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Abstract

In this paper slow flow of a viscous, incompressible fluid past a heterogeneous porous spherical
shell with cavity is discussed. The permeability of porous sphere is varying with radial distance.
Flow outside the porous spherical shell and inside the central cavity region is governed by the
Stoke’s equation. Brinkman equation is used to analyze the flow inside the porous region. The
boundary conditions used at the interface of porous and clear region are the continuity of velocity
and stress. Exact solution of the problem is obtained and relevant quantities such as stream lines,
velocity, pressure and drag on surface of the spherical shell are evaluated and exhibited graphically.
The effect of various parameters on the flow has been discussed. Obtained results are useful for the
flow past porous particles of variable permeability.

Keywords: Porous media; Spherical shell; Variable permeability flow; Brinkman model; Stoke’s
flow; Drag force

MSC 2010 No.: 76D07, 76S05

1. Introduction

A porous medium usually consists of a large number of interconnected pores. The exact form
of the structure is usually complicated and can differ from medium to medium and it may be of
homogeneous permeability or of heterogeneous permeability. Flow through porous medium may

957

1

Singh and Verma: Slow Flow Past Porous Shell of Variable Permeability with Cavity

Published by Digital Commons @PVAMU, 2019
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be governed by either Darcy’s law or Brinkman’s equation, depending on the nature of the porous
material. Darcy law is a first order equation which balances the volume flow rate in the medium
with pressure gradient and it does not take in to account the viscous forces in the medium. Darcy
proposed semi empirical law which describes the flow through porous mediums. For homogeneous
media this law can be expressed as

V = −k
µ
∇p,

where V is the filter velocity, k is permeability of the medium, µ is the viscosity of the fluid, p is
the pressure. Brinkman (1947) introduced an alternative equation commonly known as Brinkman
equation. Omitting the inertial terms this equation takes the form

∇p = −µ
k
V + µe∇2V,

where µe is the effective viscosity in porous medium.

The porous particles available in nature are of various shapes and sizes. These particles may be
only porous or a rigid core covered with a porous layer and sometimes these particles are referred
to as composite particles. Most of the available literature on flow through porous medium is on ho-
mogeneous porous medium but in real problems porous medium may be of variable permeability.
A few examples are that, in colloidal motion when colloids coalesce to form aggregate structures
with spatially varying porosities, surface covered with variable porosity porous medium, the cat-
alyzer grains produced by calcination consist of layers with different porosities, tissues in human
body, spherical particles having sticky or hairy surfaces.

Masliyah et al. (1987) studied slow flow past a solid sphere with porous shell of homogeneous per-
meability using the Stoke’s equation in clear fluid region and Brinkman equation in porous region.
They used continuity of normal and tangential velocity and stress at fluid-porous interface and no
slip condition on impermeable core as boundary condition. Qin and Kaloni (1993) investigated the
creeping flow past a porous spherical shell by using Stoke’s and Brinkman equation and shown
that the solution obtained by Darcy’s law can be derived with the appropriate choice of boundary
conditions.

Keh and Chou (2004) have been investigated analytically the quasi steady translation and steady
rotation of a spherically symmetric composite particle composed of a solid core and a surrounding
porous shell located at the center of a spherical cavity filled with an incompressible Newtonian
fluid. Srinivasacharya (2007) studied the flow of an incompressible viscous liquid past a porous
approximate spherical shell. He used Navier-Stoke’s equation for the flow in free fluid region and
Darcy’s law for porous region and obtained exact solution of the problem. The boundary conditions
used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers
and Joseph slip condition.

Seth et al. (2010) investigated unsteady hydromagnetic convective flow of a viscous incompress-
ible electrically conducting heat generating/absorbing fluid within a parallel plate rotating channel
in a uniform porous medium under slip boundary conditions and obtained exact solution of the
governing equations for fully developed flow. They analyzed asymptotic behavior of the solution
for the fluid velocity for large values of frequency parameter to gain some physical insight into the
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flow pattern. Tamamneh and Bataineh (2011) investigated axisymmetric viscous, two dimensional
steady and incompressible fluid flow past a solid sphere with porous shell at moderate Reynolds
numbers. They found that drag coefficient as well as separation angle.

