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Abstract 
 

In this study, we establish some Hermite- Hadamard type inequalities for functions whose second 

derivatives absolute value are convex. In accordance with this purpose, we obtain an identity 

using Green's function. Then using this equality we get our main results. 

 

Keywords: Hermite-Hadamard’s inequality; Convex function; Green function; Holder 

inequality 
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1. Introduction 
 

The following inequality discovered by Hermite and Hadamard for convex functions is well 

known in the literature as the Hermite-Hadamard inequality (see, e.g., Dragomir and Pearce 

(2000)): 
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where RR If :  is a convex function on the interval I  of real numbers and Iba ,  with 

.ba    
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Hermite-Hadamard inequality provides a lower and an upper estimations for the integral average 

of any convex functions defined on a compact interval. This inequality has a notable place in 

mathematical analysis, optimization and so on. However, many studies have been established to 

demonstrate its new proofs, refinements, extensions and generalizations. A few of these studies 

are Azpeitia (1994), Erden and Sarıkaya (2016), Husain et al. (2009), Pečarić et al. (1991), 

Pearce and Pěcarić (2000), Sarikaya et al. (2012)-Xi and Qi (2013) referenced works and also the 

references included there. Particularly, see in the references Barani et al. (2012), Husain et al. 

(2009), Sarikaya et al. (2012), Set and Korkut (2016) that Hermite-Hadamard type inequalities 

for functions whose second derivatives absolute value are convex, s convex and so on.  

In this study, we establish new inequalities that are connected with the right-hand side of 

Hermite-Hadamard inequality by using Green’s function and functions whose second derivatives 

absolute value are convex, 

2.  Preliminaries 

 
In this section, we gave some works about the right hand side of the Hermite-Hadamard 

inequality (1) for twice differentiable mappings. 

Dragomir and Pearce (2000) gave the following lemma related to the right hand side of the 

inequality (1) using twice differentiable mapping:  

Lemma 2.1.  

Let RR If :  be a twice differentiable mapping on oI , Iba ,  with ba   and f  of 

integrable on ],[ ba , the following equality holds: 
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Hussain et al. (2009) proved some inequalities related to a trapezoid inequality of Hermite-

Hadamard for s convex functions by using Lemma 2.1: 

Teorem 2.2.  

Let R ),0[: If  be twice differentiable mapping on I  such that ],[1 baLf  , where 

Iba ,  with .ba   If f   is s convex on ],[ ba  for some fixed ]1,0[s  and ,1q  then the 

following inequality holds: 
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where .111 
qp

  

Remark 2.3. (Hussain et al. (2009)) 

If we take 1s  in (3), then we have 
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Sarikaya and Aktan (2011) gave the following trapezoid inequality of Hermite-Hadamard 

inequality (1): 

Theorem 2.4. 

Let RR If :  be twice differentiable function on I  with ],[1 baLf  . If f   is a 

convex on ],,[ ba  then 
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In the following we will give some necessary definitions and mathematical preliminaries of 

fractional calculus theory which are used further in this paper: 

Definition 2.5. [Gorenflo and Mainardi (1997), Miller and Ross (1993), 

Kilbas et al. (2006) Podlubni (1999)] 

 

Let ].,[1 baLf   The Riemann-Liouville fractional integrals fJ a



  and fJb



  of order 0  

with 0a  are defined by  
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respectively. Here, )(  is the Gamma function and ).()()( 00 xfxfJxfJ ba     

 

It is remarkable that Sarikaya et al.(2013) first give the following interesting integral inequalities 

of Hermite-Hadamard type involving Riemann-Liouville fractional integrals. 
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Theorem 2.6. 

 

Let R],[: baf  be a positive function with ba 0  and ].,[1 baLf   If f  is a convex 

function on ],[ ba , then the following inequalities for fractional integrals hold: 
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with .0   

 

On the other hand, Wang et al. (2012) proved the following identity for twice differentiable 

function involving Riemann-Liouville fractional integrals: 

 

Lemma 2.7. 

