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Abstract

This paper deals with the study of the associated Chebyshev matrix polynomials. Associated matrix
polynomials with the Chebyshev matrix polynomials are defined here. Some properties of the
associated Chebyshev matrix polynomials are obtained here. Further, we prove that the associated
Chebyshev matrix polynomials satisfy a matrix differential equation of the second order.
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360 M.S. Metwally et al.

1. Introduction

Orthogonal matrix polynomials is an emergent field whose development is reaching an important
result form both the theoretical and practical points of view. Some recent result is this field which
can be found in Dattoli (2004). The important connection between orthogonal matrix polynomi-
als and matrix differential equations appears in Defez and Jódar (1998), Defez and Jódar (2002),
Jódar and Company (1996), Jódar et al. (1994), Jódar et al. (1996), and Metwally et al. (2015).
Chebyshev matrix polynomials is closely related to Hermite, Humbert and Laguerre matrix poly-
nomials, see Defez and Jódar (1998), Metwally et al. (2008), Kargin and Kurt (2013), Kargin and
Kurt (2014a), Kargin and Kurt (2014b), Kargin and Kurt (2015), Kargin and Kurt (2017), She-
hata (2016), Shehata (2017a), Shehata (2017b), Shehata (2017c), and Shehata and Çekim (2016).
Recently, Chebyshev matrix polynomials have been introduced and studied in Defez and Jódar
(2002), Metwally et al. (2015), Altin and Çekim (2012), Batahan (2006), Kargin and Kurt (2015),
and Shehata (2018) for matrices in CN×N whose eigenvalues are all situated in the open right half-
plane. The purpose of this paper is to present, investigate and define a matrix polynomials with the
associated Chebyshev matrix polynomials and derive the associated Chebyshev matrix differential
equation of the second order. Some properties of the associated Chebyshev matrix polynomials are
obtained here.

If D0 is the complex plane cut along the negative real axis and log(z) denotes the principal log-
arithm of z, then z

1

2 represents exp(1
2

log(z)). If A is a matrix of CN×N , it’s two-norm denoted
||A||2 is defined by

||A||2 =
||Ax||2
||x||2

,

where for a vector y in CN , ||y||2 denotes the usual Euclidean norm of y, ||y||2 = (yTy)
1

2 . The set
of all the eigenvalues of A is denoted by σ(A). If f(z) and g(z) are holomorphic functions of the
complex variable z, which are defined in an open set Ω of the complex plane, that is if A a matrix
in CN×N such that σ(A) ⊂ Ω, then from the properties of the matrix functional calculus, it follows
that

f(A)g(A) = g(A)f(A). (1)

If A is a matrix with σ(A) ⊂ D0, then A
1

2 =
√
A = exp(1

2
log(A)) denotes the image by z

1

2 =√
z = exp(1

2
log(z)) of the matrix functional calculus acting on the matrix A. Let A be a positive

stable matrix in CN×N satisfying the condition (see Jódar et al. (1996))

Re(z) > 0, for all z ∈ σ(A). (2)

Also, we recall that if A(k, n) and B(k, n) are matrices on CN×N for n ≥ 0, k ≥ 0, the relations
are satisfied (see Defez and Jódar (1998))

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

[ 1
2
n]∑

k=0

A(k, n− 2k), (3)

and
∞∑
n=0

∞∑
k=0

B(k, n) =
∞∑
n=0

n∑
k=0

B(k, n− k). (4)

2
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Similarly, we can write

∞∑
n=0

[ 1
2
n]∑

k=0

A(k, n) =
∞∑
n=0

∞∑
k=0

A(k, n+ 2k), (5)

and
∞∑
n=0

n∑
k=0

B(k, n) =
∞∑
n=0

∞∑
k=0

B(k, n+ k), (6)

where [x] denotes the greatest integer in x.

We recall the following specialized version of the definitions. Then, the Chebyshev matrix polyno-
mials Un(x,A) is defined by (see Metwally et al. (2015))

Un(x,A) =

[ 1
2
n]∑

k=0

(−1)k(n− k)!(x
√

2A)n−2k

k!(n− 2k)!
; n ≥ 0, (7)

and satisfies the three terms recurrence matrix relation in the form

Un(x,A) = x
√

2AUn−1(x,A)− Un−2(x,A), (8)

and satisfies the differential recurrence matrix relation

(n+ 1)
√

2AUn(x,A) = DUn+1(x,A)−DUn−1(x,A). (9)

Also from Metwally et al. (2015), we have

(I − xt
√

2A+ t2I)−1 =
∞∑
n=0

Un(x,A)tn, |t| < 1, |x| ≤ 1, (10)

where I is the unite matrix in CN×N , I − xt
√

2A+ t2I is an invertible matrix and xt
√

2A− t2I is
an invertible matrix.