Verma and Datta (2012) found analytical solution of slow flow past a porous sphere of variable
permeability and used Stoke’s equation for clear fluid flow and Brinkman equation for flow in
porous sphere. Saad and Faltas (2012) presented combined analytical numerical method to study
the quasi-steady axisymmetrical flow of an incompressible viscous fluid past an assemblage of
porous eccentric spherical particle-in-cell models. The flow inside the porous particle is governed
by the Brinkman model and the flow in the fictitious envelope region is governed by Stoke’s equa-
tions. Boundary conditions on the particles surface and fictitious spherical envelope that corre-
spond to the Happel, Kuwabara, Kvashnin and Cunningham/Mehta-Morse models are satisfied by
a collocation technique.

Verma and Singh (2014) studied laminar flow of a viscous incompressible fluid in an annular
region between two infinitely long coaxial circular cylinders filled by a porous medium of variable
permeability. Authors presented permeability of the porous medium varies with the radial distance
and flow within the porous annular region is governed by the Brinkman law and found analytical
solutions for relevant quantities. Seth et al. (2015) investigated unsteady hydromagnetic natural
convection flow of a viscous, incompressible, electrically conducting and temperature dependent
heat absorbing fluid confined within a parallel plate rotating vertical channel in porous medium.
Fluid flow within the channel is induced due to impulsive movement of one of the plates of the
channel. The authors obtained exact solution for the governing equations for fluid velocity and
fluid temperature by Laplace transform technique.

Seth et al. (2016) studied unsteady MHD convective Couette flow of a viscous, incompressible,
electrically conducting, and temperature dependent heat absorbing fluid within a rotating vertical
channel embedded in a fluid saturated porous medium taking Hall current into account. Fluid
flow within the channel was induced due to accelerated movement of one of the plates of the
channel. They obtained exact solution for fluid velocity and fluid temperature was obtained in
closed form by the Laplace transform technique and found that Hall current, thermal buoyancy
force and permeability of the medium tended to accelerate fluid flow in both the primary and
secondary flow directions whereas heat absorption had a reverse effect on it.

Seth et al. (2017) studied the effects of viscous and Ohmic heating and heat generation/absorption
on magnetohydrodynamic flow of an electrically conducting Casson thin film fluid over an un-
steady horizontal stretching sheet in a non-Darcy porous medium. The fluid is assumed to slip
along the boundary of the sheet. Authors used shooting technique in conjunction with the 4th or-
der Runge-Kutta method to solve the problem and obtained velocity and temperature of the fluid
thin film along with local skin friction coefficient and local Nusselt number for a range of values
of pertinent flow parameters. Prakash and Raja Sekhar (2017) studied viscous flow past a porous
spherical particle composed of a rigid core inside. This particle is located inside a spherical fluid
cavity filled with incompressible Newtonian fluid, under the creeping flow conditions. The authors
concluded that the presence of cavity wall retards the particle movement and boundary effect is
more pronounced when the separation distance between the particle surface and the cavity wall is
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less.

In this article we study the slow flow of a viscous incompressible fluid through a porous spherical
shell of radially varying permeability with cavity at centre. Flow outside the porous spherical shell
and inside the central cavity region is governed by the Stoke’s equation and Brinkman equation is
used to analyze the flow inside the porous region. The boundary conditions used at the interface of
porous and clear region are the continuity of velocity and stress.

U

vu

Θ

a

Region III

Region I

Θ

Region II

b

Θ

Figure 1. Flow past porous spherical shell of variable permeability with cavity at the center

2. Mathematical Formulation

A steady slow flow of viscous, incompressible fluid past a heterogeneous porous spherical shell
with cavity at the centre is considered as shown in Figure 1. Radius of spherical cavity is r∗ = a

and radius of porous spherical shell is r∗ = b. Thickness of the porous shell is (b− a). We assume
that fluid have uniform velocity U far away from the spherical shell and flow is axis symmetric.
Flow field is divided into three regions. Region I is the clear fluid region outside the spherical shell
(r∗ ≥ b), region II is the porous region within the spherical shell, i.e., a ≤ r∗ ≤ b, (b > a) and region
III is the central cavity region (0 ≤ r∗ ≤ a) within the spherical shell. The flow in clear region I
and III is governed by the Stoke’s equation and equation of continuity that are given by

∇p∗j = µ∇2V ∗j , (1)

