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Abstract 
 

This paper examines the analysis of an eco-epidemiological model with optimal control strategies 

for infected prey. A model is proposed and analyzed qualitatively using the stability theory of the 

differential equations. A local and global study of the model is performed around the disease-free 

equilibrium and the endemic equilibrium to analyze the global stability using the Lyapunov 

function. The time-dependent control is introduced into the system to determine the best strategy 

for controlling the disease. The results obtained suggested the separation of the infected population 

plays a vital role in disease elimination.  

 

Keywords: Predator-prey system; Eco-epidemiology; optimal control 
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1. Introduction 

 
Ecology and epidemiology are two major and distinct fields of study. However, there are situations 

where some diseases which are responsible for an epidemic, have a strong impact on the dynamics 

of ecological systems (Raid et al. (2012)).  Eco-epidemiology is basically a branch of mathematical 

biology which considers both the ecological and epidemiological issues concurrently. The first 

breakthrough in modern mathematical ecology was done by (Lotka (1924)) for a predator-prey 

competing species. On the other hand, most of the models for the transmission of infectious 

diseases originated from the classic work of (Kermack et al. (1927)). In the modern era, there is 

an increase in the number of works that describes the relationships between demographic processes 

among different populations and diseases. Mathematical biologists have been working on merging 
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the ecology and Epidemiology (Pan (2013), Zhou et al. (2013), Jiano et al. (2008), Hethcote 

(2000)). Diseases that affect the prey populations, in particular, may affect the entire predator-prey 

system (Mukhopadhya et al. (2009), Jana et al. (2013), Gani (2013)). Not only has the disease in 

the system affected the dynamics of prey population, but also prey-predator interactions. 

Controlling diseases in the prey-predator system are acrucial and vital aspect of the ecosystem for 

coexistence and stability in nature.  

The time-dependent control measures are put in place to curtail the spread of disease in population 

which described with mathematical control theory. This theory describes the principle that 

underlies the analysis and design of the control system which used to influence the behavior of 

objects for the specific goal (Sontag (1998)). The optimal control theory plays an important role 

in decision making regarding intervention programs (Okosun et al. (2011)). Modeling infectious 

diseases in species provide an important insight into disease behavior and control measures and 

provide essential elements in evaluating the relevance of the intervention programs.  

The interaction between human and animals or among animals themselves may result in disease 

transmission which destabilizes the ecosystem. The studies by (Bornaa et al. (2015), Elettreby et 

al. (2015), Hugo et al. (2012), Mukhopadhyay et al. (2009), Tengaa et al. (2015)) employed 

modeling techniques to analyze an ecological aspect of interacting species of various animals. In 

this paper, the eco-epidemiological model with optimal control measures put into consideration 

for ensuring prey-predator populations coexists in a defined habitat. 

2. Model Formulation 

A mathematical model is proposed and analyzed to study the functional response analysis of the 

predator toward the susceptible prey as well as infected prey. These dynamicsare assumed to 

follow Michaelis-Menten kinetics Holling type-II predation function (Mukhopadhyay et al. 

(2009), Hugo et al. (2012)). The model consists of prey population density denoted by 

     tItStN 1  and the predator population density denoted by  tY . 

 

We impose the following assumptions in formulating mathematical model. 

i) In the absence of disease, the prey population grows logistically with intrinsic growth 

rate r and environmental carrying capacity k. 

ii) In the presence of disease, the prey consists of two subclasses, namely, the susceptible 

prey S (t) and the infected prey I (t). 

iii) Only the susceptible prey can reproduce. The logistic law is used to model the birth 

process with the assumption that births should always be positive. The infected prey is 

removed with natural death rate e1, death caused by disease a1or by predation. 

However, the infected prey population I contribute with S to population growth 

towards the carrying capacity. 

iv) It is assumed that the disease is spread among the prey population only.  

v) Susceptible prey becomes infected when it comes in contact with the infected prey and 

this contact process is assumed to follow the simple mass action kinetics with β as the 

rate of transmission. 

vi) The predator population suffers loss due to death at a constant ratee2. The predation 

functional response of the predator towards susceptible as well as infected prey are 

assumed to follow Michaelis–Menten kinetics and is modelled using a Holling type-II 
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functional form with predation coefficient p1, p2 and half-saturation constant m. 

