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Abstract 
 

The present research deals with the study of transversely isotropic thermoelastic beam in the 

context of Green-Naghdi (GN) theory of thermoelasticity of Type-II and Type-III. The 

mathematical model is prepared for the thin beam in a closed form with the application of Euler 

Bernoulli beam theory. The Laplace Transform technique has been used to find the expressions 

for displacement component, lateral thermal moment, deflection and axial stress in transformed 

domain. The general algorithm of the inverse Laplace Transform is developed to compute the 

results numerically in physical domain. The effect of two theories of thermoelasticity Green-

Naghdi-II and Green-Naghdi-III has been depicted on the various quantities. Some particular 

cases have also been deduced. 

 

Keywords: Transversely Isotropic thermoelastic; Beam; Green-Naghdi theory of 

thermoelasticity of Type-II and Type-III; Lateral Deflection; Thermal Moment; 

Axial Stress 
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1. Introduction 

 
Beams as elementary structural components are usually used in bridges and beam-column 

system of constructions, piezoelectric devices, heat exchanger tubes in production equipment, 

titanium alloy artificial bones. Moreover, flying slender cylindrical structures like rockets, 

missiles are considered as a free-free beam to study the dynamical response and failure analysis 

under transient dynamical loads was given by Yu et al. (1996). Marin (1997) had proved the 

Cesaro means of the kinetic and strain energies of dipolar bodies with finite energy. Marin 

(1998) investigated and solved the initial-boundary value problem without recourse either to 
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an energy conservation law or to any boundedness assumptions on the thermoelastic 

coefficients in thermoelastic bodies with voids. Bernoulli– Euler beam model is based on a 

modified couple stress theory studied by Park and Gao (2006). Sun et al. (2008) used Laplace 

transform technique to study the vibration occurrences due to pulsed laser heating of a 

microbeam under different boundary conditions. Marin (2010) discussed the problem of 

vibrations in thermoelasticity of dipolar bodies. 

 

Thermoelastic beams with voids were studied by Li and Cheng (2010). Sharma (2011) 

investigated the governing equations of vibrations in a beam in a closed form based on the 

Euler-Bernoulli theory. The thermoelastic beams with voids was presented by Sharma and 

Grover (2011). Gupta (2011) investigated the propagation of waves in the transversely isotropic 

medium with GN theory of type-II and III. Ezzat et al. (2012)  by considering the fractional 

order dual-phase-lag heat conduction law, built a mathematical model of two-temperature 

magneto-thermoelasticity. Zang and Fu (2012) established a new beam model for a viscoelastic 

micro-beam based on the modified couple stress theory.   

 

The problem of thermoelastic damping in a micro-beam resonator by the modified couple stress 

theory was examined by Ghader et al. (2012). Guo et al. (2013) presented the problem of 

thermoelastic damping in vented MEMS beam with eigenvalue formulation and the Galerkin 

finite element method. Marin and Stan (2013) studied the micro stretch elastic bodies using 

Lesan and Quintanilla of dipolar bodies with stretch. Simsek and Reddy (2013) and Shaat et 

al. (2014) examined the bending and vibration of functionally graded microbeams using the 

modified couple stress theory and higher order beam theory. Allam and Abouelregal (2014)  

investigated the thermoelastic waves prompted by pulsed laser and varying heat of 

homogeneous microscale beam resonators using Laplace transform technique. Abouelregal and 

Zenkour (2014) discussed the problem of an axially moving microbeam and examined the 

effects of the pulse-width of thermal vibration, moving speed and the transverse excitation.  

 

Sharma and Kaur (2014b)  investigated the transverse vibrations in thermoelastic-diffusive thin 

micro beam based on Euler-Bernoulli theory under clamped-clamped boundary conditions. 