∇.V ∗j = 0, (2)

where V ∗j , p∗j and µ are the velocity, pressure and viscosity of fluid, respectively. The superscript
j = 1 correspond to region I (r∗ ≥ b) and j = 3 correspond to region III (0 ≤ r∗ ≤ a), respectively.
The flow in porous region II (a ≤ r∗ ≤ b) is governed by the Brinkman equation (1947) together
with equation of continuity, that are given by

∇p∗2 = −µ
k
V ∗2 + µe∇2V ∗2 , (3)

∇.V ∗2 = 0, (4)

where k, µe, V ∗2 and p∗2 are the permeability, effective viscosity, fluid velocity and pressure in region
II, respectively. According to Liu and Masliyah (2005) depending upon the type of porous media,
µe may be either greater or smaller than µ. We follow Brinkman (1947) and Chikh et al. (1995)
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and take µe = µ for high porosity porous media. With this consideration Brinkman equation (3)
becomes

∇p∗2 = −µ
k
V ∗2 + µ ∇2V ∗2 . (5)

We choose spherical polar coordinate system (r∗, θ, φ) with center of spherical shell as the origin
and the line θ = 0 as axis of symmetry which is along the direction of uniform flow U , as it is
shown in figure 1. Due to axis symmetry of the problem we have ∂/∂φ = 0. Now we introduce
dimensionless variables as follows

r =
r∗

a
, uj =

u∗j
U
, vj =

v∗j
U
, pj =

ap∗j
µU

, (6)

where u∗j and v∗j are the radial and azimuthal component of velocity V ∗j in the increasing direction
of r∗ and θ, respectively. Here, j = 1, 2, 3 corresponds to region I, II and III respectively. Using
dimensionless variables equation of continuity (2) and (4) in spherical polar coordinates can be
written as

∂

∂r

(
r2uj

)
+

r

sin θ

∂

∂θ
(vj sin θ) = 0. (7)

Equation (1) in dimensionless variables, defined in Equation (6), provides two component equa-
tions as

∂pj
∂r

=
∂2uj
∂r2

+
2

r

∂uj
∂r

+
1

r2
∂2uj
∂θ2

+
cot θ

r2
∂uj
∂θ
− 2uj

r2
− 2

r2
∂vj
∂θ
− 2vj cot θ

r2
, (8)

1

r

∂pj
∂θ

=
∂2vj
∂r2

+
2

r

∂vj
∂r

+
1

r2
∂2vj
∂θ2

+
cot θ

r2
∂vj
∂θ

+
2

r2
∂uj
∂θ
− 2vjcosec2θ

r2
, (9)

Here, j = 1, 3 corresponds to region I (q ≤ r ≤ ∞) and region III (0 ≤ r ≤ 1), respectively,
and q = b/a is the thickness parameter. Brinkman equation (5) for porous region (1 ≤ r ≤ q) in
dimensionless variables provides two component equations as

−∂p2
∂r

=
a2u2
kr
− ∂2u2

∂r2
− 2

r

∂u2
∂r
− 2

r2
∂2u2
∂θ2

− cot θ

r2
∂u2
∂θ

+
2u2
r2

+
2

r2
∂v2
∂θ

+
2v2 cot θ

r2
, (10)

−1

r

∂p2
∂θ

=
a2v2
kr
− ∂2v2

∂r2
− 2

r

∂v2
∂r
− 1

r2
∂2v2
∂θ2

− cot θ

r2
∂v2
∂θ
− 2

r2
∂u2
∂θ

+
2v2cosec2θ

r2
. (11)

Here, k(r) is the permeability of the porous shell which is varying as a radial distance according
to the law k(r) = k0r

2. k0 is the permeability on the surface of the shell at r = 1. The boundary
conditions on the surface of spherical shell are continuity of tangential and normal velocities and
stresses that can be expressed in non dimensional variables as

u1 = u2 at r = q,

v1 = v2 at r = q,

τrθ(1) = τrθ(2) at r = q,

τrr(1) = τrr(2) at r = q,

u2 = u3 at r = 1,

v2 = v3 at r = 1,

τrθ(2) = τrθ(3) at r = 1,

τrr(2) = τrr(3) at r = 1, (12)
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where, τrθ(j) and τrr(j) are dimensionless shear and normal stress, respectively, and are given by

τrθ(j) =
1

r

∂uj
∂θ

+
∂vj
∂r
− vj

r
, (13)

τrr(j) = −pj + 2
∂uj
∂r

. (14)

At large distances from origin of spherical shell flow is uniform. Thus, we have another boundary
condition

u1 → cos θ and v1 → − sin θ as r →∞, (15)

