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Abstract

In this paper, we propose a new method called the inverse fractional Shehu transform method to
solve homogenous and non-homogenous linear fractional differential equations. Fractional deriva-
tives are described in the sense of Riemann-Liouville and Caputo. Illustrative examples are given
to demonstrate the validity, efficiency and applicability of the presented method. The solutions
obtained by the proposed method are in complete agreement with the solutions available in the
literature.

Keywords: Fractional differential equations; Riemann-Liouville fractional derivative; Caputo
fractional derivative; Shehu transform

MSC 2010 No.: 34A08, 35A22, 33E12, 35C10

926

1

Khalouta and Kadem: Inverse Fractional Shehu Transform Method

Published by Digital Commons @PVAMU, 2019



AAM: Intern. J., Vol. 14, Issue 2 (December 2019) 927

1. Introduction

The theory of fractional calculus plays an important role in many fields of pure and applied math-
ematics. Fractional integrals and derivatives, in association with different integral transforms, are
used to solve different types of differential and integral equations. Fractional differential equations
are widely used in interpretation and modeling in applied mathematics and physics including fluid
mechanics, electrical circuits, diffusion, damping laws, relaxation processes, mathematical biol-
ogy, and so on (see, for example, Herrmann (2014), Khader et al. (2018), Saad et al. (2019), and
Khalouta et al. (2019a)). Therefore, the search for solutions to fractional differential equations is
an important aspect of scientific research.

There are several mathematical methods to obtain the solutions of fractional differential equations,
such as: Adomian decomposition method (Cheng et al. (2011)), variational iteration method (Ziane
(2018)), new iterative method (Khalouta et al. (2019c)), differential transform method (Grover
et al. (2017)), homotopy analysis method (Anber et al. (2014)), homotopy perturbation method
(Hemed (2014)), fractional reduced differential transform method (Khalouta et al. (2019b)), frac-
tional residual power series method (Khalouta et al. (2020)). Also, there are some other classical
solution techniques such as Laplace transform method, fractional Green’s function method, Mellin
transform method and method of orthogonal polynomials (Podlubny (1999)).

The purpose of this paper is to present a new method called the inverse fractional Shehu transform
method for solving fractional differential equations. Our aim is to extend the application of the
proposed method to obtain the exact solutions to linear fractional differential equations.

This paper is organized as follows. In Section 2, we give some definitions and preliminaries of
fractional calculus theory. In Section 3, we present six theorems with detailed proofs related to
the inverse fractional Shehu transform method. In Section 4, we implement the inverse fractional
Shehu transform method to some examples of homogenous and non-homogenous linear fractional
differential equations. Section 5 is for conclusions of this paper.

2. Definitions and Preliminaries

There are several definitions of a fractional derivative of order α ≥ 0 (see Kilbas et al. (2006),
Podlubny (1999)). The most commonly used definitions are the Riemann-Liouville and Caputo. In
this section, we give some basic definitions and properties of the fractional calculus theory which
are used further in this paper.

Definition 2.1.

A real function f(t), t > 0, is considered to be in the space Cµ, µ ∈ R if there exists a real number
p > µ, so that f(t) = tph(t), where h(t) ∈ C ([0,∞[), and it is said to be in the space Cn

µ if
f (n) ∈ Cµ, n ∈ N.

2
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Definition 2.2.

The Riemann-Liouville fractional integral operator Iα of order α for a function f ∈ Cµ, µ ≥ −1
is defined as follows,

Iαf(t) =


1

Γ(α)

t∫
0

(t− ξ)α−1 f(ξ)dξ, α > 0, t > 0,

f(t), α = 0,

(1)

where Γ(.) is the well-known Gamma function.

Definition 2.3.

The Riemann-Liouville fractional derivative operator RDα of order α for a function f ∈ Cµ, µ ≥
−1 is defined as follows,

RDαf(t) = DnIn−αf(t) =
1

Γ(n− α)

dn

dtn

t∫
0

(t− ξ)n−α−1f(ξ)dξ, t > 0, (2)

where n− 1 < α ≤ n, n ∈ N.

Definition 2.4.

The fractional derivative of f(t) in the Caputo sense is defined as follows,

cDαf(t) = In−αDnf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ, t > 0, (3)

where n− 1 < α ≤ n, n ∈ N, f ∈ Cn
−1.

Definition 2.5.