Zenkour and Abouelregal (2015)  examined the problem of thermoelastic vibration of an 

axially moving microbeam subjected to sinusoidal pulse heating. Sharma et al. (2015) 

illustrated the two-dimensional deformation using Laplace and Fourier transforms in a 

homogeneous, transversely isotropic thermoelastic solids with two temperatures w.r.t. type-II 

Green-Naghdi. Deswal and Kalkal (2015) deal with the problem of thermo-viscoelastic 

interactions in a homogeneous, isotropic three-dimensional medium with surface suffers a time 

dependent thermal shock. The problem was treated based on three-phase-lag model with two 

temperatures. 

 

Ezzat et al. (2015)  discovered a new model of linear thermo-viscoelasticity for isotropic media 

considering the rheological properties of the volume with fractional relaxation operators. Ezzat 

et al. (2016) discussed a generalized model of two-temperature thermoelasticity theory with 

time-delay and Kernel function  and Taylor theorem with memory-dependent derivatives 

involving two temperatures. Ezzat and El-Bary (2016) presented the mathematical model of 

fractional magneto-thermo-viscoelasticity for isotropic perfectly conducting media. Ezzat and 

El-Bary (2017) gave a unified mathematical model of phase-lag Green-Naghdi magneto-

thermoelasticty theories depending upon fractional derivative heat transfer for perfectly 

conducting media in the presence of a constant magnetic field.  Ezzat et al. (2017) defined a 

new mathematical model of two-temperature phase-lag Green–Naghdi thermoelasticty theories 

based on fractional derivative of heat transfer. Marin et al. (2017)  studied the GN-
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thermoelastic theory for a dipolar body using mixed initial BVP and proved a result of 

Hölder’s-type stability. Kumar and Devi (2017) studied the vibrations in a homogeneous 

isotropic thin beam in modified couple stress theory and heat conduction equation for non-

classical process in a closed form by employing the Euler Bernoulli beam theory. Despite of 

this several researchers as Kumar et al. (2017), Bhad et al. (2016), Tripathi et al. (2017)  

worked on different theory of thermoelasticity.  

 

El-Karamany and Ezzat (2017) discussed the fractional phase-lag Green–Naghdi 

thermoelasticity theories with Maxwell–Cattaneo heat conduction law using the Caputo 

fractional derivative and the fractional order heat transport equation. Ezzat and El-Bary (2018) 

constructed an incorporated GN mathematical model of electro-thermoelasticity with 

consideration of heat conduction law with fractional order derivative. Ezzat et al. (2018)  

proposed a new mathematical model of generalized magneto-thermo-viscoelasticity theories 

with memory-dependent derivatives (MDD) of dual-phase-lag heat conduction law.   

 

The present investigation deals with the problem of Transversely Isotropic thermoelastic beam 

in the context of GN-II and III Types theories of thermoelasticity. The Laplace Transform 

technique has been used to find the expressions for displacement component, lateral thermal 

moment, deflection and axial stress. The effect of two theories of thermoelasticity GN-II and 

GN-III has been depicted on the various quantities. 

 

2. Basic Equations 
 

Following Chandrasekharaiah (1998), Youssef (2011) and Green and Naghdi (1992), the 

constitutive relations and field equations for an anisotropic thermoelastic medium with GN 

theory of type-III in absence of body forces and heat sources are: 

 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 −  𝛽𝑖𝑗𝑇, (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙,𝑗 −  𝛽𝑖𝑗𝑇,𝑗 = 𝜌 �̈�𝑖, (2) 

𝐾𝑖𝑗𝑇,𝑖𝑗 + 𝐾𝑖𝑗
∗ �̇�,𝑖𝑗 =  𝛽𝑖𝑗𝑇0ё𝑖𝑗 + 𝜌𝐶𝐸�̈�, (3) 

where     

𝑇 =  𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗,  

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗,  (4) 

𝑒𝑖𝑗 =  
1

2
(𝑢𝑖,𝑗 +  𝑢𝑗,𝑖),     𝑖, 𝑗 = 1,2,3.  (5) 

 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗 ,  i is not summed, 𝛿𝑖𝑗 is kronecker delta. 