Consumed prey is converted into predator with efficiency q. 

vii) 10 1  u , is the control rate (by separation) of infected and susceptible prey. 

10 2  u , is the control rate by separating susceptible predator from infected prey. 

  

Now, we transform the above assumptions to form the following schematic flow diagram: 

 

 

Figure 1. Model Flowchart 

 

From Figure 1, the mathematical model will be governed by the following system of the equations 

 

11 ,
p SYdS S I

rS SI
dt k m S


 

    
 

 

 2
1 1 ,

p IYdI
SI a e I

dt m I
   


                         (1) 

1 2
2 ,

p SY p IYdY
q e Y

dt m S m I
  

 
 

 

with the initial conditions: 

,0)0( 0  SS ,0)0( 0  II ,0)0( 0  YY ,0, 21 pp 1,0 21  uu and 0  1q  . 

3. Model Analysis 

The mathematical model (1) is qualitatively analyzed to obtain the dynamical features to 

understand the dynamics of the disease in the prey population.  
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3.1. Boundedness of the model 

 

In the theoretical eco-epidemiology, the boundedness of the system implies that the system is 

biologically valid and well behaved (Hugo et al. (2012)). In this section, we show how the model 

is biological valid by providing the boundedness of the solution of the model through the following 

theorem (Mukhopadhyay et al. (2009)). 

 

Theorem 1. 

 

All solutions of the system (1) are uniformly bounded. 

 

Proof: 

 

Assume W denote the total population in the specific model, that is, 

  

YISW  .                                                                                                                      (2) 

This gives, 

 

.
dt

dY

dt

dI

dt

dS

dt

dW
                                       (3)  

 

Substituting the model equations (1) into (3) and simplifying, we obtain 

 

 
1 1 2

,
dW

rS a e I e Y
dt

   

 

  
1 1 2

( 1) ,S r S a e I e Y     
 

 ( 1) ,k r hW


                                                                                                                    (4)                                                                                                           

where  

 

 max (0),  k S k


  and  1 1 2min  1, , .h e a e              (5) 

 

Then, 

 

)1( 


rkhW
dt

dW
.                                                                                                             (6) 

 

Solving equation (6) and substituting the initial conditions we get 

  hter
h

k
W 



 11 .                (7) 

 

As t , we have 
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 1



r
h

k
W , which implies that the solution is bounded for 

 10 



r
h

k
W . 

 

Therefore, all solutions of the model (1) in 
3

  are confined to the region 

 

   


















 1 :,, 3 r
h

k
WYIS  for all 0   and t  .                                          (8) 

 

3.2. Positivity of Solutions 

 

For model (1) to be epidemiologically meaningful and well posed, we need to prove that all 

solutions of the system with positive initial data will remain positive for all times 0t   (Hugo et 

al. (2012)). See the following theorem 

 

Theorem 2. 

Let (0) 0S  , (0) 0I  , (0) 0Y  . This implies that the solutions  S t ,  I t  and  Y t of the model 

(1) are all positive 0t  . 

Proof: 

To prove Theorem, we use all the equations of the model (1).  

From the 1st equation, we obtain the inequality expression as  

 











k

S
rS

dt

dS
1 , which can be simplified to give 

  )0()0(

)0(

SSke

kS
S

rt 



.                                                                                                     (9)

 

Now, as t we obtain 0 .S k   Hence, the solution of system (1) is feasible in the region

 YIS ,, . 
  

Similar proofs for the reaming equations of the model can be established following a similar 

approach. 

 

4. Equilibria and Stability analysis 

4.1.  Equilibrium Points 

5
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The model equations (1) has the following different equilibrium points through setting,  

 

0
dt

dY

dt

dI

dt

dS
.                                                                                                            (10) 

 

The model equations (1) possesses the following equilibrium points 

 

(i) The axial equilibrium  0 ,0 , kEA , where the predator and infected prey populations die 

out while leaving susceptible prey to growth to its carrying capacity. 

