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Abstract 

The paper deals with a theoretical study of chemical ion transport in soil under a uniform 

external force in the transverse direction, where the soil is taken as porous medium. The 

problem is formulated in terms of boundary value problem that consists of a set of partial 

differential equations, which is subsequently converted to a system of ordinary differential 

equations by applying similarity transformation along with boundary layer approximation. 

The equations hence obtained are solved by utilizing Laplace Adomian Decomposition 

Method (LADM). The merit of this method lies in the fact that much of simplifying 

assumptions need not be made to solve the non-linear problem. The decomposition parameter 

is used only for grouping the terms, therefore, the nonlinearities is handled easily in the 

operator equation and accurate approximate solution are obtained for the said physical 

problem.  The computational outcomes are introduced graphically. By utilizing parametric 

variety, it has been demonstrated that the intensity of the external pressure extensively 

influences the flow behavior. 
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1. Introduction 

Most of the phenomena occurring in nature are non-linear. In the biological world, non-

linearity is a common problem. Modelling different problems of soil science, for example, 

fluid flow in soil involves nonlinear partial differential equations. Khuri (2001) proposed a 

numerical Laplace decomposition algorithm to solve a class of nonlinear differential 

equations.Yusufoglu (2006) applied this method for the solution of Duffing equation. Nasser 

and Elgazery (2008) used this method to solve Falkner-Skan equation. The numerical system 

essentially outlines how the Laplace Transform might be utilized to solve the nonlinear 

differential equations by utilizing the decomposition technique. 

 

For solving a certain class of problems, it is found that application of a combination of 

Laplace transform method and Adomian decomposition method namely Laplace Adomian 

decomposition method (LADM) is very useful. Some further discussion on this method has 

been made by Babolian et al. (2004) and Biazar et al. (2004). The method was used by 

Wazwaz (2010) in handling Volterra integro-differential equations and by Dogan (2012) for 

solving a system of ordinary differential equations. Jafari and Jassim (2015) discussed 

numerical solutions of telegraph and Laplace equations on cantor sets using local fractional 

Laplace decomposition method. Pirzada and Vakaskar (2015) discussed solution of fuzzy 

heat equations using Adomian Decomposition method.  

 

In the present paper, the effect of an external pressure / force on flow through a porous 

medium has been analysed by assuming the flow to be Newtonian as studied by Raptis and 

Perdikis (1983) and Sacheti (1983). The analysis is carried out by employing Laplace 

Adomian Decomposition Method as discussed by Adomian (1986) and Adomian and 

Cherruault (1993), Adomian and Cherruault (1995) and some important predictions can be 

made on the basis of the present study. The advantage of decomposition method is to give 

analytical approximate solution of nonlinear ordinary or partial differential equation which is 

rapidly convergent as shown by Adomian and Cherruault (1993),Adomian and Cherruault 

(1995). The speed of convergence depends upon the choice of operator which may be a 

highest-ordered differential operator or a combination of linear operators or a 

multidimensional operator. This method does not take the help of any simplification for 

handling the nonlinear terms. Since the decomposition parameter is used only for grouping 

the terms, therefore, the non-linearities can be handled easily in the operator equation and 

accurate approximate solution may be obtained for any physicalproblem. The study has been 

carried out for the flow in soil subject to external forces like gravity. 
 

2. Mathematical Modeling of the Problem 
 

Nomenclature: (x, y) : Cartesian coordinates of a point, (u, v): Velocity components along x- 

and y- directions, U0: Characteristic velocity, F0: Applied external force, k: Permeability of 

porous matrix, h: Half-width of channel, η: Non-dimensional distance, μ: Coefficient of 

viscosity, ν: Kinematic viscosity of solute, ρ: Density of solute, Re : Reynolds number. 

 

A transport system mainly consists of three-dimensional (3D) vessels. However, in some 

cases, such as in micro-vessels of soil it is approximately 2D and it can be considered as 

channel flow. A physical sketch of the geometry is shown in Figure 1. The x-axis is taken 

along the centre line of the channel, parallel to the channel surface and y-axis in the 
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transverse direction. The flow is taken to be symmetric about x-axis as studied by Sharma 

(2016). 