 

Here, 𝐶𝑖𝑗𝑘𝑙(𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗 =  𝐶𝑗𝑖𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘) are elastic parameters,  𝛽𝑖𝑗 is the thermal elastic 

coupling tensor, 𝑇 is the absolute temperature, 𝑇0 is the reference temperature, 𝜑 is the 

conductive temperature,  𝑡𝑖𝑗 are the components of stress tensor, 𝑒𝑖𝑗 are the components of 

strain tensor, 𝑢𝑖 are the displacement components, 𝜌  is the density, 𝐶𝐸 is the specific heat, 𝐾𝑖𝑗 

is the materialistic constant, 𝐾𝑖𝑗
∗  is the thermal conductivity,  𝑎𝑖𝑗 are the two temperature 

parameters, 𝛼𝑖𝑗 is the coefficient of linear thermal expansion. 
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3. Formulation of the problem  
 

Let us consider a homogeneous transversely isotropic rectangular thermoelastic thin beam 

(Figure 1) of length (0 ≤ 𝑥 ≤ 𝐿), width (−
𝑏

2
≤ 𝑦 ≤

𝑏

2
) and thickness (−

ℎ

2
≤ 𝑧 ≤

ℎ

2
), where  

x, y and z are the cartesian axes lying along the length, width and thickness of the beam so that 

x-axis coincides with the beam axis and y, z axis coincide with the end (x=0) with the origin 

located at the axis of the beam.  

 
Figure 1. Considered design of the beam 

 

The beam is assumed to be transversely isotropic in the sense that its mechanical and thermal 

properties are different along the thickness to that in a plane, transverse to it. In equilibrium, 

the beam is unstrained, unstressed and also kept at uniform temperature T0 . Moreover, there 

is no flow of heat along the upper and lower surface of the beam so that 

 
𝜕𝑇

𝜕𝑧
= 0, at  𝑧 = ±

ℎ

2
 .  (6) 

  

and its axial ends are assumed to be at isothermal conditions. The beam undergoes bending 

vibrations of small amplitude about the x-axis such that the deformation is consistent with the 

linear Euler-Bernoulli theory. Thus, any plane cross-section initially perpendicular to the axis 

of the beam remains plane and perpendicular to the neutral surface during bending. 

 

According to the fundamental Euler-Bernoulli theory for small deflection of a simple bending 

problem, the displacement components are given by Rao (2007) 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  −𝑧
𝜕𝑤

𝜕𝑥
, 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) =  𝑤(𝑥, 𝑡), (7) 

 

where 𝑤(𝑥, 𝑡) is the lateral deflection of the beam and t is the time.  

 

The one dimensional constitutive equation obtained from equation (1) with the help of equation 

(7) becomes 

𝑡11 =  −𝐶11𝑧
𝜕2𝑤

𝜕𝑥2 −  𝛽1𝑇, (8) 

 

where   𝛽1 =  (𝐶11 + 𝐶13)𝛼1 + 𝐶13𝛼3  is the thermoelastic coupling parameter and 𝛼1 , 𝛼3 are 

the coefficient of linear thermal expansion along and perpendicular to plane of isotropy. The 

thermoelastic parameter  𝛽3 =  2𝐶13𝛼1 + 𝐶33𝛼3  along z-axis does not appear due to Euler-

Bernoulli hypothesis. 

 

h 

L 
b 

x 

y 

z 
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The flexural moment of the cross-section of the beam following Sharma and Kaur (2014a) is 

given by 

 

𝑀(𝑥, 𝑡) = − ∫ 𝑏𝑡11𝑧𝑑𝑧
ℎ

2
−ℎ

2

=  𝐶11𝐼
𝜕2𝑤

𝜕𝑥2 +  𝛽1𝑀𝑇 , (9) 

where  𝑀𝑇 = 𝑏 ∫ 𝑇𝑧𝑑𝑧 
ℎ

2
−ℎ

2

 is the thermal moment of inertia of the beam and 𝛽1𝑀𝑇 is the thermal 

moment of the beam. In addition, 𝐼 =
𝑏ℎ3

12
 is the moment of inertia of cross-section and  𝐶11𝐼  

is the flexural rigidity of the beam. 