(ii) The boundary equilibrium point where the predator population dies out, that is  

 

         0* Y  
   

  
1 1 1 1*1

1

2

1 1

,   ,        ,   ,    0Y

m a e r k
S I

a ea e
I

r k m a e k p
Y E

 

    

  
    

   



   

,  

which exist if and only if 
1 1

 1.
k

a e





 

 

(iii) The boundary equilibrium point where the disease eventually disappears from the prey 

population that is 

 

          
  



































2

21

221

21

2   ,0   ,       ,  ,
eqpk

mekekqp
rmq

eqp

me
EYIS I , 

which will exist if 12 qp  e  and
1

2

kqp
e

k m



. 

 

(iv) An endemic positive equilibrium point         ,  ,  YIS is obtain when  

 

11 0,
p YS I

r I
k m S


 

    
 

                                                                              (11) 

 2
1 1 0,

p Y
S a e

m I
    


                                                 (12) 

1 2
2 0.

p S p I
q e

m S m I
  

                                         (13) 

 

Now, solving (12) and (13) simultaneously we get  

 

  
 

 
2 2 2

1 1 2 2 2

m me e - p
S ,    

me e p

I

mqp qp I










   
                                                              (14) 
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 2 1 2 1 2 2

Y ,    
p ( )

B

mqp me qp p e I






   
                                                      (15)

 

 where 

 
2 2 2

2 2 2 2 1 1 1 1

2 2 2 2 3 2

1 2 1 2 1 2 1 2 1 2 1 2 2 1 1

2 2 2 2 2

1 2 1 2 1 1 1 2 1 1 1 1 1 2

B m I 2 2 2

       +

      + 2 2 .

p m e I m I e m p I a qp mI e mqp I

me p I ma p I a e I m e e m a e e e I m e qa p I

a p I a e mI m e qp e me I m a qp qp e I e p I

   



     

    

    

     

      

     
 

where I is the positive root of the equation 

      1 0.r k S m S r k m S I kp Y                                                                 (16) 

4.2.  Local Stability analysis 

We determine the local stability of the equilibria by computing the Jacobian Matrix of the model 

equations (1) and study the existence criteria of each equilibrium point.  

This gives 

 ,

1 1 1

2

2 2 2
1 1 2S     

1 1 2 2 1 2
22 2

rS
A- -

( ) k

J  ,
( )

( ) ( )

I Y

p Y p S Y p S
S

m S m S m S

p Y p I Y p I
I S a e

m I m I m I

qp Y qp S Y p Y p I Y qp S p I
e

m S m S m I m I m S m I



   

   


  

   
 

  

       

     

 
   

  
 
 

      
   

 
    

               (17)                                                                     

 

where   

S I rS
A  r 1- - -  I

k k


  
 

  
 

. 

 

Theorem 3. 

 

The axial equilibrium point  0 ,0 , kEA  is locally asymptotically stable if  

 

 1 1

1 1

 1
a e k

k a e






 


 and  

kp

kme
q

1

2 )(
 


 .                   (18)  

Proof:  

 

The Eigenvalues of the equilibrium AE are given by 
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1 2
1 2 1 1 3

( )
 ,     ,    .

qp k m k e
r k a e

m k
   

 
     

                                                          (19)
 

 

Then, for stability, we need to have 

 

02   if 1 1k a e    

and  

0 3  if 21 )( ekmkqp  . 

Biological Meaning: If feeding efficiency of predator is low such that 2
1 e

km

kqp



the predator 

species will extinct and prey population will reach its carrying capacity k. 

 

Theorem 4. 

  

The boundary equilibrium point  0   ,  ,  ISEY where the predator population dies out, is 

locally asymptotically stable iff 111 )( Aear   and 0,, 321  , where  

 

1 1 1
1

( )

2

r a e A

k




 
  , 

1 1 1
2

( )

2

r a e A

k




 
  ,  

 

  

2 2 2 2 2 2 2 2 2 3 2

1 1 2 1 2 1 1 1 2 1 2 2

2 2 2 2

2 1 2 1 2 1 1 2 1 2 1 1 1 1 1

2

1 1 1 1 2 1 1 2 1 1 1 1 1

2

2 2 1 2
3

2

2

qp ra rp e rp a qp re e re e m r e m k e mrk

e a m k e a rk e a re e ra e e m k qp a mr qp a mk

qp a rk qp e mr rp a e rp e m qp e mk qp e rk

rp m k rp a k rp e

  

    

    

 


      

      

     

  
  1

2 2 2 3 2 2 2 2

1 1 1 1 1 1

2

1 1

2

k

m r m k m rk a m k a r k ra a re e m k

e rk re



     



 
 
 
 
 
 
 

       
  
 
 
 
  

,

                   (20) 

where  

 

 )444()( 11

2

1

22

1111111  kueukrekuarareasqrtA  . 
 