The Mittag-Leffler function is defined as follows,

Eα (z) =
∞∑
n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0. (4)

A further generalization of (4) is given in the form

Eα,β (z) =
∞∑
n=0

zn

Γ(nα + β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0. (5)

3. Theories of the inverse fractional Shehu transform method

In this section, we proves six theorems related to the inverse fractional Shehu transform method.

3
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3.1. Shehu transform

Recently, Shehu Maitama Shehu et al. (2019) introduced a new integral transform, called Shehu
transform, which is applied to solve an ordinary and partial differential equations.

Definition 3.1.

The Shehu transform of the function f(t) of exponential order is defined over the set of functions

A =

{
f(t)/∃N, η1, η2 > 0, |f(t)| < N exp

(
|t|
ηj

)
, if t ∈ (−1)i × [0,∞)

}
,

by the following integral

S [f(t)] = F (s, u) =

∫ ∞
0

exp

(
−st
u

)
f(t)dt, t > 0,

Some basic properties of the Shehu transform are given as follows

Property 1.

The Shehu transform is a linear operator. That is, if λ and µ are non-zero constants, then

S [λf(t)± µg(t)] = λS [f(t)]± µS [g(t)] . (6)

Property 2.

If f (n)(t) is the n-th derivative of the function f(t) ∈ Awith respect to “t" then its Shehu transform
is given by

S
[
f (n)(t)

]
=
sn

un
F (s, u)−

n−1∑
k=0

( s
u

)n−(k+1)

f (k)(0). (7)

Property 3.

Suppose F (s, u) and G(s, u) are the Shehu transforms of f(t) and g(t), respectively, both defined
in the set A. Then the Shehu transform of their convolution is given by

S [(f ∗ g) (t)] = F (s, u)G(s, u),

where the convolution of two functions is defined by

(f ∗ g) (t) =

∫ t

0

f(ξ)g(t− ξ)dξ =

∫ t

0

f(t− ξ)g(ξ)dξ.

Property 4.

4
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Some special Shehu transforms are

S(1) =
u

s
,

S(t) =
u2

s2
, (8)

S
(
tn

n!

)
=
(u
s

)n+1

, n = 0, 1, 2, ...

Property 5.

The Shehu transform of tα is given by

S [tα] =
(u
s

)α+1

Γ (α + 1) .

3.2. Inverse Shehu transform

Now, we give the proof of Theorems 3.2–3.4, which are useful for finding the inverse Shehu trans-
form function

f(t) = S−1 [F (s, u)] .

Theorem 3.2.

If α, β > 0, a ∈ R, and |a| < sα

uα
, then we have the inverse Shehu transform formula

S−1
[
uβsα−β

sα + auα

]
= tβ−1Eα,β(−atα). (9)

Proof:

First, we take the Shehu transform of the right-hand side of Equation (9) to get

S
[
tβ−1Eα,β(−atα)

]
=

∫ ∞
0

exp

(
−st
u

)
tβ−1Eα,β(−atα)dt

=

∫ ∞
0

exp

(
−st
u

)
tβ−1

∞∑
k=0

(−atα)k

Γ(kα + β)
dt (10)

=
∞∑
k=0

(−a)k

Γ(kα + β)

∫ ∞
0

exp

(
−st
u

)
tαk+β−1dt.

Now, by integration by parts we have∫ ∞
0

exp

(
−st
u

)
tαk+β−1dt =

(u
s

)αk+β
Γ(kα + β). (11)

5
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By substituting Equation (11) into Equation (10), we get

S
[
tβ−1Eα,β(−atα)

]
=
∞∑
k=0

(−a)k

Γ(kα + β)

(u
s

)αk+β
Γ(kα + β)

=
(u
s

)β ∞∑
k=0

(
−auα

sα

)k
(12)

=
(u
s

)β 1

1−
(−auα

sα

)
=
(u
s

)β sα

sα + auα
,

∣∣∣∣auαsα
∣∣∣∣ < 1.

Then, the inverse Shehu transform of Equation (12) is given by

S−1
[
uβsα−β

sα + auα

]
= tβ−1Eα,β(−atα).

The proof is complete. �

Theorem 3.3.

If α ≥ β > 0, a ∈ R, and |a| <
( s
u

)α−β
, then we have the inverse Shehu transform formula

S−1
[

u(n+1)(α+β)

(sαuβ + auαsβ)n+1

]
= tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β). (13)

Proof:

Similarly to the proof of Theorem 3.2, we take the Shehu transform of the right-hand side of
Equation (13) and by integration by parts, we get

S

[
tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β)

]
(14)

=
(u
s

)α(n+1)
∞∑
k=0

(
n+ k

k

)(
−au

α−β

sα−β

)k
.