 

 

 

 

 

 

 

 

Figure 1: Physical Sketch of the Problem 

However, the solutions of multidimensional transient flow of any solute can be obtained by 

numerical modeling, their applications are limited in the field. From a hydrological 

perspective, Pirzada and Vakaskar (2015) discussed that solute movement in soil and its 

spatial distribution can largely be controlled by the water fluxes of the groundwater. For an 

improved understanding of the magnitude of these fluxes, accurate estimates of the temporal 

and spatial water uptake patterns are needed.  

    

Let u  and v  be the velocity components along x- axis and y-axis respectively and F0 be the 

applied external pressure. In the absence of pressure gradient, the equation for boundary layer  

flow of an incompressible fluid is 

 

 
𝑢

𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕𝑢

𝜕𝑦
= 𝜐

𝜕2𝑢

𝜕𝑦2
−

𝜐

𝑘
𝑢 −

𝐹0
2𝑢

𝜌
 , (1) 

 

and the continuity equation is  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (2) 

 

where  the density of solute,   is the kinetic coefficient of viscosity and k denotes the 

permeability of the porous medium. Assuming that the flow is symmetric about the central 

line 0y   of the channel, we focus our attention to the flow in the region 0 y h   only. 

Then the boundary conditions to be taken care of are as follows: 

 

 𝑢 = 𝜈 = 0        𝑎𝑡   𝑦 = ℎ, (3) 

and  

 𝜕𝑢

𝜕𝑦
= 0, 𝜈 = 0     𝑎𝑡  𝑦 = 0. (4) 

 

We now introduce the non-dimensional quantities defined by 

 

3

Soni et al.: Laplace Adomian Decomposition Method to study Chemical ion

Published by Digital Commons @PVAMU, 2019



478  Poonam Soni et al. 

  
𝜁 =

𝑥

ℎ
  , 𝜂 =

𝑦

ℎ
  , 𝑢 =

𝑈0

ℎ
𝑓′(𝜂), 𝜈 = −𝑈0 𝑓(𝜂), (5) 

 

where U0  is the characteristic velocity. 

 

It may be noted that the continuity equation (2) is automatically satisfied. 

In terms of the non-dimensional variables, Equation (1) reads 

 

  𝑓′′′ + 𝑅𝑒(𝑓𝑓′′ − 𝑓′2) − 𝑓′𝐻 = 0, 
 

(6) 

where Re and K are the Reynolds number and porosity permeability parameter respectively, 

defined by 
 

  
𝑅𝑒 =

𝑈0ℎ

𝜈
, 𝐾 =

𝑘

ℎ2
  , 𝐻 = [𝐹0

2 +
1

𝐾
]. 

 

(7) 

With the use of transformation (5), the boundary conditions (3) and (4) become 

 

  𝑓′ = 𝑓 = 0    𝑎𝑡  𝜂 = 1, (8) 

 and             

  𝑓 = 𝑓′′ = 0   𝑎𝑡  𝜂 = 0. (9) 

 

The equation (6) reduces to 

 

𝑓′′′ − 𝑓′𝐻 = 0, 
 

when Reynolds number Re  is zero and have solution of the form 

 

𝑓 = 𝐶1 + 𝐶2𝑒𝑎𝜂 + 𝐶3𝑒−𝑎𝜂 , 
where  

 

𝑎 = √𝐻. 

 

At  𝜂 = 0 , 𝑓 = 0 , 𝑓′′ = 0 , gives 𝐶1 + 𝐶2 + 𝐶3= 0 and  𝑎2𝐶2 + 𝑎2𝐶3 = 0. 
 