The Chebyshev matrix polynomials Un(x,A) is a solution of the second order matrix differential
equation in the form (see Metwally et al. (2015))

(4I − (x
√

2A)2)D2Un(x,A)− 3x(
√

2A)2DUn(x,A)

+ n(n+ 2)(
√

2A)2Un(x,A) = 0,
(11)

where 0 is the null matrix in CN×N .

In the next section, we prove that from these matrix polynomials satisfy a second order matrix
differential equation for the associated Chebyshev matrix polynomials and definition.

2. Definition of associated Chebyshev matrix polynomials Un,m(x,A)
and their properties

Suppose that Z is a solution of Chebyshev matrix polynomials differential equation, i.e.

(4I − (x
√

2A)2)
d2Z

dx2
− 3x(

√
2A)2

dZ

dx
+ n(n+ 2)(

√
2A)2Z = 0. (12)

3
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By differentiating (12) m times with respect to x , we get

dm

dxm

[
(4I − (x

√
2A)2)d

2Z
dx2

]
− 3(
√

2A)2 dm

dxm

[
xdZ

dx

]
+n(n+ 2)(

√
2A)2

dmZ

dxm
= 0,

where m is an non-negative integer.

By Leibniz’s rule for the mth derivative of a product and the property (1) of the matrix functional
calculus, and taking into account that the higher derivatives of (4I − (x

√
2A)2) and x vanish, one

gets

(4I − (x
√

2A)2)
dm+2Z

dxm+2
− 2mx(

√
2A)2

dm+1Z

dxm+1
−m(m− 1)(

√
2A)2

dmZ

dxm

− 3(
√

2A)2x
dm+1Z

dxm+1
− 3m(

√
2A)2

dmZ

dxm
+ n(n+ 2)(

√
2A)2

dmZ

dxm
= 0.

Collecting terms in dm+2Z
dxm+2 , dm+1Z

dxm+1 and dmZ
dxm , we get becomes

(4I − (x
√

2A)2)
dm+2Z

dxm+2
− (2m+ 3)(

√
2A)2x

dm+1Z

dxm+1

+ (n2 −m2 + 2(n−m))(
√

2A)2
dmZ

dxm
= 0.

(13)

By taking Z1 = dmZ
dxm in (13), we obtain

(4I − (x
√

2A)2)
d2Z1

dx2
− (2m+ 3)(

√
2A)2x

dZ1

dx

+ (n2 −m2 + 2(n−m))(
√

2A)2Z1 = 0.
(14)

If we write

Z2 =

√
(4I − (x

√
2A)2)mZ1 =

√
(4I − (x

√
2A)2)m

dmZ

dxm
,

∥∥∥∥Ax22

∥∥∥∥ < 1,

where 4I − (x
√

2A)2 is an invertible matrix, then (14) can be written in the form

(4I − (x
√

2A)2)
d2

dx2

[
(4I − (x

√
2A)2)−

m

2 Z2

]
− x(2m+ 3)(

√
2A)2

d

dx

[
(4I − (x

√
2A)2)−

m

2 Z2

]
+ (n2 −m2 + 2(n−m))(

√
2A)2

[
(4I − (x

√
2A)2)−

m

2 Z2

]
= 0.

(15)

Since

d

dx

[
(4I − (x

√
2A)2)−

m

2 Z2

]
= (4I − (x

√
2A)2)−

m

2

dZ2

dx

+mx(
√

2A)2(4I − (x
√

2A)2)−
m

2
−1Z2,

4
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and
d2

dx2

[
(4I − (x

√
2A)2)−

m

2 Z2

]
= (4I − (x

√
2A)2)−

m

2

d2Z2

dx2

+ 2mx(
√

2A)2(4I − (x
√

2A)2)−
m

2
−1

dZ2

dx
+m(

√
2A)2(4I − (x

√
2A)2)−

m

2
−1dZ2

dx

+m(m+ 2)x2(
√

2A)4Z2(4I − (x
√

2A)2)−
m

2
−2,

then equation (15) can be written in the form

(4I − (x
√

2A)2)

[
(4I − (x

√
2A)2)−

m

2

d2Z2

dx2

+ 2mx(
√

2A)2(4I − (x
√

2A)2)−
m

2
−1dZ2

dx

+m(
√

2A)2(4I − (x
√

2A)2)−
m

2
−1Z2

+m(m+ 2)x2(
√

2A)4Z2(4I − (x
√

2A)2)−
m

2
−2
]

− (2m+ 3)x(
√

2A)2
[
(4I − (x

√
2A)2)−

m

2

dZ2

dx

+mx(
√

2A)2(4I − (x
√

2A)2)−
m

2
−1Z2

]
+ (n2 −m2 + 2(n−m))(

√
2A)2

[
(4I − (x

√
2A)2)−

m

2 Z2

]
= 0.