Biological Meaning: If predator population will die out, the prey population will grow logistically 

but the disease will remain endemic in prey. 

 

Theorem 5. 
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 The disease free equilibrium point   YSEI    ,0  ,  will be locally asymptotically stable if 

12 qpe  and 2

22

21 1
2 epqeqp  .  

Proof:  

The Eigenvalues of   YSEI    ,0  , are given by  

)(2 121

3

1
qpekqp

A


 ,                         (21) 

)(2 121

3

2
qpekqp

A


 ,                                    (22) 

.
)2( 2

221

2

1

2

4
3

eeqppqk

A


 ,

                                                                                           (23)

 

where  

 

     122121

2

2

2

23 ee rBesqrtmerqperqkprmrkA   and                                                    (24) 

 

  

1

3 2 3 2 2 3 2 2 2 2 2 2

2 2 2 1 2 2 1 1 2

2 2 2 2 2 3 2 3 2 2 2 2

1 1 2 1 2 1 2 1 2 1 2

2 2 2 3 3 2 2 3 3 4 4 2

1 2 1 2 1

2 2 2

2 4 4 12

8 12 4 4

e rk e rmk e rk qp e rm e rm qp rq k p e

B rq kp e m rq p e m qp e k qp e km q p e k

q p e km q p e k q p e km q p k

     
 

      
 
    

(25)

  
 

2 2 2 2 2

4 1 1 1 1 2 2 1 1 1 2 1 1 2

2 2 2

1 1 2 2 2 2 2 2 2 1 2 1 2 1 2

 q 2

     2 -

A p a k q p e k q u p rkp qp u e mk qp a ke

qp e ke qu p re k qu p re m u e mk a ke e ke





    

      .  (26)                                                                                                                                                 

 

 

Biological Meaning: The feeding efficiency of predator is so high that 12 qpe  this is because of 

the absence of the disease and predator will only feed on health prey. 

 

The stability analysis around the coexistence equilibrium point is determined by substituting 

      ,  ,  YIS in the Jacobian matrix (17), and we obtain 

                                                (27)

  

where 

 

1 1
1 2

S I rS
A  r 1- - -  I ,

k k ( )

p Y p S Y

m S m S


    


 

 
   

                                                               (28) 

 ,

1 2 3

4 1 1 5S     

6 7 8 2

A - -A

J  - ,

-
I Y

A

I A a e A

A A A e



 



  



 
 

   
 
  
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2

rS

k
A S


  , 








Sm

Sp
A 1

3
, 2 2

4 2
,

( )

p Y p I Y
A S

m I m I


  


 
  

                                           (29)

 

2
5

p I
A

m I







, 

2

11
6

)( 













Sm

YSqp

Sm

Yqp
A , 2 2

7 2
,

( )

p Y p I Y
A

m I m I

  

 
 

                                     (30)

 

1 2
8

qp S p I
A

m S m I

 

 
 

 
.                         (31) 

 

This yields the following polynomial equation 

 
3 2

1 2 3
0,B B B     

                       (32)

 

where  

 

      1 8 4 1 1 2 13 ,B I A A a A e e      
                                 (33)

 

 

     
 2

2 8 2 1 4 2 1 1 4 1 2 1 2 1 7 5

8 1 1 1 8 1 2 1 6 3 8 4 2 4 1 1 8 1

3 2 2 2 2 2 2

       + ,

B I A A a A e A e I A A e A e a A A

A A a A A e e e A A A A e A e A A a

           

       
               (34) 

 
 3 2

3 8 2 1 4 1 1 2

1 1 1 1 7 5 4 1 8 4 8 1 8 1 2 1 8 1

2 4 2 1 6 3 2 1 7 3 8 2 2 2

2 4 1 8 4 1 7 5 1 6 3 1 2 1 1 6 3 4 2 1 1

   

          - .