 

The equation of transverse motion of the beam is given by Rao (2007) 

 

𝜕2𝑀

𝜕𝑥2
+  𝜌𝐴

𝜕2𝑤

𝜕𝑡2
= 𝑞(𝑥, 𝑡), (10) 

 

where  𝐴 = 𝑏ℎ is the area of cross-section and 𝑞(𝑥, 𝑡) represents the load acting on the beam 

along the thickness direction. Using equation (9) in equation (10), we get 

 

                         𝐶11𝐼
𝜕4𝑤

𝜕𝑥4 + 𝛽1
𝜕2𝑀𝑇

𝜕𝑥2 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 = 𝑞(𝑥, 𝑡). (11) 

 

According to Lifshitz and Roukes (2000) no thermal gradient exists in the y-direction.  

Moreover, due to geometry, the thermal gradients in the plane of cross-section along the 

thickness direction of the beam are much larger than those along its axis and therefore, the heat 

conduction equation (1) under such situation with the help of displacement field becomes 

 

(𝐾1 + 𝐾1
∗ 𝜕

𝜕𝑡
)

𝜕2𝑇

𝜕𝑥2 + (𝐾3 + 𝐾3
∗ 𝜕

𝜕𝑡
)

𝜕2𝑇

𝜕𝑧2 =  −𝛽1𝑇0
𝜕4𝑤

𝜕𝑥2𝜕𝑡2 + 𝜌𝐶𝐸�̈�. (12) 

 

Multiplying by zdz and integrating from  −
ℎ

2
 𝑡𝑜 

ℎ

2
 

 

(𝐾1 + 𝐾1
∗ 𝜕

𝜕𝑡
)

1

𝛽1𝑏

𝜕2𝑀𝑇

𝜕𝑥2 + (𝐾3 + 𝐾3
∗ 𝜕

𝜕𝑡
) [

ℎ

2

𝜕𝑇

𝜕𝑧
(𝑥,

ℎ

2
, 𝑡) +

ℎ

2

𝜕𝑇

𝜕𝑧
(𝑥,

−ℎ

2
, 𝑡) +

12

𝛽1𝑏ℎ2 𝑀𝑇(𝑥, 𝑡)]  

=  −𝛽1𝑇0
ℎ3

12

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 + 𝜌𝐶𝐸
𝜕2𝑀𝑇

𝜕𝑡2  . 
(13) 

 

To facilitate the solution, the following dimensionless quantities are introduced: 

 

𝑥′ =  
𝑥

𝐿
,   𝑧′ =  

𝑧

ℎ
,    𝑤′ =  

𝑤

ℎ
,    𝑡′ =  

𝑣𝑡

𝐿
,   𝛽1

∗ =  
𝛽1𝑇0

𝐶11
, 𝑀𝑇

′ =  
𝑀𝑇

𝑇0𝐴ℎ
, 𝑇′ =  

𝑇

𝑇0
,     𝑎𝑅 =

𝐿

ℎ
,

𝐶11 =  𝜌𝑣2,  𝑞1(𝑥′, 𝑡′) =
𝐿2

𝐶11𝐴ℎ
𝑞(𝑥, 𝑡),   𝑡𝑥

′ =
𝑡𝑥

𝐶11
.  

