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Abstract

In this paper, we use a generalized form of two-dimensional Differential Transform (2D-DT) to
solve a new class of fractional integro-differential equations. We express some useful properties
of the new transform as a proposition and prove a convergence theorem. Then we illustrate the
method with numerical examples.

Keywords: Differential transform method; Caputo fractional derivative; Convergence; Two-
dimensional integral equation
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1. Introduction

Since solving fractional integro-differential equations, especially the fractional order partial
integro-differential equations are a new subject in physical and mathematical problems, there are
only a few techniques for solving these types of equations. The most commonly used methods in
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212 S. Shahmorad and A.A. Kajehnasiri

this area are the Adomian decomposition method (AD) (Momani (2006); Momani (2006)), col-
location (Rawashdeh (2006)), differential transform and fractional differential transform methods
(Arikoglu (2009); Nazari (2010); Biazar (2010); Garg (2011)).

The DTM was firstly proposed by J. K. Zhouin (Zhou (1986)) and then applied by A. Fatma
for solving differential equations and systems of differential equations (Fatma (2004)). Arikoglu
(Arikoglu (2007)) used this method for solving fractional differential equations. The FDTM was
used and developed for solving various types of linear and nonlinear differential, integral and
integro-differential equations of fractional and integer orders (see for example (Nazari (2010))
and the references therein). About two-dimensional cases, there are a few works, for example,
Shahmorad et al. applied differential transform method for solving nonlinear Volterra integro-
differential equations (Tari (2009); Tari (2011)), Aghazadeh in (Aghazadeh (2013)) have devel-
oped the Block-pulse operational matrix to evaluate the approximate solution of the nonlinear 2D
Volterra integro-differential equation, Khajehnasiri used 2DTFs for solving 2D Volterra-Fredholm
integro-differential equations (Khajehnasiri (2016)). Maleknejad has extended hybrid functions
method to solving two-dimensional nonlinear integral equations (Maleknejad (2018)). Hesamed-
dini also developed the shifted Legendre polynomials operational matrix method for solving the
two-dimensional integral equations of fractional order (Hesameddini (2018)). In this research
work, we are interested in solving equations of the form (1) by a faster and remarkably simple
method, i.e. the generalized DTM.

Consider a fractional order partial Volterra integro-differential equation in the general form

a1(x, y)
∂γu(x, y)

∂xγ
+ a2(x, y)

∂µu(x, y)

∂yµ
+ a3(x, y)

∂γ+µu(x, y)

∂xγ∂yµ
+ a4(x, y)u(x, y)

+ λ

∫ x

x0

∫ y

y0

K(x, y, t, z, u(t, z))dtdz = f(x, y),

n− 1 < γ ≤ n,m− 1 < µ ≤ m, (1)

with some supplementary conditions which will be determined duo to order of equation, where
hi(x), gj(x), a1(x, y), · · · , a4(x, y), f(x, y) and k(x, y, t, z, u) are given continuous functions on
Ω1 = {x ∈ R, x0 ≤ x ≤ X},Ω2 = {(x, y) ∈ R2, x0 ≤ x ≤ X, y0 ≤ y ≤ Y } and

Ω3 = {(x, y, z, t, u) ∈ R5, x0 ≤ x ≤ X, y0 ≤ y ≤ Y, x0 ≤ t ≤ x, y0 ≤ z ≤ y,−∞ < u <∞}.

Existence and uniqueness of solution for the special cases of the problem (1) may be found in
literature, but for the general case, it is an open problem. The fractional derivatives are taken in
Caputo sense.

Equations of the form (1) may arise in the mathematical modeling of dynamic fractional order vis-
coelastic problem (Adolfsson (2006)) and dynamical processes occurring in the system exhibiting
anomalous diffusive behavior (Bandrowski (2010)). A special case of Equation (1) is the general-
ized KdV equation (Kurulay (2010)).
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2. Fractional calculus

There are many definitions of a fractional derivative of order α > 0 (Ebadian (2015); Rahmani
(2015); Podlubny (1999)). In this context, we follow the essential definition of the Caputo frac-
tional order integration and differentiation given as below, which are used in this work.

Definition 2.1.