           + 

     

B I A e A A a e A I

e A a A A A A A A A A a A e e e A A
I

e A e a A A e A A A A A e A

e A A A A A A A A A A e e e A A A A e a A



  

       

        
 
       

     

6 2 5 6 3 1 8 1 1 8 1 1     - +

       

A A A A A a A e A A a A 

                             (35) 

Using the Routh-Hurwitz criteria, the coexistence equilibrium point will be stable if the equation 

(32) will obey 0B      0,B     0,B 321  , 321 B  BB  . Otherwise, the coexistence equilibrium 

point is unstable.   

 

4.3. Global stability analysis 
 

We perform a global stability analysis of the system (1) around the positive equilibrium point 

   Y ,I  ,E S of the coexistence. The following theorem of Lyapunov functionU is considered. 

 

Theorem 6. 

 

Let, 

     
2 2 2

1 2

1 1 1
  S-S   I-I  Y-Y ,

2 2 2
U                          (36) 

 

where 0   , 21  are to be carefully chosen such that   0U E   then,    Y ,I  ,E S and  
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   .E|Y I,  ,   0   Y I,  ,  U SS   

 

If the time derivative of U is 

 

0
dU

dt
 ,   ,  I, Y .S    

 

Then, it follows that  

 

0
dU

dt
 , 

  Y I,  ,  S  

 

implies that Eof the system is Lyapunov stable and  

 

0   
dt

dU   Y I,  ,  S , near E implies that E is globally stable. 

 

Proof: 

 

     
1 2

dS dI dY
  S-S   I-I  Y-Y ,

dt dt dt

dU

dt
     

                     (37)
 

 

Now by substituting the model equations (1), we get 

 

 

   

 

1

2

1 1 1

1 2

2 2

    S-S 1  

            + I-I  

           + Y-Y .

dU S I p SY
rS SI

dt k m S

p IY
SI a e I

m I

p SY p IY
q e Y

m S m I



 









   
     

  

 
   

 

 
  

             (38)

 

 

Then, equation (38) becomes 

 

   

     

   

1

2
1 1 1

1 2
2 2

    S-S 1 S-S  

            + I-I I-I

          + Y-Y Y-Y .

p YdU S I
r I

dt k m S

p Y
S a e

m I

p S p I
q e

m S m I



 



 

 

 

   
     

  

 
   

 

 
  

                (39)

 

By rearranging we obtain 
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 

   

 

2
1

2
2

1 1 1

2
1 2

2 2

    - S-S 1  

            - I-I

          - Y-Y .

p YdU S I
r I

dt k m S

p Y
S a e

m I

p S p I
q e

m S m I



 









   
      

  

 
    

 

 
   

  

 

 

Thus, it is possible to set 0   , 21   such that 0U   an endemic positive equilibrium point is 

globally stable. Therefore, it is noted that the parameters k , m  and q  play important roles in 

controlling the stability aspects of the system (Hugo et al. (2012)). 

 

5. Application of Optimal Control to prey-predator system 
 

The time-dependent control has been introduced in the model equations (1) with the aim of 

controlling the disease transmission among prey populations and separating predator population 

from infected prey. The dynamics are formulated as an optimal control with the following 

assumptions. It is assumed that a fraction of susceptible prey populations are been infected the rate 

 11 u SI  while others remain in susceptible class. Then, the control rate through separation of 

infected and susceptible prey  1( )u t  varies with time and it will be at the optimal level whenever 

1( ) 1u t   and less effective when 1( ) 0u t  . We also assume that the predator populations could be 

infectious by the fraction 
 2 21 u p IY

m I




 and the remaining fraction retained as susceptible 

populations. The predator population has been controlled by separating predator from infected 

prey  2 ( )u t  and will be at the optimal level whenever 2 ( ) 1u t   and less effective when 2 ( ) 0u t  .  