(14) 

 

Now applying the dimensionless quantities from (14) on equation (11) and (13), after, 

suppressing the prime we get 

 
1

12𝑎𝑅
2

𝜕4𝑤

𝜕𝑥4 + 𝛽1
∗ 𝜕2𝑀𝑇

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑡2 = 𝑞1(𝑥, 𝑡),  (15) 
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1

𝑎𝑅
2 𝛽1

(𝐾1 + 𝐾1
∗

𝑣

𝐿

𝜕

𝜕𝑡
) [

𝜕2𝑀𝑇

𝜕𝑥2
] + (𝐾3 + 𝐾3

∗
𝑣

𝐿

𝜕

𝜕𝑡
) [

𝜕𝑇

𝜕𝑧
(𝑥,

ℎ

2
, 𝑡) +

𝜕𝑇

𝜕𝑧
(𝑥,

−ℎ

2
, 𝑡)] +

𝐿

𝛽1
𝑀𝑇 

 

 

= −𝛽1

ℎ3𝑣2

12𝑎𝑅
4

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+ 𝜌𝐶𝐸

𝑣2

𝑎𝑅
2

𝜕2𝑀𝑇

𝜕𝑡2
. 

 

(16) 

 

Let us take the Laplace transform defined by 

 

ℒ[𝑓(𝑡)] =  ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 𝑓(̅𝑠)
∞

0
.   (17) 

 

By applying (17) on (15)-(16) we get 

 

(𝑎1𝐷4 + 𝑠2)�̅�(𝑥, 𝑠) + 𝛽1
∗𝐷2�̅�𝑇(𝑥, 𝑠) = �̅�(𝑥, 𝑠),     (18) 

  

[𝑎6(𝑠)𝐷2 − 𝑎3𝑠2 −   𝑎5𝑎0(𝑠)]�̅�𝑇(𝑥, 𝑠) + 𝑎4𝑠2𝐷2�̅�(𝑥, 𝑠) = − 𝑎0(𝑠)𝜉1(𝑠) , 
 

(19) 

 

where 

𝐷 =
𝑑

𝑑𝑥
 ,  

𝜉1(𝑠) =
ℎ

2
[

𝑑�̅�

𝑑𝑧
(𝑥,

ℎ

2
, 𝑠) +

𝑑�̅�

𝑑𝑧
(𝑥,

−ℎ

2
, 𝑠)], (20) 

𝑎0(𝑠) = 𝐾3 + 𝐾3
∗ 𝑣

𝐿
𝑠 ,  

𝑎1 =
1

12𝑎𝑅
2    , 

 

𝑎3 =
𝜌𝐶𝐸𝑣2

𝛽1𝑏𝑎𝑅
2    , 

 

𝑎4 =  
𝛽1𝑣2ℎ3

12𝑎𝑅
4   , 

 

𝑎5 =  
12

𝑏ℎ2𝛽1
,  

𝑎6 (𝑠) =  
1

𝑏𝛽1𝑎𝑅
2 (𝐾1 + 𝐾1

∗
𝑣

𝐿
 𝑠). 

 

 

From equation (18) and (19), we get 

 

[𝐷6 − 𝑝𝐷4 + 𝑞𝐷2 − 𝑟]�̅�(𝑥, 𝑠) = Γ1�̅�(𝑥, 𝑠),  (21) 

 

where 

 

      𝑝 =  
𝑎3𝑠2𝑎1+𝛽1

∗𝑎4𝑠2+𝑎5𝑎0(𝑠)𝑎1

𝑎6(𝑠)𝑎1
, 𝑞 =

𝑠2

𝑎1
, 𝑟 =  

𝑎3𝑠4+𝑎5𝑎0(𝑠)𝑠2

𝑎6(𝑠)𝑎1
, Γ1 =

𝑎6(𝑠)𝐷2−𝑎3𝑠2−𝑎5𝑎0(𝑠)

𝑎6(𝑠)𝑎1
. 

 

For simplification of solution let us take  �̅�(𝑥, 𝑠) = 0 i.e., load on beam is assumed to be zero.  