Using the series expansion of (1 + t)−(n+1) of the form

1

(1 + t)n+1
=
∞∑
k=0

(
n+ k

k

)
(−t)k, (15)

we have

S

[
tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β)

]
=

u(n+1)(α+β)

(sαuβ + auαsβ)n+1 ,

∣∣∣∣auα−βsα−β

∣∣∣∣ < 1. (16)

6
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Then, the inverse Shehu transform of Equation (16) is given by

S−1
[

u(n+1)(α+β)

(sαuβ + auαsβ)n+1

]
= tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β).

The proof is complete. �

Theorem 3.4.

If α ≥ β, α > γ, a ∈ R, |a| <
( s
u

)α−β
, and |b| < sαuβ + auαsβ

uα+β
, then we have the inverse Shehu

transform formula

S−1
[

uα+β−γsγ

sαuβ + auαsβ + buα+β

]
= tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα. (17)

Proof:

We take the Shehu transform of the right-hand side of Equation (17), by integration by parts and
using the series expansion (15), we get

S

[
tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα

]

=
( s
u

)γ ∞∑
n=0

(−b)n
(u
s

)α(n+1) 1(
1 + a

uα−β

sα−β

)n+1 ,

∣∣∣∣auα−βsα−β

∣∣∣∣ < 1

=
uα+β−γsγ

sαuβ + auαsβ

∞∑
n=0

(
−buα+β

sαuβ + auαsβ

)n
=

vα−γ+1

sαuβ + auαsβ + buα+β
,

∣∣∣∣ −buα+β

sαuβ + auαsβ

∣∣∣∣ < 1.

(18)

Then, the inverse Shehu transform of Equation (18) is given by

S−1
[

vα−γ+1

1 + avα−β + bvα

]
= tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα.

The proof is complete. �

3.3. Shehu transform for fractional derivatives

Theorem 3.5.

If F (s, u) is the Shehu transform of f(t), then the Shehu transform of the Riemann-Liouville
fractional integral for the function f(t) of order α, is given by

S [Iαf(t)] =
(u
s

)α
F (s, u). (19)

7
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Proof:

The Riemann-Liouville fractional integral for the function f(t) as in (1) can be expressed as the
convolution

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t). (20)

Applying the Shehu transform in Equation (20) and using Properties 3 and 5, we have

S [Iαf(t)] = S
[

1

Γ(α)
tα−1 ∗ f(t)

]
= S

[
tα−1

Γ(α)

]
S [f(t)]

=
(u
s

)α
F (s, u).

The proof is complete. �

Theorem 3.6.

Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n, and F (s, u) be the Shehu transform of the
function f(t), then the Shehu transform denoted by FR

α (s, u) of the Riemann-Liouville fractional
derivative of f(t) of order α, is given by

S
[
RDαf(t)

]
= FR

α (s, u) =
sα

uα
F (s, u)−

n−1∑
k=0

( s
u

)k [
RDα−k−1f(t)

]
t=0

. (21)

Proof:

Since

RDαf(t) = DnIn−αf(t) =
dn

dtn
In−αf(t).

Let

g(t) = In−αf(t), (22)

then,

RDαf(t) =
dn

dtn
g(t) = g(n)(t).

Applying the Shehu transform on both sides of Equation (22) and using Theorem 3.5, we get

G(s, u) = S [g(t)] = S
[
In−αf(t)

]
=
(u
s

)n−α
F (s, u). (23)

Also, we have from Property 2

8
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S
[
RDαf(t)

]
= S

[
dn

dtn
g(t)

]
=
sn

un
G(s, u)−

n−1∑
k=0

( s
u

)n−(k+1) [
g(k)(t)

]
t=0

(24)

=
sn

un
G(s, u)−

n−1∑
k=0

( s
u

)k [
g(n−k−1)(t)

]
t=0

.

From the definition of the Riemann-Liouville fractional derivative as in (2), we obtain

[
g(n−k−1)(t)

]
t=0

=

[
dn−k−1

dtn−k−1
g(t)

]
t=0

=
[
Dn−k−1In−αf(t)

]
t=0

(25)

=
[
RDα−k−1f(t)

]
t=0

.