The modified model (1) by incorporating time-dependent control is given by:  

  1
11 1 ,

p SYdS S I
rS u SI

dt k m S


 
     

 
 

 
 

 2 2

1 1 1

1
1 ,

u p IYdI
u SI a e I

dt m I



    


                               (40) 

 2 21
2

1
.

u p IYp SYdY
q e Y

dt m S m I


  

 
 

 

The inner behavior of the model with control is analyzed based on the application of control theory 

as a mathematical tool which is essential for decision making of the best strategy that can save the 

population to extinction. The behavior of the prey-predator system with varying capacity was 

critically analyzed by (Chaity et al. (2017)) and the application of the optimal control scenario was 

deeply described by (Lenhart et al. (2007)). The introduced controls of the system usually intend 

to determine the optimal level of the intervention strategy preferred to reduce the spreads of the 
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disease among prey and predator populations. Further, we assume that the separation controls has 

limitations with a maximum rate of control in a given time period T. The control boundedness 

must satisfy the Lebesgue measurable control as  

  1 2 max, ,0 , 1, 2i iU u u u u u i     . 

The intention is to minimize the number of infected prey populations through the following 

objective functional 

1 2

2 2

1 1 2 2

0
,

1 1
  min ,

2 2

ft

u u
J BI Au A u dt

 
   

 
                                                                          (41) 

where 
ft  is the final time, BI is the cost associated with the separation of infected prey from 

susceptible prey population while 1A  and 2A  are relative cost weight for each individual control 

measure. The objective function (41) involved in minimizing the number of contacts between 

infected prey from susceptible prey and predator populations. We apply the quadratic function in 

objective function as it satisfies the optimality conditions (Massawe et al. (2015), Mpeshe et al. 

(2014), Okosun et al. (2013), Okosun et al. (2011), Tchuenche et al. (2011)). Then, the optimal 

controls *
1

( )u t and *
2
( )u t exists such that   

 

    * *
1 2 1 2 1 2( ), ( ) min ( ), ( ) | ( ), ( )J u t u t J u t u t u t u t U ,  

where                               

  1 2
( ),  ( )  u t u tU are measurable,  

  ,
1 2
( ),  ( ))  1,..3 0,  1,  [0, ]i i i i f

a u t u t b i a b t t      is the closed set.  

The necessary conditions that are formulated by Pontryagin’s Maximum (Lenhart et al. (2007)) 

need to be satisfied with the formulated model. The Pontryagin’s Maximum Principle usually 

converts the system of equation (40) and (41) into a problem of minimizing point-wise a 

Hamiltonian  H , with respect to 21( ),  ( )u t u t  as  

 

 
 

 

2 2

1 1 2 2

1
11

2 2

1 1 1

2 2

2

2

3
1

         + 

         

1 1
 = 

2 2

1 1

1
1 )

        + ,

(

1

p

Ip q

H BI Au A u

SYS I
r S u SI

k m S

u p IY
u SI a e I

m I

u p SSY
e Y

m S m I



 





 

 
    



 
 
 


   




 

 



 
  

 

 
 
 

  

                                                         (42)                                                                           
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where ,  1, 2,3,4,5i i  are the co-state variables associated with, I , Y . The adjoint equations are 

obtained by 

  

id H

dt i

 
 


 ,                                                                                                                    (43) 

with transversality condition  

( ) 0i ft  .                                                                                                                       (44) 

From (42) we obtain the following adjoint equations  

 
 

 

 

1 1
1 1 2 12

1 1
3 2

1 1 1

       ,

p Y p SYH rS S I
r u I u I

S k k m S m S

p qY p qSY

m S m S

   



   
                 

 
  
   

                         (45)                                                                                                                                  

 
   

 

 
   

 

2 2

1 1 3 2

2 2 2

2

2 2

2

1 1 12

1 1
1 - 

1 1
         1 ,

         

u p Y u p IYH rS
B u S

I k m I m I

u p Y u p Y
u S a e

m I m

I

I

  

 

    
              

  
      
   

                                   

(46) 

           

   2 2 2 21 1 1
3 2

21 1
.

u p u pp S p qSH
e

Y m S m I m S

I

m I

I

  

     
     

       (47) 

 

The optimality of the control problem is obtained by 

 

*( )i

i

H
u t

u





,                                                                                                           (48) 

where 1,2,3i  . The solution of *

1 ( )u t , and *

2 ( )u t  are presented in a compact form as 

 