 

Let R],[: baf  be a twice differentiable mapping on  ba,  with ba 0 . If ],[ baLf  , 

then the following equality for fractional integrals holds:  
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For recent results connected with fractional integral inequalities see Kunt et al. (2016), Sarikaya 

and Budak (2016)-Set et al. (2017), Wang et al. (2012), Wang and Qi (2017). 

 

3. Main Results 
 

In order to prove our main results we need the following lemma: 

Lemma 3.1.  

 

Let f RR I:  be a twice differentiable function on I  (the interior of the interval I  ) such 

that ],,[ baLf   where Iba ,  with ba  . Then the following identity holds: 
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where 

 G(x; y) =

(
(x ¡ a)a¡ 1(y ¡ b); a · x · y · b;

(b¡ x)a¡ 1(a ¡ y); a · x · y · b:
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Proof: 
 

By integration by parts, we have 
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Since     ,0,,  axGbxG  it is easy to see, we get 

 

   

).()()()()()()()(

)()()()(

,

1111

11

bfaxafxbxfaxxfxb

dyyfaxdyyfxb

dyyfyxG

b

x

x

a

b

a

















                  (11) 

Integrating both sides of (11) with respect to x  over ],[ ba , we obtain 
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Multiplying both sides of (12) by 


)(2 ab
 and rearranging the last identity, we get desired 

inequality. 

Theorem 3.2. 

Let RR If :  be a twice differentiable mapping on I , Iba ,  with ba  . If f   is 

convex on ],[ ba , then the following inequality holds:  
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Proof: 

From Lemma 3.1, we have 
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Because )(yf   is convex on ],[ ba , we can write  
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Using (14), it follows that 
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If we calculate the above integrals and also use elementary analysis, we obtain desired expression 

(13). 

 

Theorem 3.3.  

 

Let RR If :  be a twice differentiable mapping on I , Iba ,  with ba  . If 
q

f   is 

convex on ],[ ba , ,1q  then the following inequality holds: 
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where 111  qp  and     ,1,
11

1

0

duuuqpB
qp     0, qp  is Euler's Beta function. 

 

Proof: 

 

From Lemma 3.1 and using Holder's inequality, we find that 
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In order to proceed further to complete the proof, we evaluate the above integrals. 
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Using the change of the variables  uabax   and  uabxb   for the above integrals, 

we get 
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Using the inequality (18), it follows that 
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Finally by substituting (17) and (19) in (16), then we easily obtain required inequality (15). This 

completes the proof. 

 

Now, we establish trapezoid in a different way by using convexity of .
q

f   

 

Theorem 3.4. 

 

Let RR If :  be a twice differentiable mapping on I , Iba ,  with ba  . If 
q

f   is 

convex on ],[ ba , ,1q  then the following inequality holds: 
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where 111  qp  and     ,1,
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0

duuuqpB
qp     0, qp  is Euler's Beta function. 

 

Proof: 

 

From Lemma 3.1 and using Holder's inequality, we have 
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By calculating each of integrals in (21) with utilizing convexity of 
q

yf )( , we obtain 
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The proof is thus completed. 

Now, we proved the following theorem using Holder's inequality different way: 

Theorem 3.5.  

Let RR If :  be a twice differentiable mapping on I , Iba ,  with ba  . If 
q

f   is 

convex on ],[ ba , ,1q then the following inequality holds: 
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where 111  qp . 

Proof: 

From Lemma 3.1 and using Holder's inequality, we find that 
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We calculate the above integrals respectively: 
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Because 
q

yf )(  is convex on ],[ ba , we obtain  
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Substituting the equalities (25) and (26) in (24), we obtain the inequality (23) which completes 

the proof. 

4.   Conclusion 

In this paper, using a special function and Riemann-Liouville fractional integrals, we obtain 

several Hermite-Hadamard type inequalities for functions whose second derivatives absolute 

value are convex. It is important because of giving Hermite-Hadamard type inequalities different 

way. Similarly, you can obtain such as inequalities using special functions. 
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