The differential equation governing the lateral deflection  �̅�(𝑥, 𝑠), equation (21) can take the 

form 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 14 [2019], Iss. 1, Art. 17

https://digitalcommons.pvamu.edu/aam/vol14/iss1/17



276  Parveen Lata and Iqbal Kaur
 

 

(𝐷2 − 𝜆1
2)(𝐷2 − 𝜆2

2)(𝐷2 − 𝜆3
2)�̅�(𝑥, 𝑠) = 0,  (22) 

 

where  ±𝜆1, ±𝜆2 𝑎𝑛𝑑 ± 𝜆3 are the characteristics roots of the equation 𝜆6 − 𝑝𝜆4 + 𝑞𝜆2 − 𝑟 =
0 and hence, 

 

𝜆1
2 + 𝜆2

2 +  𝜆3
2 =  𝑝,  

𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆1
2𝜆3

2 = 𝑞,  

𝜆1
2𝜆2

2𝜆3
2 = r,  

 

where  p, q, r are the sum of all the roots, sum of roots taken two at a time and product of all 

the roots respectively. 

 

Let the lateral deflection �̅�(𝑥, 𝑠) is given by 

 

�̅�(𝑥, 𝑠) =  ∑ [𝐴𝑖𝑒𝜆𝑖𝑥 + 𝐵𝑖𝑒
−𝜆𝑖𝑥]3

𝑖=1 ,  (23) 

 

where 𝐴𝑖 and 𝐵𝑖, 𝑖 = 1,2,3 are the constant coefficients and are dependent on the Laplace 

variable s and the thermal moment is given by 

 

[𝑎6𝐾1𝜆𝑖
2 + Γ1]�̅�𝑇(𝑥, 𝑠) − 𝑎3𝑠2𝐷2�̅�(𝑥, 𝑠) = Γ2,  

 

By putting the value of �̅�(𝑥, 𝑠), and we get  �̅�𝑇(𝑥, 𝑠) as 

 

�̅�𝑇(𝑥, 𝑠) =
𝑎3𝑠2𝜆𝑖

2

𝑎6𝐾1𝜆1
2 + 𝛤1

∑[𝐴𝑖𝑒𝜆𝑖𝑥 + 𝐵𝑖𝑒
−𝜆𝑖𝑥]

3

𝑖=1

, 

 

 

�̅�𝑇(𝑥, 𝑠) = − ∑ 𝜍𝑖[𝐴𝑖𝑒
𝜆𝑖𝑥 + 𝐵𝑖𝑒

−𝜆𝑖𝑥]3
𝑖=1 + 𝛤′

2, (24) 

 

where 

𝛤2 =  −[𝐾3 + 𝐾3
∗𝑎1𝑠],  

𝜍𝑖 =
𝑎4𝑠2𝜆𝑖

2

𝑎6(𝑠)𝜆𝑖
2−𝑎3𝑠2−𝑎5𝑎0(𝑠)

 ,  

𝛤2
′ =

𝑎0(𝑠)𝜉1(𝑠)

𝑎6(𝑠)−𝑎3𝑠2−𝑎5𝑎0(𝑠)
 .  

Using (8) and (15) and with the aid of (24), the axial stress  𝑡1̅1(𝑥, 𝑠) can be written as 

 

𝑡1̅1(𝑥, 𝑠) = 𝑅𝑖 − ∑ [𝐴𝑖𝑒
𝜆𝑖𝑥 + 𝐵𝑖𝑒

−𝜆𝑖𝑥]3
𝑖=1 𝑁𝑖,  (25) 

 

where 

𝑅𝑖 =  −
12𝛽1

∗𝑎0(𝑠)𝜉1(𝑠)

𝑏𝛽1ℎ2(𝑎6(𝑠)−𝑎3𝑠2−𝑎5𝑎0(𝑠))
,   

  

𝜚𝑖 =
ℎ𝜆𝑖

2

𝑎𝑅
2 +  

12𝜍𝑖𝛽1
∗

𝑏𝛽1ℎ2
. 