Implying 

 

𝑓 = 2𝐶2𝑠𝑖𝑛ℎ𝑎𝜂, 
 

and  

 
𝑓′ = 2𝑎𝐶2𝑐𝑜𝑠ℎ𝑎𝜂 

 

if  𝜂 = 0 and 𝑓′(0) = 𝑏, then 

  
𝑓 =

𝑏

𝑎
𝑠𝑖𝑛ℎ𝑎𝜂. (10) 

 

 

 

 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 14 [2019], Iss. 1, Art. 33

https://digitalcommons.pvamu.edu/aam/vol14/iss1/33



 AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 479 

3. Analysis of the Model 

 

In this section, in order to analyze the model, we first solve equation (6) subjected to the 

boundary conditions (8) and (9). For this purpose, we use the Laplace Adomian 

Decomposition Method (LADM) as shown by Turkyilmazoglu (2015) and Turkyilmazoglu 

(2017). In the first step, we consider the Laplace transformation of equation (6), whereby we 

get 

 

    𝐿[𝑓′′′] + 𝑅𝑒𝐿[𝑓𝑓′′ − 𝑓′2] + 𝐻𝐿[𝑓′] = 0, (11) 

 

Here, and in the sequel, L[F] stands for the Laplace transform of the function F. 

 

Using the property of the Laplace transform, we have 

 

  𝑠3𝐿[𝑓] − 𝑠2𝑓(0) − 𝑠𝑓′(0) + 𝑅𝑒𝐿[𝑓𝑓′ − 𝑓′2] − 𝐻[𝑠𝐿[𝑓] − 𝑓(0)] = 0. (12) 

Using the boundary condition (9), from equation (12) we obtain 

  

  𝑠(𝑠2 − 𝐻)𝐿[𝑓] = −𝑅𝑒𝐿[𝑓𝑓′′ − 𝑓′2] + 𝑠𝑓′(0). (13) 

 

Writing𝑓′(0) = 𝑏, where b is a constant, equation (13) assumes the form  

 

  
𝐿[𝑓] =

𝑏

𝑠2 − 𝐻
−

𝑅𝑒

𝑠(𝑠2 − 𝐻)
𝐿[𝑓𝑓′′ − 𝑓′2]. (14) 

 

Following Adomian Decomposition Method, we assume the solution for f  in the form of an 

infinite series: 

  
𝑓 = ∑ 𝑓𝑛

∞

𝑛=0

, (15) 

To write it in the form   

  
𝜙(𝜂) = 𝑓𝑓′′ − 𝑓′2   ;   𝜙(𝜂) = ∑ 𝐴𝑛

∞

𝑛=0

, (16) 

 

where 𝐴𝑛 = 𝐴𝑛(𝑓0, 𝑓1, … , 𝑓𝑛), are the so-called Adomian polynomials [Adomian (1986)]. To 

find An, we introduce a scalar 𝜆 such that  

 

  
𝑓(𝜆) = ∑ 𝜆𝑛𝑓𝑛

∞

𝑛=0

, (17) 

 

The parameter 𝜆 , used in (17) is not a perturbation parameter; it is used only for grouping the 

terms of different orders. Thus, the parameterized form of (16) is given by 

  

  
𝜙(𝜆) = ∑ 𝜆𝑛 (∑ 𝑓𝑖𝑓𝑛−𝑖

′′

∞

𝑖=0

− ∑ 𝑓𝑖
′𝑓𝑛−𝑖

′

∞

𝑖=0

)

∞

𝑛=0

. (18) 

 

From the definition of Adomian polynomials, it follows that  

5
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𝐴𝑛 =

1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
(𝜙(𝜆))𝜆=0. (19) 

 

Now, substituting (18) into (19), we get 

 

𝐴0 = 𝑓0
′𝑓0 − 𝑓0

′2, 
𝐴1 = 𝑓0𝑓1

′′ + 𝑓1𝑓0
′′ − 2𝑓0

′𝑓1
′, 

𝐴2 = 𝑓0
′′𝑓2 + 𝑓1

′′𝑓1 + 2𝑓0
′𝑓2

′′ − 𝑓1
′2, 

 𝐴3 = 𝑓0
′′𝑓3 + 𝑓1

′′𝑓2 + 𝑓2
′′𝑓1 − 𝑓3

′𝑓0 − 2𝑓0
′𝑓3

′ − 2𝑓1
′𝑓2

′ , (20) 