Canceling a common factor of (4I − (x
√

2A)2)−
m

2 and collecting terms, we find that

(4I − (x
√

2A)2)
d2Z2

dx2
+ 2mx(

√
2A)2

dZ2

dx

+m(
√

2A)2Z2 +m(m+ 2)x2(
√

2A)4Z2(4I − (x
√

2A)2)−1

− (2m+ 3)x(
√

2A)2
[
dZ2

dx
+mx(

√
2A)2(4I − (x

√
2A)2)−1Z2

]
+ (n2 −m2 + 2(n−m))(

√
2A)2Z2 = 0,

which can be written in the form

(4I − (x
√

2A)2)
d2Z2

dx2
− 3x(

√
2A)2

dZ2

dx
+

[
(n2 −m2

+ 2n−m)I −m(m+ 1)(x
√

2A)2
(

4I − (x
√

2A)2
)−1]

(
√

2A)2Z2 = 0.

Hence, we can state the following theorem.

Theorem 2.1.

If Z is a solution of associated Chebyshev matrix differential equation

(4I − (x
√

2A)2)
dZ

dx
− 3x(

√
2A)2

dZ

dx
+ n(n+ 2)(

√
2A)2Z = 0,

5
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then Y = (4I − (x
√

2A)2)
m

2
dmZ
dxm is a solution of the differential matrix equation

(4I − (x
√

2A)2)
d2Y

dx2
− 3x(

√
2A)2

dY

dx
+

[
(n2 −m2 + 2n−m)I

−m(m+ 1)(x
√

2A)2
(

4I − (x
√

2A)2
)−1]

(
√

2A)2Y = 0,
(16)

where A is a positive stable matrix in CN×N satisfying the condition (2), and 4I − (x
√

2A)2 is an

invertible matrix for
∥∥∥∥Ax2

2

∥∥∥∥ < 1.

Equation (16) will be called associated Chebyshev matrix differential equation of the second order.

Since Chebyshev matrix polynomials Un(x,A) satisfy Chebyshev matrix differential equations,
then we can derive the definition of the associated Chebyshev matrix polynomials Un,m(x,A) as
follows

Un,m(x,A) =

√(
4I − (x

√
2A)2

)m

DmUn(x,A),

∥∥∥∥Ax22

∥∥∥∥ < 1, (17)

where 4I − (x
√

2A)2 is an invertible matrix.

Remark 2.1.

It is clear that Un,0(x,A) = Un(x,A).

Remark 2.2.

It has seen that Chebyshev matrix polynomials Un(x,A) is a matrix polynomials of degree n. So
that Un,m(x,A) = 0, m > n.

3. Recurrence matrix relations

Here, some recurrence matrix relations are carried out on the associated Chebyshev matrix poly-
nomials. Let us take Z1 = DmUn(x,A) in equation (14). Hence

(4I − (x
√

2A)2)
d2

dx2
DmUn(x,A)− (2m+ 3)(

√
2A)2x

d

dx
DmUn(x,A)

+ (n2 −m2 + 2(n−m))(
√

2A)2DmUn(x,A) = 0,

which becomes

(4I − (x
√

2A)2)Dm+2Un(x,A)− (2m+ 3)(
√

2A)2xDm+1Un(x,A)

+ (n2 −m2 + 2(n−m))(
√

2A)2DmUn(x,A) = 0.
(18)

6
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Multiplying (18) by
(

4I − (x
√

2A)2
)m

2

gives

(
4I − (x

√
2A)2

)m

2
+1

Dm+2Un(x,A)

− (2m+ 3)(
√

2A)2x

(
4− (x

√
2A)2

)m

2

Dm+1Un(x,A)

+ (n2 −m2 + 2(n−m))(
√

2A)2
(

4I − (x
√

2A)2
)m

2

DmUn(x,A) = 0.

By definition (17), we obtain

Un,m+2(x,A)− (2m+ 3)x(
√

2A)2
(√

4I − (x
√

2A)2
)−1

Un,m+1(x,A)

+ (n2 −m2 + 2(n−m))(
√

2A)2Un,m(x,A) = 0,

which, by replacing m by m− 1, yields

Un,m+1(x,A)− (2m+ 1)x(
√

2A)2
(√

4I − (x
√

2A)2
)−1

Un,m(x,A)

+ (n2 −m2 + 2n+ 1)(
√

2A)2Un,m−1(x,A) = 0.
(19)

The recurrence matrix relation (19) is the relationship between three associated Chebyshev matrix
polynomials with equal n values and consecutive m values.