A real function u(x), x > 0, in the space cµ, µ ∈ R, if there exists a real number p > µ, such that
u(x) = xpu1(x), where u1(x) ∈ c[0,∞] and it is said to be in the space, if u(m) ∈ cµ, m ∈ N.

Definition 2.2.

The left-sided Riemann-Liouville fractional integral operator of order α ≥ 0, of a function u ∈ cµ,
µ ≥ −1 is defined as

Iαx0
u(x) =

1

Γ(α)

∫ x

x0

(x− t)α−1u(t)dt, α > 0, x > 0. (2)

Definition 2.3.

The fractional derivative of u(x) in the Caputo sense is defined as

Dα
∗ u(x) =

1

Γ(m− α)

dm

dxm

∫ x

x0

(x− t)m−α−1u(t)dt, x > x0, (3)

for m− 1 < α < m, m ∈ N , x > 0, u ∈ cn−1.

Definition 2.4.

For m to be the smallest integer that greater than α, the Caputo time fractional derivative of order
α > 0 is defined as

Dα
∗tu(x, t) =

∂αu(x, t)

∂tα
=


1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,t)
∂tm

, m− 1 < α < m,

∂mu(x,t)
∂tm

, α = m ∈ N,
(4)

3. 2D-DT and its generalization

In this section we recall 2D-DT and generalize it for solving fractional integro-differential equa-
tions of the form (1).

Definition 3.1.

The 2D-DT of the analytical and continuously differentiable function u(x, y) around the point
(x0, y0) is defined by

3
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214 S. Shahmorad and A.A. Kajehnasiri

U(k, h) =
1

k!h!

∂k+h

∂xk∂yh
u(x, y) |(x,y)=(x0,y0), (5)

where u(x, y) and U(k, h) denote the original function and its differential transform respectively.

Definition 3.2.

The inverse differential transform of U(k, h) is defined by

u(x, y) =
∞∑
k=0

∞∑
h=0

U(k, h)(x− x0)k(y − y0)h. (6)

From (5) and (6), we obtain

u(x, y) =
∞∑
k=0

∞∑
h=0

1

k!h!

∂k+h

∂xk∂yh
u(x, y) |(x,y)=(x0,y0) (x− x0)k(y − y0)h, (7)

which is the bivariate Taylor expansion of the function u(x, y) around the point (x0, y0).

Note: Throughout this paper, the lower and upper case letters are used to represent the original
function and its transform respectively.

Definition 3.3.

The generalized 2D-DT of the function u(x, y) is defined by

Uα,β(k, h) =
1

Γ(αk + 1)Γ(βh+ 1)
[(Dα

x0
)k(Dβ

y0)
hu(x, y)](x0,y0), (8)

where (Dα
x0

)k = Dα
x0
.Dα

x0
· · ·Dα

x0
(k-times), andDα

x0
denotes the fractional derivative in the Caputo

sense (Podlubny (1999)). Based on the generalized 2D-DT, the function u(x, y) can be represented
as

u(x, y) =
∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x− x0)kα(y − y0)hβ, 0 < α, β ≤ 1. (9)

Then, for N ∈ N, we use the truncation

uN,N(x, y) '
N∑
k=0

N∑
h=0

Uα,β(k, h)(x− x0)kα(y − y0)hβ, (10)

of (9) to get an approximation for u(x, y).

In the following proposition, we summarize fundamental properties of the generalized 2D-DT.

4
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Proposition 3.4.

Let Uα,β(m,n), Vα,β(m,n) andWα,β(m,n) be generalized 2D-DT of the functions u(x, y), v(x, y)
and w(x, y) respectively. Then,

(a) If u(x, y) = av(x, y)± bw(x, y) for a, b ∈ R, then

Uα,β(k, h) = aVα,β(k, h)± bWα,β(k, h).

(b) If u(x, y) = v(x, y)w(x, y), then

Uα,β(k, h) =
k∑
r=0

h∑
s=0

Vα,β(r, h− s)Wα,β(k − r, s).

(c) If u(x, y) = (x− x0)nα(y − y0)mβ , then

Uα,β(k, h) = δ(k − n, h−m) = δ(k − n)δ(h−m),

where

δ(k − n) =

{
1, k = n,
0, otherwise,

δ(h−m) =

{
1, h = m,
0, otherwise.