3. Solution of the problem

We introduce the Stoke’s stream function ψj such that

uj =
1

r2 sin θ

∂ψj
∂θ

, vj = − 1

r sin θ

∂ψj
∂r

; j = 1, 2, 3, (16)

where ψ1, ψ2 and ψ3 are stream functions corresponding to regions I, II and III, respectively. Elim-
inating pressure pj from Equations (8) and (9) and then using Equation (16) we get

E4ψj = 0. (17)

Here, j = i correspond to region I and j = 3 correspond to region III, respectively, where E2 is
Stoke’s stream function operator defined as,

E2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
,

and

E4 =
∂4

∂r4
+

6 sin θ

r4
∂

∂θ

(
1

sin θ

∂

∂θ

)
+

sin θ

r2
∂

∂θ
×
[
∂2

∂r2

(
1

sin θ

∂

∂θ

)
+

1

sin θ

∂3

∂θ∂r2

+
cot θ

r2
∂

∂θ
×
(

1

sin θ

∂

∂θ

)
+

1

r2
∂2

∂θ2

(
1

sin θ

∂

∂θ

)]
, (18)

Again, eliminating pressure p2 from Equations (10) and (11), then using Equation (16) we get

E4ψ2 −
a2

k(r)

(
E2 − 1

k

∂k

∂r

∂

∂r

)
ψ2 = 0, 1 ≤ r ≤ q. (19)

Now, permeability of the shell varies according to the law k(r) = k0r
2. For this k(r), Equation (19)

becomes

E4ψ2 −
σ2

r2

(
E2 − 2

r

∂

∂r

)
ψ2 = 0, 1 ≤ r ≤ q, (20)

where σ2 = a2/k0 is permeability variation parameter.

Boundary condition (15) in terms of Stoke’s stream function can be expressed as

ψ1 →
r2

2
sin2θ as r →∞. (21)

Boundary condition (21) leads to consideration of solution of Equations (17) and (20) in the form

ψ1(r, θ) = f1(r)sin
2θ, q ≤ r ≤ ∞, (22)

6
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ψ2(r, θ) = f2(r)sin
2θ, 1 ≤ r ≤ q, (23)

ψ3(r, θ) = f3(r)sin
2θ, 0 ≤ r ≤ 1. (24)

Substituting ψ1 and ψ3 from the above equations in Equation (17) and ψ2 in Equation (20), we get
the following ordinary differential equations,

r4f
′′′′

1 − 4r2f
′′

1 + 8rf
′

1 − 8f1 = 0, q ≤ r ≤ ∞, (25)
r4f

′′′′

2 − 4r2f
′′

2 + 8rf
′

2 − 8f2 − σ2(r2f
′′

2 − 2rf
′

2 − 2f2) = 0, 1 ≤ r ≤ q, (26)
r4f

′′′′

3 − 4r2f
′′

3 + 8rf
′

3 − 8f3 = 0, 0 ≤ r ≤ 1. (27)

Equations (25) and (27) are homogeneous ordinary differential equation of order four. The solu-
tions of these equations are

f1(r) =
A1

r
+B1r + C1r

2 +D1r
4, (28)

and

f3(r) =
A3

r
+B3r + C3r

2 +D3r
4. (29)

The solution of Equation (26) is

f2(r) = A2 r
1

2

(
3−
√

13+2σ2−2
√
36−4σ2+σ4

)
+B2 r

1

2

(
3+
√

13+2σ2−2
√
36−4σ2+σ4

)

+ C2 r
1

2

(
3−
√

13+2σ2+2
√
36−4σ2+σ4

)
+D2 r

1

2

(
3+
√

13+2σ2+2
√
36−4σ2+σ4

)
,

(30)

where A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3 and D3 are constants of integration which can
be determined by using boundary conditions. With the above expressions for f1(r), f2(r) and f3(r)
stream function in the region I, II and III are given by equations (22), (23) and (24), respectively.
From boundary conditions (21) we get C1 = 1/2, D1 = 0 and A3 = B3 = 0. By substituting values
of C1, D1, A3, B3, equations (22) and (24) becomes

f1(r) =
A1

r
+B1r +

r2

2
, (31)

f3(r) = C3r
2 +D3r

4. (32)