 

and so on. Substitution of equations (15) and (16) into the equation (14), further yields 

 

 
𝐿 [∑ 𝑓𝑛

∞

𝑛=0

] =
𝑏

𝑠2 − 𝐻
−

𝑅𝑒

𝑠(𝑠2 − 𝐻)
𝐿 [∑ 𝐴𝑛

∞

𝑛=0

] . 
(21) 

 

Matching both sides of equation (21) yields the iterative algorithm: 

 

 
𝐿[𝑓0] =

𝑏

𝑠2 − 𝐻
 , 

(22) 

 
𝐿[𝑓1] = −

𝑅𝑒

𝑠(𝑠2 − 𝐻)
𝐿[𝐴0], 

(23) 

 

 
𝐿[𝑓2] =

𝑅𝑒

𝑠(𝑠2 − 𝐻)
𝐿[𝐴1], 

(24) 

 𝐿[𝑓3] =
𝑅𝑒

𝑠(𝑠2−𝐻)
𝐿[𝐴2],  

 

(25) 

and so on. Now considering the inverse Laplace transform of equation (22) the following 

value of f0 is obtained for𝑎 = √𝐻:  

 

 
𝑓0 =

𝑏

𝑎
sinh(𝑎𝜂) . 

 

(26) 

The first Adomian polynomial A0 calculated from eqns. (20) and (26) is found in the form  

 

 𝐴0 = −𝑏2. 
 

(27) 

Since 𝐿[𝐴0] = [−𝑏2] = −
𝑏2

𝑠
; by applying Laplace inversion, we obtain  

 

 
𝑓1 =

𝑏2𝑅𝑒

𝑎2
(

1

𝑎
sinh(𝑎𝜂) − 𝜂). 

(28) 

 

Proceeding in a similar manner, using (20) and (28), we calculate the second Adomian 

polynomial A1 given by 

6
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𝐴1 = −

2𝑏2𝑅𝑒

𝑎2
−

𝑏3𝑅𝑒

𝑎
𝜂 sinh(𝑎𝜂) +

2𝑏3𝑅𝑒

𝑎2
cosh(𝑎𝜂). 

(29) 

 

Next, we find the Laplace transformation of A1 given by (29), substitute it in (24) and then 

consider Laplace inversion. Thus, we have found the expression of  f2 given below. 

 

 
𝑓2 =

2𝑏3𝑅𝑒

𝑎2
[

1

𝑎2
(

1

𝑎
sinh(𝑎𝜂) − 𝜂 −

1

2𝑎2
(𝜂 cosh(𝑎𝜂) −

sinh(𝑎𝜂)

𝑎

+
1

8
(𝜂2 sinh(𝑎𝜂) −

3

𝑎
(𝜂 cosh(𝑎𝜂) −

sinh(𝑎𝜂)

𝜂
))] . 

 

(30) 

   

If we consider three-term approximation of the solution  

 

 𝑓 = 𝑓0 − 𝑓1 − 𝑓2. (31) 

 

By taking 𝜆 = 1 ;  the calculated expression for f  reads 

 

 
𝑓(𝜂) =

𝑏

𝑎
sinh(𝑎𝜂) +

𝑏2𝑅𝑒

𝑎2
(

sinh(𝑎𝜂)

𝑎
− 𝜂)

+
2𝑏3𝑅𝑒

2

𝑎2
(

1

𝑎2
(

3

2𝑎
sinh(𝑎𝜂) − 𝜂 −

1

2
cosh (𝑎𝜂))

+
1

8
(𝜂2 sinh(𝑎𝜂) −

3

𝑎
(𝜂 cosh(𝑎𝜂) −

sinh (𝑎𝜂)

𝑎
)). 

(32) 

 

The results coincide with equation (10) when Reynolds number is zero.  