(d) If u(x, y) =
∫ x
x0

∫ y
y0
v(t, z)dtdz, then

Uα,β(k, h) =
Vα,β(k − 1

α
, h− 1

β
)

αkβh
, k ≥ 1

α
, h ≥ 1

β
.

(e) If u(x, y) =
∫ x
x0

∫ y
y0
v(t, z)w(t, z)dtdz, then

Uα,β(k, h) =
1

αkβh

k− 1

α∑
r=0

h− 1

β∑
s=0

Vα,β(r, h− s− 1

β
)Wα,β(k − r − 1

α
, s), k ≥ 1

α
, h ≥ 1

β
.

(f) If u(x, y) =
∫ x
x0

∫ y
y0
v(t)w(t, z)dtdz, then

Uα,β(k, h) =
1

2αkβh
Vα(k − 1

2α
)Wα,β(k − 1

2α
, h− 1

β
).

(g) If u(x, y) = v(x, y)
∫ x
x0

∫ y
y0
w(t, z)dtdz, then

Uα,β(k, h) =
k∑

k1= 1

α

h∑
h1= 1

β

1

αk1βh1

Wα,β(k1 −
1

α
, h1 −

1

β
)Vα,β(k − k1, h1).

Proof:

We prove parts (d) and (e), the other parts are proved similarly.
(d) Using the expansion (9), we have

5
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u(x, y) =

∫ x

x0

∫ y

y0

∞∑
k=0

∞∑
h=0

Vα,β(k, h)(t− x0)kα(z − y0)hβdtdz,

=
∞∑
k=0

∞∑
h=0

Vα,β(k, h)

∫ x

x0

∫ y

y0

(t− x0)kα(z − y0)hβdtdz,

=
∞∑
k=0

∞∑
h=0

Vα,β(k, h)
(t− x0)kα+1

kα + 1
|xx0

∫ y

y0

(z − y0)hβdz

=
∞∑
k=0

∞∑
h=0

Vα,β(k, h)
(x− x0)kα+1

kα + 1

(y − y0)hβ+1

hβ + 1
.

Starting the indices from k = 1
α

and h = 1
β

, we obtain

u(x, y) =
∞∑
k= 1

α

∞∑
h= 1

β

Vα,β(k − 1

α
, h− 1

β
)
(x− x0)kα

kα

(y − y0)hβ

hβ
. (11)

Then, by equating the coefficients on both sides on can get

Uα,β(k, h) =
Vα,β(k − 1

α
, h− 1

β
)

αkβh
, k ≥ 1

α
, h ≥ 1

β
. (12)

(e) Let c(t, z) = v(t, z)w(t, z) and Cα,β(k, h) be its transform. Then, by using part (d), we have

Uα,β(k, h) =
Cα,β(k − 1

α
, h− 1

β
)

αkβh
, k ≥ 1

α
, h ≥ 1

β
,

and using part (b) yields

Uα,β(k, h) =
1

αkβh

k− 1

α∑
r=0

h− 1

β∑
s=0

Vα,β(r, h− s− 1

β
)Wα,β(k − r − 1

α
, s), k ≥ 1

α
, h ≥ 1

β
. �

Theorem 3.5 (Momani (2007)).

If u(x, y) = Dγ
x0
v(x, y), m− 1 < γ ≤ m, then

Uα,β(k, h) =
Γ(αk + γ + 1)

Γ(αk + 1)
Vα,β(k +

γ

α
, h). (13)

6
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Theorem 3.6 (Momani (2007)).

If u(x, y) = Dγ
x0
Dµ
y0v(x, y), then

Uα,β(k, h) =
Γ(αk + γ + 1)

Γ(αk + 1)

Γ(βh+ µ+ 1)

Γ(βh+ 1)
Vα,β(k +

γ

α
, h+

µ

β
), (14)

where γ, µ ∈ Q+ and 0 < α, β ≤ 1.

4. Error bound and convergence

In this section, we obtain an error bound for the approximate solution, then from which we con-
clude convergence of the method. We define the error function as

eN,N(x, y) = u(x, y)− uN,N(x, y), (15)

where u(x, y) and uN,N(x, y) are defined by (9) and (10).

Theorem 4.1.