In the pure recurrence matrix relation of Chebyshev matrix polynomials (8), substituting n+ 1 for
n gives

Un+1(x,A) = x
√

2AUn(x,A)− Un−1(x,A). (20)

By differentiating (20) m times with respect to x and using Leibniz’s rule for the mth derivative of
the second term, we find

DmUn+1(x,A) =x
√

2ADmUn(x,A) +m
√

2ADm−1Un(x,A)

−DmUn−1(x,A).
(21)

Also, by differentiating the differential recurrence relation (9) m − 1 times with respect to x, we
see that

(n+ 1)
√

2ADm−1Un(x,A) = DmUn+1(x,A)−DmUn−1(x,A). (22)

Substituting Dm−1Un(x,A) from (22) in (21), it follows that

(n+ 1)DmUn+1(x,A) =(n+ 1)x
√

2ADmUn(x,A) +mDmUn+1(x,A)

−mDmUn−1(x,A)− (n+ 1)DmUn−1(x,A),

i.e.,

(n−m+ 1)DmUn+1(x,A) =(n+ 1)x
√

2ADmUn(x,A)

− (n+m+ 1)DmUn−1(x,A).

7
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Multiplying by
(

4I − (x
√

2A)2
)m

2

and using definition (17), we get

(n−m+ 1)Un+1,m(x,A) =(n+ 1)x
√

2AUn,m(x,A)

− (n+m+ 1)Un−1,m(x,A).

Rearrangement of terms gives

(n−m+ 1)Un+1,m(x,A)− (n+ 1)x
√

2AUn,m(x,A)

+ (n+m+ 1)Un−1,m(x,A) = 0.
(23)

The recurrence matrix relation (23) is the relationship linking three associated Chebyshev matrix
functions with the same m values and consecutive n values.

Now, multiplying equation (22) by
(

4I − (x
√

2A)2
)m

2

gives

(n+ 1)
√

2A

(
4I − (x

√
2A)2

)m

2

Dm−1Un(x,A)

=

(
4I − (x

√
2A)2

)m

2

DmUn+1(x,A)

−
(

4I − (x
√

2A)2
)m

2

DmUn−1(x,A),

which, by using definition (17), becomes

(n+ 1)
√

2A

√
4I − (x

√
2A)2Un,m−1(x,A) = Un+1,m(x,A)− Un−1,m(x,A). (24)

Substituting (m+ 1) for m gives

(n+ 1)
√

2A

√
4I − (x

√
2A)2Un,m(x,A) = Un+1,m+1(x,A)− Un−1,m+1(x,A), (25)

which represents a recurrence matrix relation of associated Chebyshev matrix polynomials.

Finally, in (19), replacing xUn,m(x,A) from (23) by

xUn,m(x,A) =
(
√

2A)−1

n+ 1

[
(n−m+ 1)Un+1,m(x,A)

+ (n+m+ 1)Un−1,m(x,A)

]
=

(
√

2A)−2
√

4I − (x
√

2A)2

(2m+ 1)

[
Un,m+1(x,A)

+ (n2 −m2 + 2n+ 1)(
√

2A)2Un,m−1(x,A)

]
,

and Un,m−1(x,A) from (24) by

Un,m−1(x,A) =

(√
2A
√

4I − (x
√

2A)2
)−1

n+ 1

[
Un+1,m(x,A)− Un−1,m(x,A)

]
,

8
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which gives

Un,m+1(x,A) =

(2m+ 1)
√

2A

(√
4I − (x

√
2A)2

)−1
n+ 1

×
[
(n−m+ 1)Un+1,m(x,A) + (n+m+ 1)Un−1,m(x,A)

]

−

√
2A(n2 −m2 + 2n+ 1)

(√
4I − (x

√
2A)2

)−1
n+ 1

×
[
Un+1,m(x,A)− Un−1,m(x,A)

]
.

Therefore, by rearrangement terms we obtain

(n+ 1)

√
4I − (x

√
2A)2Un,m+1(x,A)

=

[
m− n+ 2mn−m2 − n2

]√
2AUn+1,m(x,A)

−
[
3m2 − n2 + 3m− n+ 2mn

]√
2AUn−1,m(x,A).

(26)

Summary of these results is given in the following theorem.

Theorem 3.1.

Let A be a positive stable matrix in CN×N satisfying the condition (2), and let 4I− (x
√

2A)2 be an

invertible matrix with
∥∥∥∥Ax2

2

∥∥∥∥ < 1, then the associated Chebyshev matrix polynomials satisfy the

following matrix recurrence relations (19), (20), (25) and (26).

4. Conclusion

In this paper, several new associated matrix polynomials are introduced using Chebyshev matrix
polynomials allowing the derivation of a wealth of relations involving these matrix polynomials.
In a forthcoming investigation, we will extend this approach to derive achieved results involving
other associated Chebyshev matrix polynomials and also to introduce new families of Chebyshev
matrix polynomials which will be a problem for a further research.
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