Hence, by using Equations (25) and (23) in (24), we get

S
[
RDαf(t)

]
=
sα

uα
F (s, u)−

n−1∑
k=0

( s
u

)k [
RDα−k−1f(t)

]
t=0

= F c
α(s, u), −1 < n− 1 < α ≤ n.

The proof is complete. �

Theorem 3.7.

Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n and F (s, u) be the Shehu transform of the
function f(t). Then the Shehu transform denoted by F c

α(s, u) of the Caputo fractional derivative of
f(t) of order α, is given by

S [cDαf(t)] = F c
α(s, u) =

sα

uα
F (s, u)−

n−1∑
k=0

( s
u

)α−(k+1) [
Dkf(t)

]
t=0

. (26)

Proof:

Let

g(t) = f (n)(t),

9
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then, by the definition of the Caputo fractional derivative as in (3), we obtain

cDαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1g(ξ)dξ (27)

= In−αg(t).

Applying the Shehu transform on both sides of (27) and using Theorem 3.5, we get

S [cDαf(t)] = S
[
In−αg(t)

]
=
(u
s

)n−α
G(s, u). (28)

Also, we have from the Property 2

S [g(t)] = S
[
f (n)(t)

]
, (29)

G(s, u) =
sn

un
F (s, u)−

n−1∑
k=0

( s
u

)n−(k+1) [
f (k)(t)

]
t=0

.

Hence, (28) becomes

S [cDαf(t)] =
(u
s

)n−α( sn
un
F (s, u)−

n−1∑
k=0

( s
u

)n−(k+1) [
f (k)(t)

]
t=0

)

=
sα

uα
F (s, u)−

n−1∑
k=0

( s
u

)α−(k+1) [
Dkf(t)

]
t=0

= F c
α(s, u),

−1 < n− 1 < α ≤ n.

The proof is complete. �

4. Illustrative examples

In this section, we shall illustrate the applicability of the inverse fractional Shehu transform method
to some linear fractional differential equations.

Example 4.1.

Consider the following linear fractional initial value problem (Li (2010)),
RD1/2y(t) + y(t) = 0, (30)

subject to the initial condition [
RD−1/2y(t)

]
t=0

= 2. (31)

10
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Applying the Shehu Transform on both sides of Equation (30) and using Theorem 3.6, we get

( s
u

)1/2
Y (s, u)−

n−1∑
k=0

( s
u

)k [
RD1/2−k−1f(t)

]
t=0

+ Y (s, u) = 0. (32)

Substituting Equation (31) into Equation (32), we get[( s
u

)1/2
+ 1

]
Y (s, u)− 2 = 0.

So

Y (s, u) = S [y(t)] =
2u1/2

s1/2 + u1/2
.

Using the Theorem 3.2, the exact solution of this problem can be obtained as

y(t) = 2t−1/2E 1

2
, 1
2
(−t1/2).

Example 4.2.

Consider the initial value problem for a non-homogeneous fractional differential equation (Li
(2010)),

RDαy(t)− λy(t) = h(t), t > 0, n− 1 < α ≤ n, (33)

subject to the initial condition[
RDα−k−1y(t)

]
t=0

= bk, k = 0, 1, 2, ..., (34)

where λ and bk are constants and fractional derivative RDα denotes the Riemann-Liouville frac-
tional derivative.

Applying the Shehu Transform on both sides of Equation (33) and using Theorem 3.6, we get( s
u

)α
Y (s, u)−

n−1∑
k=0

( s
u

)k [
RDα−k−1f(t)

]
t=0
− λY (s, u) = H(s, u). (35)

Substituting Equation (34) into Equation (35), we get[( s
u

)α
− λ
]
Y (s, u)−

n−1∑
k=0

( s
u

)k
bk = H(s, u).

So

Y (s, u) = S [y(t)] =
uα

sα − λuα
H(s, u) +

n−1∑
k=0

skuα−k

(sα − λuα)
bk.
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Using Theorem 3.2 and the convolution property (3), we get

y(t) =
[
tα−1Eα,α(λtα) ∗ h(t)

]
+

n−1∑
k=0

bkt
α−k−1Eα,α−k(λt

α)

=

∫ ∞
0

(t− ξ)α−1Eα,α(λ (t− ξ)α)h(ξ)dξ +
n−1∑
k=0

bkt
αk−1Eα,α−k(λt

α).

This is the exact solution of this problem.

Example 4.3.