 

The first derivative of 𝑓(𝜂) is given by  

 

 
𝑓′(𝜂) = 𝑏𝑐𝑜𝑠ℎ(𝑎𝜂) +

𝑏2𝑅𝑒

𝑎2
(cosh(𝑎𝜂) − 1)

+
2𝑏2𝑅𝑒

2

𝑎2
((

3

𝑎
𝜂 cosh(𝑎𝜂) −

sinh(𝑎𝜂)

𝑎
− 1) +

𝑎2

8
(𝜂2 acosh(𝑎𝜂)

− 𝜂sinh (𝑎𝜂)). 

 

(33) 

Now, using the boundary condition 𝑓1
′(1) = 0, we can obtain the expression for b in the form 

 
 

𝑏 =
−(𝑐𝑜𝑠ℎ𝑎 − 1) + √4𝑠𝑖𝑛ℎ4𝑎 + 𝑎 (2 +

𝑎

2
) + 𝑠𝑖𝑛ℎ𝑎 + (𝑎3 − 8)𝑐𝑜𝑠ℎ2𝑎 − 12𝑐𝑜𝑠ℎ2𝑎

4
𝑅𝑒

𝑎2 (
3

2
𝑐𝑜𝑠𝑎 −

𝑎

2
𝑠𝑖𝑛𝑎 − 1 +

𝑎3

8
𝑐𝑜𝑠𝑎 −

𝑎2

8
𝑠𝑖𝑛𝑎)

. 

 

 

(34) 
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The volumetric flow rate is then given by  

 

 
𝑉𝑚 = 2 ∫ 𝑓′(𝜂)𝑑𝜂

1

0

, 

 

(35) 

 

= 2 [
𝑏𝑠𝑖𝑛ℎ𝑎

𝑎
+

𝑏2

𝑎2
𝑅𝑒 (

𝑠𝑖𝑛ℎ𝑎

𝑎
− 1) +

𝑏3𝑅𝑒

𝑎4
(

3𝑠𝑖𝑛ℎ𝑎

𝑎
− 𝑐𝑜𝑠ℎ𝑎 −

3

2
)

+
𝑎2

2
((1 +

3

𝑎2
) 𝑠𝑖𝑛ℎ𝑎 −

3

𝑎
𝑐𝑜𝑠ℎ𝑎)]. 

(36) 

𝑓′′(1) can be obtained by differentiating equation (33) and then considering 𝜂 = 1 . 

 

4. Results and Discussion 

 

We now present here the important results from our work in terms of pertinent dimensionless 

parameters. However, for practical considerations, we also mention some typical values of 

the corresponding dimensional parameters, as appropriate to the results subsequently 

obtained. 

 

 

 

 

 

 

 

 

 

 

Figure. 2: Distribution of 𝑉𝑚with 𝜂 different values of Reynolds numberRe 

 

 

 

 Figure 3: Distribution of f’ with   for 

different values of Reynolds 

number Re 

 

Figure 4: Distribution of f with   for 

different values of Reynolds 

number Re 
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In finding the estimates, we have taken density, ρ = 1440kg.m
−3

, viscosity of the solute μ = 

10
−3

kg.m
−1

s
−1

. Figure2 illustrates the extent of variation in the volumetric flow rate 

corresponding to different values of Reynolds number Re= 1.0, 2.0, 3.0, 4.0. The plots 

presented in this figure reveal that volumetric flow rate increases with a rise in the value of 

the Reynolds Re. The variation of f’ and f with  are shown in Figure3 and Figure4 

respectively. 

 

5.  Conclusion 

 
The numerical results estimated are presented graphically in Figures2-4. These figures 

illustrate the variation of the axial and transverse velocities in the channel flow of solute with 

change in Reynolds number Re. 

 

The present study deals with a theoretical investigation of solute flow through a porous soil 

under the action of an external force. The study is quite suitable for the application to the 

hydro-dynamical flow when it is subjected to the influence of an externally applied force. 

The solution to the nonlinear equations that govern the flow is obtained by using Adomain’s 

decomposition method which is a powerful and efficient technique to get analytical 

approximate solution of nonlinear ordinary or partial differential equations and is rapidly 

convergent as studied by Adomian and Cherruault (1993) and Cherruault et al (1995). 
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