Let

| D(N+1)α
x u(x, y) |6M1, (16)

and

| D(N+1)β
y u(x, y) |6M2, (17)

for some nonnegative constants M1 and M2. Then,

| eN,N(x, y) |6M1
| (x− x0) |(N+1)α

Γ((N + 1)α + 1)
+M2

| (y − y0) |(N+1)β

Γ((N + 1)β + 1)
.

Proof:

By using (8), (9) and (10) we have

| u(x, y)− uN,N(x, y) | = |
∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x− x0)kα(y − y0)hβ

−
N∑
k=0

N∑
h=0

Uα,β(k, h)(x− x0)kα(y − y0)hβ |

≤ | (x− x0) |(N+1)α

Γ((N + 1)α + 1)
| D(N+1)α

x u(x, y)|(x,y)=(η1,η2) |

+
| (y − y0) |(N+1)β

Γ((N + 1)β + 1)
| D(N+1)β

y u(x, y)|(x,y)=(η1,η2) |,

for some η1 and η2 with min{x0, x} ≤ η1 ≤ max{x0, x} and min{y0, y} ≤ η2 ≤ max{y0, y}.
Then, using (16) and (17) completes the proof. �
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Corollary 4.2 (Convergence).

By the hypothesis of Theorem 4.1, we have eN,N(x, y)→ 0, as N →∞.

5. Application of the method

In this section, we apply proposition 3.4 to obtain a recurrence relation for Uα,β(k, h). To this end,
we need some starting values of U that can be obtained from supplementary conditions. Since
the initial conditions are implemented by the integer-order derivatives, the transformations of the
initial conditions for k = 0, 1, · · · , (γα− 1) and h = 0, 1, · · · , (µβ − 1) are defined by

Uα,β[x0, h] =

{ 1
Γ(βh+1)

Dβhu(x0, y) |y=y0 , if βh ∈ Z+,

0, βh 6∈ Z+,
(18)

and

Uα,β[k, y0] =

{ 1
Γ(αk+1)

Dαku(x, y0) |x=x0
, if αk ∈ Z+,

0, αk 6∈ Z+,
(19)

where γ and µ are the orders of the corresponding fractional equations (Nazari (2010)).

Example 5.1.

Consider the nonlinear partial Volterra integro-differential equation

∂1/2u(x, y)

∂x1/2
+
∂1/3u(x, y)

∂y1/3
+

∂
5

6u(x, y)

∂y1/3∂x1/2
+ u(x, y)

+

∫ x

0

∫ y

0

u3(t, z)dtdz = g(x, y), x, y ∈ [0, 1], (20)

with

g(x, y) =
3

2

y2/3

Γ(2/3)
+

2
√
x√
π

+ x+ y +
1

4
xy4 +

1

2
x2y3 +

1

2
x3y2 +

1

4
x4y,

subject to the initial condition

u(x, 0) = x. (21)

By choosing α = 1
2
, β = 1

3
and applying the generalized 2D-DT to the both sides of Equation (20)

8
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and using Proposition 3.4, Theorems 3.5 and 3.6, we get the recurrence relation

U 1

2
, 1
3
(k + 1, h+ 1) =

Γ(k
2

+ 1)Γ(h
3

+ 1)

Γ(k
2

+ 3
2
)Γ(h

2
+ 4

3
)
(−

Γ(k
2

+ 3
2
)

Γ(k
2

+ 1)
U 1

2
, 1
3
(k + 1, h)

−
Γ(h

3
+ 4

3
)

Γ(h
3

+ 1)
U 1

2
, 1
3
(k, h+ 1)− U 1

2
, 1
3
(k, h)

−
k∑

k1=1

h∑
h1=1

k1−1∑
l2=0

h1−1∑
r2=0

l2∑
l1=0

r2∑
r1=0

1

k1h1

U 1

2
, 1
3
(l1, r1)

U 1

2
, 1
3
(l2 − l1, r2 − r1)U 1

2
, 1
3
(k1 − l2 − 1, h1 − r2 − 1)

+
3

2Γ(2
3
)
δ(h− 2

3
)δ(k) +

2√
π
δ(k − 1

2
)δ(h)

+δ(k − 1)δ(h) + δ(h− 1)δ(k) +
1

4
δ(k − 1)δ(h− 4)

+
1

2
δ(k − 2)δ(h− 3) +

1

2
δ(k − 3)δ(h− 2) +

1

4
δ(k − 4)δ(h− 1)).