 

 

7

Lata and Kaur: A Study of Transversely Isotropic Thermoelastic Beam

Published by Digital Commons @PVAMU, 2019



 AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 277 

4. Applications 

 
We will examine thermal loads over the upper surface of the beam. The constant heat flux (-

𝑞0) is normal to the upper surface (𝑧 =  
ℎ

2
 ) of the beam and the bottom surface (𝑧 =  

−ℎ

2
 ) is at 

zero temperature gradient. The boundary condition on the upper and bottom surface, the heat 

conduction equation is 

 

𝑞0 = 𝐾3

𝜕𝑇

𝜕𝑧
(𝑥,

ℎ

2
, 𝑡) ,

𝜕𝑇

𝜕𝑧
(𝑥,

−ℎ

2
, 𝑡) = 0. (26) 

 

Applying (14) and (17) on (26), we get 

 

𝑑�̅�

𝑑𝑧
(𝑥,

ℎ

2
, 𝑠) =

𝑞0

𝐾3
,
𝑑�̅�

𝑑𝑧
(𝑥,

−ℎ

2
, 𝑠) = 0. (27) 

 

 

5. Boundary equations 
 

Mechanical and thermal conditions are: 

 

𝑤(0, 𝑡) = 0,   
𝜕2𝑤(0, 𝑡)

𝜕𝑥2
= 0, 𝑀𝑇(0, 𝑡) = 0, (28) 

  

𝑤(𝐿, 𝑡) = 0,   
𝜕2𝑤(𝐿, 𝑡)

𝜕𝑥2
= 0, 𝑀𝑇(𝐿, 𝑡) = 0. 

(29) 

 

From (20) and (27), the thermal influence is given by 

 

𝜉1(𝑠) =
ℎ𝑞0

2𝐾3
. (30) 

 

using the dimensionless quantities(14) and equation (17) in the boundary conditions (28) and 

(29), yields 

 

�̅�(0, 𝑠) = 0,   
𝜕2�̅�(0, 𝑠)

𝜕𝑥2
= 0, �̅�𝑇(0, 𝑠) = 0, (31) 

  

�̅�(𝑙, 𝑠) = 0,   
𝜕2�̅�(𝑙, 𝑠)

𝜕𝑥2
= 0, �̅�𝑇(𝑙, 𝑠) = 0. 

(32) 

 

Substituting the values of �̅� and �̅�𝑇 from equation (23) and (24) in the boundary conditions 

(28) and (29), we obtain the value of 𝐴𝑖 and 𝐵𝑖 as 

 

𝐴𝑖 =
Δ𝑖

Δ
  , 𝐵𝑖 =

Δ𝑖+3

Δ
, 𝑖 = 1,2,3. (33) 

and   
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Δ =

|

|

1 1 1
λ1

2 λ2
2 λ3

2

eλ1 eλ2 eλ3

1 1 1
λ1

2 λ2
2 λ3

2

eλ1 eλ2 eλ3

λ1
2eλ1 λ2

2eλ2 λ3
2eλ3

𝜍1 𝜍2 𝜍3

𝜍1eλ1 𝜍2eλ2 𝜍3eλ3

λ1
2eλ1 λ2

2eλ2 λ3
2eλ3

𝜍1 𝜍2 𝜍3

𝜍1eλ1 𝜍2eλ2 𝜍3eλ3

|

|

, 

 

 

Δ𝑖(𝑖 = 1,2,3, … ,6) are obtained by replacing the columns by [0, 0, 0, 0, Γ2
′, Γ2

′] in Δ𝑖. 

 

6. Inversion of Laplace Transform 

 
To find the solution of the problem in physical domain, we must invert the transforms in 

equations (23)-(25). These equations are functions of 𝑡, the parameter of Laplace transform s 

and hence, are of the form  �̃�(𝑥, 𝑠). To get the function 𝑓(𝑥, 𝑡) in the physical domain, first we 

invert the Laplace transform using 

 

𝑓(𝑥, 𝑡) =  
1

2𝜋𝑖
∫ 𝑓(𝑥, 𝑠)𝑒−𝑠𝑡𝑑𝑠

𝑒+𝑖∞

𝑒−𝑖∞

. 