Boundary conditions (12) in terms of f1(r), f2(r) and f3(r) can be written as

f1(q) = f2(q),

f
′

1(q) = f
′

2(q),

f
′′

1 (q) = f
′′

2 (q),

f
′′′

1 (q) = f
′′′

2 (q)− σ2f ′

2(q),

f2(1) = f3(1),

f
′

2(1) = f
′

3(1),

f
′′

2 (1) = f
′′

3 (1),

f
′′′

2 (1) = f
′′′

3 (1)− σ2f ′

3(1). (33)
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Using the above boundary conditions (33), we get the values of arbitrary constants A1, B1, A2, B2,

C2, D2, C3 and D3, which are given in the Appendix. Thus the stream functions in region I, II and
III are given by

ψ1(r, θ) =

(
A1

r
+B1r +

r2

2

)
sin2θ, (q ≤ r ≤ ∞), (34)

ψ2(r, θ) =
(
A2r

α1 +B2r
β1 + C2r

α2 +D2r
β2

)
sin2θ, (1 ≤ r ≤ q), (35)

ψ3(r, θ) =
(
C3r

2 +D3r
4
)

sin2θ, (0 ≤ r ≤ 1). (36)

Using Equation (16), the radial and azimuthal component of the fluid velocity in region I, II and
III are given by

u1 =
2 cos θ

r2

(
A1

r
+B1r +

r2

2

)
, (q ≤ r ≤ ∞) , (37)

v1 = −sin θ

r

(
−A1

r2
+B1 + r

)
, (q ≤ r ≤ ∞) , (38)

u2 =
2 cos θ

r2

(
A2r

α1 +B2r
β1 + C2r

α2 +D2r
β2

)
, (1 ≤ r ≤ q) , (39)

v2 = −sin θ

r

(
A2α1r

α1−1 +B2β1r
β1−1 + C2α2r

α2−1 +D2β2r
β2−1

)
, (1 ≤ r ≤ q) , (40)

u3 =
2 cos θ

r2
(
C3r

2 +D3r
4
)
, (0 ≤ r ≤ 1) , (41)

v3 = −sin θ

r

(
2C3r + 4D3r

3
)
, (0 ≤ r ≤ 1) , (42)

where constants A1, B1, A2, B2, C2, D2, C3 and D3 are given in the Appendix. Substituting
velocity from Equations (37) and (38) in Equation (8) and integrating the resulting equation, we
get the pressure p1 outside the spherical shell as

p1 =
2 cos θB1

r2
(q ≤ r ≤ ∞). (43)

Similarly, the pressure p2 inside the spherical shell (porous region) (1 ≤ r ≤ q) is obtained by using
Equations (39) and (40) in Equation (10) as

p2 = A2 r
α1−3(4− α1σ

2 − 3α2
1 + α3

1) +B2 r
β1−3(4− β1σ2 − 3β21 + β31)

+C2 r
α2−3(4− α2σ

2 − 3α2
2 + α3

2) +D2 r
β2−3(4− β2σ2 − 3β22 + β32), (44)

and the pressure p3 inside the spherical shell (cavity region) (0 ≤ r ≤ 1) is obtained by using
Equations (41) and (42) in Equation (8) as

p3 = 20D3r cos θ (0 ≤ r ≤ 1). (45)
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3.1. Drag Force on the Spherical Shell

The non-dimensional drag force acting on the surface of porous spherical shell is given by

D = 2π

∫ π

0

(
τrr(1) cos θ − τrθ(1) sin θ

)
r=q

sin θ dθ. (46)

Substituting τrr(2) and τrθ(2) from Equations (13) and (14) in the above equation, we get

D = 12π

∫ π

0

[
−
(

2A1

q4
+
B1

q2

)
cos2θ sin θ +

A1

q4
sin3θ

]
dθ. (47)

After integration we get

D = −8πB1

q2
, (48)

where B1 is given in the Appendix. If permeability is zero then drag on spherical shell is

D∞ = lim
σ→∞

D =
6π

q
.S (49)
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Σ = 0.8

0.007
0.05

0.2

0.5

1.0

2.0

-5 0 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 3. Stream lines ψ = c for c = 0.007, 0.05, 0.2, 0.5, 1.0, 2.0 when q = 2 and σ = 0.8

Σ = 1.2

0.007
0.05

0.2

0.5

1.0

2.0

-5 0 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4. Stream lines ψ = c for c = 0.007, 0.05, 0.2, 0.5, 1.0, 2.0 when q = 2 and σ = 1.2
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Figure 5. Variation of radial velocity u with radial distance r
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Figure 6. Variation of Drag force D with σ for fixed q = 2

