 1

nn , and 0

 ien . The Lanczos 

equations are given by: 

 

     
    ijijij gKKt 




8

1
,             (4) 

 

where  K  is the trace of     ijijij KKK  and ijt is the surface stress-energy tensor on  .  The 

Lanczos equations are reduced to: 

 

     
 


 K

4

1
 ,              (5) 

         
    






KKp 

8

1
,            (6) 

 

where and p are the energy density and pressure. The extrinsic curvatures are: 

 

    𝐾𝜏𝜏
± = ∓

2𝑎̈+𝐹±
′ (𝑎)

2√𝑎̇2+𝐹±(𝑎)
 , 𝐾𝜃𝜃

± = ±
1

𝑎
√𝑎̇2 + 𝐹±(𝑎)                              (7) 

 

where the dot and the prime denote derivatives with respect to   and r , respectively. The 

Lanczos equations (5), (6), with the extrinsic curvature equations (7), are given by: 

 

      4𝜋𝑎𝜎 = √𝑎̇2 + 𝐹+(𝑎) − √𝑎̇2 + 𝐹−(𝑎) ,                 (8) 

 

    𝑝 = 𝑝𝜃 = 𝑝𝜙 = [
2𝑎𝑎̈+2𝑎̇2+2𝐹(𝑎)+𝑎𝐹′(𝑎)

8𝑎𝜋 √𝑎̇2+𝐹(𝑎)
]

−

+

 .           (9) 

 

In the case of dust  𝑝 = 0 , the equation (8), where 4𝜋𝑎2𝜎 = 𝑀 is written in the form: 

 

       √𝑎̇2 + 𝐹−(𝑎) −  √𝑎̇2 + 𝐹+(𝑎) =
𝑀

𝑎
  ,                 (10) 

 

which is the motion equation obtained from the Lanczos equation. The phantom energy 

equation of state is given by: 

 

     p ,                  (11) 

 

where 0  is a positive constant. Inserting equations (8) and (9) into equation (11), the 

dynamical equation becomes: 

 

    (2𝑎𝑎̈ + 2𝑎̇2(1 − 𝜔))(√𝑎̇2 + 𝐹− −  √𝑎̇2 + 𝐹+)                              
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              +2(1 − 𝜔)(𝐹+√𝑎̇2 + 𝐹− −  𝐹−√𝑎̇2 + 𝐹+) 

 

             +𝑎(𝐹+
′ √𝑎̇2 + 𝐹− −  𝐹−

′√𝑎̇2 + 𝐹+) = 0.                         (12) 

 

This differential equation describes the evolution of the wormhole throat. It is convenient to 

define the parameter space of the problem using qm ,,  and   as free parameters. 

 

3. Linearized stability analyses 

 
The dynamical equation (12) for the static solution (where 𝑎̈ = 𝑎̇  = 0), becomes: 

 

     
.0)())(1(2   FFFFaFFFF 
         

(13) 

 

In the static case the surface energy density and pressure becomes: 

 

     
 ,)( - )(  4  aFaFa               (14) 

and 
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             (15) 

 

The conservation equation with (4) and (11) can be written as: 

 

     
0




 d

dA
pA

d

d
,               (16) 

 

where 24 aA   is the area of the wormhole throat, and can be written in the form: 

 

     )(2 pa   .                (17) 

 

The dynamical equation of motion of the thin-shell wormhole, from equation (8), becomes: 

 

     𝑎̇2 +  𝑉(𝑎) = 0 ,                        (18)  

 

where )(aV is known as the effective potential function, 
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2
1
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

  FFaaFFaV 
           

(19)  

 

and can be written in the form: 
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Its derivative is: 
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(21) 

 

Taking the first derivative of equation (11) and using (17), we obtain: 

 

     )21(2   p .               (22) 

 

The Taylor series expansion of )(aV  up to second order around a , is given by: 

 

     

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2

0
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n

n

n aabaV  ,  
!
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n
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The surface energy density and the pressure (14), (15) can be written in the form:  
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The stability of static solutions at aa   requires 0)( aV , and 0)(  aV , while the 

second derivatives )( aV  becomes: 
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The thin-shell wormhole is stable under radial perturbations if and only if 0)(  aV , and 

unstable if 0)(  aV . By letting 0)(  aV , the squared sound speed 
2  is given by: 
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(27) 

 

Variation of 
2 versus a is plotted in Figures 1-5 with different values of ,,m  and q  

as free parameters.  

 

 

4. Discussion 

 
The stability regions have been plotted in the form of parameter β

2
 versus R0. Figures 1-5 

show the stability regions with different values of free parameters in phantom energy EoS. 

Therefore, the stability region happens when the charge |q| is slightly smaller than the mass. 

This result is similar to the result of Eid (2017). Also, the stability regions belong to the case 

of negative and positive cosmological constant by varying its range for fixed value of mass is 

discussed. This shows that the physical relevance of negative and positive cosmological 

constant on wormhole stability; these stable configurations are similar to Eiroa (2008), but do 

not correspond to the range 0 <
2 ≤1 for different values of the parameters. Eid (2017) 

discussed the stability of TSWs in Born-infield theory supported by polytropic phantom 

energy. 

 
 

5. Conclusions 

 
The dynamics of regular black holes TSW with a phantom energy equation of state is derived. 

A mechanical stability analysis of regular BHs TSW about the static solution has been carried 

out. The RBHs TSW is stable under radial perturbations if and only if 0)(  aV , while for 

0)(  aV , the static solution is unstable. The output of a RTSW can be a stable or unstable, 

depending on the suitable value of parameters ,,m and q . 
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  (a)                                 (b) 

 

 
(c)                              (d) 

 

 

Figure 1. Stability regions TSW corresponding to 1 and the fixed value 1m :  

        (a)  = -1, q = 1, (b)  = -1, q = 0.5, (c) =1,q=1, (d) =1, q=0.5 
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Figure 2. Stability regions TSW corresponding to 4.0  and the fixed value 1m :  

        (a)  = -1, q = 1, (b)  = -1, q = 0.5, (c)  =1, q = 1, (d)  = 1, q = 0.5 
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

Figure 3. Stability regions TSW corresponding to 1  and the fixed value 1m : 

        (a)  = -0.5, q = 1, (b)  = -0.5, q = 0.5, (c)  =0.5, q = 1, (d)  = 0.5, q = 0.5 
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Figure 4. Stability regions TSW corresponding to 4.0  and the fixed value 1m :  

        (a)  = -0.5, q = 1, (b)  = -0.5, q = 0.5, (c)  =0.5, q = 1, (d)  = 0.5, q = 0.5 
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Figure 5. Stability regions TSW corresponding to 2  and the fixed value 1m :  

          (a)  = -1, q = 1, (b)  = -1, q = 0.5, (c)  =1, q = 1, (d)  = 1, q = 0.5 
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