(34) 

 

The last step is to calculate the integral in equation (34). The method for evaluating this integral 

is described in Press et al. (1986), which uses Romberg’s integration with adaptive step size. 

This also uses the results from successive refinements of the extended trapezoidal rule followed 

by extrapolation of the results to the limit when the step size tends to zero. 

 

7. Particular Cases 

 
i. We obtain a transversely isotropic thermoelastic beam without energy dissipation i.e., 

GN-II theory if 𝐾𝑖𝑗
∗ = 0, 

ii. We obtain a transversely isotropic thermoelastic beam with and without energy 

dissipation i.e. GN-III theory if 𝐾𝑖𝑗  ≠ 0 ≠ 𝐾𝑖𝑗
∗ , 

iii. We obtain a transversely isotropic thermoelastic beam with the classical theory of 

thermoelasticity  if we take 𝐾𝑖𝑗 = 0 

 

8. Numerical results and discussion  
 

In order to illustrate our theoretical results in the proceeding section and to show the effect of 

frequency, we now present some numerical results. Cobalt material is chosen from Dhaliwal 

(1980) for the purpose of numerical calculation, which is transversely isotropic. Physical data 

for a single crystal of cobalt is given by: 

 

𝑐11 = 3.07 × 1011𝑁𝑚−2,                   𝑐12 = 1.650 × 1011𝑁𝑚−2, 
𝑐13 = 1.027 × 1010𝑁𝑚−2,         𝑐33 = 3.581 × 1011𝑁𝑚−2, 

𝑐44 = 1.510 × 1011𝑁𝑚−2,          𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1, 
𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1,            𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1,    𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, 

𝐾1
∗ = 0.02 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1, 𝐾3

∗ = 0.04 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1, 
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𝐿
ℎ⁄ = 10, 𝑏 ℎ⁄ = 0.5,                              𝜌 = 8.836 × 103𝐾𝑔𝑚−3. 

In the graphs, the solid red line with centre symbol circle represents GN-II theory and solid 

black line represents GN-III theory. 

 
 

Figure 2. The lateral deflection w with length of beam 

 

Figure 2 shows the variation in the lateral deflection w with respect to length. It is found that 

the lateral deflection w decreases sharply for the range 0 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ ≤ 2 and then, oscillates in 

the remaining range for both the cases of GN-II and GN-III theories. 

 

 
 

Figure 3. The variation of Thermal Moment 𝑀𝑇 with length of the beam 
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Figure 3 illustrates the variation of Thermal Moment 𝑀𝑇 with length of the beam. It is observed 

that thermal moment 𝑀𝑇 increases sharply in range 0 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ ≤ 3 for both GN-II and GN-

III theories. However, there is sharp increase in GN-III theory as compared to GN-II theory. 

 

 
 

Figure 4. The variation in the axial stress 𝑡11 with respect to length 

 

Figure 4 represents the variation in the axial stress 𝑡11 with respect to length of the beam. The 

axial stress  𝑡11  increase gradually in GN-III case, however, axial stress  𝑡11 decrease in the 

range 0 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ ≤ 1 and then, become stable for rest of the length.  

 

 

9. Conclusions 

 
Thermomechanical response of transversely isotropic thermoelastic thin beam in the context 

of GN-II and GN-III theories of thermoelasticity have been investigated by using Euler-

Bernoulli theory and Laplace transform technique. A numerical inversion technique has been 

used to find the solutions in the physical domain. The expressions for lateral deflection, thermal 

moment and axial stress have been derived and shown graphically to depict the effects 

successfully. It is observed that the behaviour and variation of lateral deflection w is oscillatory 

for the GN-II and GN-III theories. The value of thermal moment and axial stress is more in 

GN-III as compared to GN-II. This research help in design and construction of beam type 

accelerometers, sensors, resonators and other branches of engineering. The study of lateral 

deflection, thermal moment and axial stress is a significant problem of continuum mechanics. 
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