4. Discussion

Figures 2, 3 and 4 represents the stream lines of the flow for permeability variation parameter
σ = 0.5, 0.8 and 1.2, respectively. These lines are sketched by using equations (34), (35) and (36).
From these figures we can see the effect of permeability variation parameter σ on the stream lines
of the flow. These figures also reveal that-

• As permeability parameter σ increases, the stream lines shift away from the centre sphere. This
indicate that flow through sphere reduces as σ increases. This is because increase in σ2 = a2/k0
caused by decrease in the permeability of porous spherical shell.

• In region I at a large distance from the spherical shell stream lines are almost parallel to the
direction of the main stream velocity U and is independent of σ.

• In region II, the stream lines have a curved shape because of permeability variation according to
the law k(r) = k0r

2 and curvature of the stream lines increases with σ.

Figure 5 represents the variation of the radial velocity uwith radial distance r for q = 2 and θ = π/4
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for σ = 0.5, 0.8 and 1.2. These graphs are sketched by using equations (37), (38), (39), (40), (41)
and (42). We observe that velocity is increasing as σ is decreasing (i.e., when permeability of the
porous region is increasing). We also observe that velocity is constant at large distance from the
spherical shell. Velocity decreases sharply in the porous region with r whereas inside in the cavity
region it is approaches to fixed value. Therefore, the size of the cavity region effects the flow very
much.

In Figure 6 variation of the drag force on the spherical shell with σ for fixed q = 2 is shown. We
observe that drag increases with increase in σ initially and then drag becomes almost constant, i.e.,
independent of σ. This is because increase in σ caused decrease in permeability of the porous shell.
Equation (48) shows that drag on the shell is very much dependent on the size of the cavity region.

5. Conclusion

The steady slow flow of viscous incompressible fluid through a porous spherical shell of radially
varying permeability with central cavity has been investigated using the Brinkman and Stoke’s
equation. An exact solution of the problem in closed form is obtained. We find expressions for the
stream lines, fluid velocity and drag force on the spherical shell. The effect of various parameters
on the flow are discussed and obtained results are exhibited graphically. We found that variation
of permeability has significant effect on the flow. Also the size of cavity region effect the flow
characteristics very much. In the limiting case when σ → ∞ the obtained results reduces to the
classical results of the flow past solid sphere. The obtained results are useful for the flow through
porous particles of variable permeability.
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Appendix

A1 =

(
K2K7

∆
+
K1L10

T1
+K9

)
B1 =

(
K2K8

∆
+
K1L11

T1
+K10

)
A2 =

(
−K2

∆

)
B2 =

(
K2T4 −∆K1

∆T1

)
C2 =

(
∆ (K16L1T1 −K1L2) +K2 (L5T1 + L2T4)

∆L1T1

)
D2 =

(
∆ (K13T1T6 −K1T5) +K2 (T4T5 − T1T7)

∆T1T6

)
C3 =

(
K2 (−K3L5 −K5T4 +K11)

∆
+K1K5 +K14

)
D3 =

(
K2 (−K4L5 −K6T4 +K12)

∆
+K1K6 +K15

)
∆ = (T1T3 + T2T4)

K1 = (L1L7 + L8)

K2 = (K1T2 + L9T1)

K3 =

(
f11 − f6h10

h6

L1

)

K4 =

(
f12 − f6h11

h6

L1

)

K5 =

(
−g6h10

h6
+ g10 +K3L2

T1

)

K6 =

(
−g6h11

h6
+ g11 +K4L2

T1

)

K7 =
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e2y3q

e1

2h1
− f2L5y2q
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K8 =

(
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h3q
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α2

2h1L1
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(
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f3

2h2L1
− 3h3q

4h2
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K11 =

(
e10 −

e6h10
h6

)
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K12 = e11 −
e6h11
h6

K13 = −3f10q
2

2T6

K14 = −3 (α2 − 4) q2T8
4T6
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3f3q

2T9
4T6
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(
3h5
L1q

)
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T4 = (L1R3 − L5R2)
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2
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(
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R1 = (G1h6 − g6H1)

R2 = (F1h6 − f6H1)

R3 = (h6E1 − e6H1)

y1 = (β2 − β1)
y2 = (β2 − α2)
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