The 2D-DT of the initial conditions is given by

U 1

2
, 1
3
(k, 0) = δ(k − 1).

Then, for N = 2, N = 3 and N = 5, the approximate solutions are listed as follows:

u2,2 = x
1

2 (1.1283791y
1

3 − 1.1161725y
2

3 ) + x(1 + 0.9999995y
1

3 − 2.9783642y
2

3 ).

u3,3 = x
1

2 (1.1283791y
1

3 − 1.1161725y
2

3 + 2.1359985y) + x(1 + 0.9999995y
1

3

−2.9783642y
2

3 + 5.5708657y) + x
3

2 (0.75225274y
1

3 − 3.7368505y
2

3 + 9.8046058y).

u5,5 = x
1

2 (1.1283791y
1

3 − 1.1161725y
2

3 + 2.1359985y − 2.9223719y
4

3 + 2.3126065y
5

3 )

+x(1 + 0.9999995y
1

3 − 2.9783642y
2

3 + 5.5708657y − 9.1617499y
4

3 + 11.889491y
5

3 )

+x
3

2 (0.75225274y
1

3 − 3.7368505y
2

3 + 9.8046058y − 19.317391y
4

3 + 31.122589y
5

3 )

−x2(0.61984651y
1

3 − 2.3706321y
2

3 + 11.140679y − 28.713412y
4

3 + 56.248187y
5

3 )

−x
5

2 (0.97482722y
1

3 − 0.08934489y
2

3 + 8.2117925y − 30.881239y
4

3 + 75.567816y
5

3 ).

Example 5.2.

Consider a linear partial Volterra integro-differential equation of the form

∂1/3u(x, y)

∂y1/3
+ x

∂u(x, y)

∂x
+

∫ x

0

∫ y

0

t2z2u(t, z)dtdz = 3x2 +
1

18
x3y6, x, y ∈ [0, 1], (22)

subject to the initial condition

u(x, 0) = x3. (23)

9
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Let α = 1 and β = 1
3
. Then, by a similar way as in Example 1, we get the recurrence relation

U1, 1
3
(k, h+ 1) =

Γ(h
3

+ 1)

Γ(h
3

+ 4
3
)

(
−

k∑
r=0

h∑
s=0

δ(r − 1, h− s)(k − r + 1)U1, 1
3
(k − r + 1, s)

− 3

kh

k−3∑
r=0

h−1∑
s=0

δ(k − 2)δ(h− s− 5)U1, 1
3
(k − r − 2, s) + 3δ(k − 3)δ(h)

+
1

18
δ(k − 3)δ(h− 6)

)
.

for the Equation (22) and

U1, 1
3
(k, 0) = δ(k − 3).

for the initial condition (23).

Hence, for N = 2, N = 3 and N = 5, the approximate solutions are given as follows:

u2,2 = x(0.99999999y
1

3 + 0.17866126y
2

3 + 0.03725877y)

+x3(1 + 0.06272001y
1

3 + 0.03287020y
2

3 + 0.00012500y).

u3,3 = x(0.99999999y
1

3 + 0.17866126y
2

3 + 0.03725877y + 0.00462929y
4

3 )

+x3(1 + 0.06272001y
1

3 + 0.03287020y
2

3 + 0.00012500y + 0.62499999× 10−5y
4

3 ).

u5,5 = x(0.99999999y
1

3 + 0.17866126y
2

3 + 0.03725877y + 0.00462929y
4

3

+0.00077160y
5

3 + 0.00012860y2) + x3(1 + 0.06272001y
1

3 + 0.03287020y
2

3

+0.00012500y + 0.62499999× 10−5y
4

3 + 0.31249998× 10−6y
5

3

+0.15624999× 10−7y2).

6. Conclusion

In this paper, we analyzed the applicability of the generalized differential transform method for
solving partial Volterra integro-differential equations of fractional order. We showed simplicity
and reliability of the method by handling examples of linear and nonlinear partial Volterra integro-
differential equations of fractional order. Also, we proved convergence of the method.
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