Consider the initial value problem of non-homogeneous Bagley-Torvik equation (Bansal et al.
(2016)),

y′′(t) +D3/2y(t) + y(t) = 1 + t, (36)

subject to the initial conditions

y(0) = y′(0) = 1. (37)

Applying the Shehu Transform on both sides of Equation (36) and using Theorem 3.7, we get

s2

u2
Y (s, u)− s

u
y(0)− 1 +

s3/2

u3/2
Y (s, u)− s1/2

u1/2
y(0)− s−1/2

u−1/2
y′(0) + Y (s, u) =

u

s
+
u2

s2
. (38)

Substituting Equation (37) into Equation (38), we get

Y (s, u)

[
s2

u2
+
s3/2

u3/2
+ 1

]
=
u

s
+
u2

s2
+
s

u
+ 1 +

s1/2

u1/2
+
s−1/2

u−1/2
. (39)

Then Equation (39) becomes

Y (s, u)

[
s2

u2
+
s3/2

u3/2
+ 1

]
=

(
u

s
+
u2

s2

)(
s2

u2
+
s3/2

u3/2
+ 1

)
. (40)

So

Y (s, u) = S [y(t)] =
u

s
+
u2

s2
. (41)

Taking the inverse Shehu transform of Equation (41), we have

y(t) = 1 + t.

This is the exact solution of this problem.
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Example 4.4.

Consider the following linear fractional initial value problem (Hashim et al. (2009), Kumar et al.
(2006), Saadatmandi et al. (2010)),

cDαy(t) + y(t) = 0, 0 < α ≤ 2, (42)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (43)

The second initial condition is for α > 1 only.

In two cases of α, S [Dαy(t)] is obtained as

1- For α < 1

S [cDαy(t)] =
s2Y (s, u)

uαs2−α
− s

uα−1s2−α
=
sα

uα
Y (s, u)−

( s
u

)α−1
.

2- For α > 1

S [cDαy(t)] =
sY (s, u)

uαs1−α
− 1

uα−1s1−α
=
sα

uα
Y (s, u)−

( s
u

)α−1
,

which are the same.

Applying the Shehu transform to both sides of Equation (42) and using Theorem 3.7, we get

sα

uα
Y (s, u)−

( s
u

)α−1
+ Y (s, u) = 0.

So

Y (s, u) = S [y(t)] =
usα−1

sα + uα
.

Using the Theorem (3.2), the exact solution of this problem can be obtained as

y(t) = Eα(−tα).

Example 4.5.

Consider the following linear fractional initial value problem (Odibat et al. (2008)),
cDαy(t) = y(t) + 1, 0 < α ≤ 1, (44)

subject to the initial condition

y(0) = 0. (45)

Applying the Shehu transform to both sides of Equation (44) and using Theorem 3.7, we get
sα

uα
Y (s, u) = Y (s, u) +

u

s
.
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So

Y (s, u) = S [y(t)] =
uα+1s−1

sα + uα
.

Using the Theorem (3.2, the exact solution of this problem can be obtained as

y(t) = tαEα,α+1(t
α).

Example 4.6.

Consider the composite fractional oscillation equation (Odibat et al. (2008)),

y′′(t)− acDαy(t)− by(t) = 8, 1 < α ≤ 2, (46)

subject to the initial conditions

y(0) = y′(0) = 0. (47)

Applying the Shehu transform to both sides of Equation (46) and using Theorem 3.7, we get

s2

u2
Y (s, u)− a s

α

uα
Y (s, u)− bY (s, u) = 8

u

s
.

So

Y (s, u) = S [y(t)] =
uα+3s−1

s2uα − au2sβbuα+2
.

Using the Theorem 3.4, the exact solution of this problem can be obtained as

y(t) = 8t2
∞∑
n=0

∞∑
k=0

bnak
(
n+k
k

)
Γ (k (2− α) + 2(n+ 1) + 1))

tk(2−α)+2n.

5. Conclusion

In this paper, a new method called the inverse fractional Shehu transform method have been suc-
cessfully applied to homogenous and non-homogenous linear fractional differential equations. We
proved six theorems related to this method. The resolution of some examples show that the inverse
fractional Shehu transform method is a powerful and efficient technique for finding exact solution
of linear fractional differential equations.

In the next studies, we shall extend this approach by combining the proposed method with semi-
analytical methods such as: Adomian decomposition method (ADM), homotopy perturbation
method (HPM), homotopy analysis method (HAM), and variational iteration method (VIM) to
study the solutions of another set of nonlinear fractional differential equations with high-order
fractional derivatives where n− 1 < α < n and n ≥ 1.
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