 2*

1

1

1

( ) max 0,min 1,
SI

u t
A

     
   

   

    

and 

 

 
2 3*

2

2

2
max 0,min 1, .

p Y
u

m I A

I      
   

    

                                                                              (49) 

 

6.  Numerical simulation  
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In order to verify the theoretical predictions of the model, we present some of the numerical 

simulations of the model as well as for optimal control analysis as follows:- 

6.1. Numerical simulation of the model 

In justification of the analytical solutions of the model, numerical simulations play a vital role in 

this aspect. In this section, the numerical simulations are carried out with respect to Rung-Kutta 

iteration of order four in conjunction with a set of reasonable parameter values given in Table 1. 

These parameter values are mainly hypothetical, but they are chosen following ecological 

observations. 

Figure 1 shows the dynamics of individual populations varies with time. It is observed that the 

prey populations oscillate up and down with respect to time and decreases to its stability point. 

The sharp decrease in prey populations may be caused by predation rate and the disease acquired 

from infected prey through contact rate. The infected prey population suffers death due to the 

disease at a rate 1a and since treatment is not offered to the infected prey population then, it 

stabilizes at endemic equilibrium point as shown in Figure 2(b). This requires further treatment to 

ensure that the disease dies out in the prey-predator system. Figure 2(c) shows the behavior of the 

predator population which increases or decreases as per predation effect especially infected prey 

which decreases the predator population. In Figure 2(d) we observe the interaction between 

infected and susceptible prey population, which decrease or increase with respect to increase or 

decrease of the other population. It’s further observed that as the infected prey population 

decreases, the susceptible prey population slightly increases as the effect of predator predation. 

Figure 3(a) shows that as predator decreases lead to an increase of prey population which may be 

caused by less predation while 3(b) indicates that the increase in infected prey may decrease the 

predator population. Figure 4 describes how the predator interacts with susceptible and infected 

prey populations, whereby infected population tends to slow down the growth of other populations.  

 

 

 

Table 1.  Parameter value used in numerical simulation 

Symbol Value Source 

r  11.2 Mukhopadhyay et al. (2009) 

k  500 Assumed 

  2.1  Mukhopadhyay et al. (2009) 

1p  4.0  Hugo et al. (2012) 

2p  0.8 Assumed 

m  5.0  Hugo et al. (2012) 

1a  0.5 Mukhopadhyay et al. (2009) 

1e  01.0  Assumed  

2e  6.0  Assumed 

q  0.25 Hugo et al. (2012) 

 

The numerical simulations give the following Figures  
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Figure 2. Prey predator populations’ dynamics with parameter values in the table1 
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Figure 3. The effect of interaction between predator and prey populations 

 

 
Figure 4. Variation of susceptible prey, infected prey and predator population  
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6.2. Numerical Simulation for Optimal Control Analysis 

From the numerical simulations of the model, we observe that controlling disease in the population 

may require high cost as no any strategy that reflects what to control first. In subsection, we discuss 

three types of strategies that may be considered for the elimination of the disease in the population. 

These include the control rate by separation of infected and susceptible prey, the control rate by 

separating predator from infected prey and the combination of the two strategies. The results in 

some extent reflect with (Soovoojeet et al. (2016)) where they studied the influence of isolation of 

the infected individuals from susceptible one. 

6.2.1. Control rate by separation of infected and susceptible prey 

Figure 5 describes the comparison of the variation of the population with and without the control. 

It is significantly different in both prey and predator population which shows the importance of 

separating susceptible and infected prey populations, likewise through this separation predator 

enjoy health prey and definitely shows positive gain and hence, increase its growth rate.   

 
Figure 5.  Variation of the population by separating susceptible prey from infected prey 
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6.2.2. Control rate by separating predator from infected prey 

When a predator is separated from infected prey then, it will only depend on the health prey as the 

source of food and finally, the predator population expected to increase. Figure 6 shows these 

variations of populations as per infected prey separated from predation by a predator.  

 

 
Figure 6. Variation of the population by separating prey and predator 
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Figure 7. Variation of the population when susceptible prey and predator populations are 

separated from infected prey 

 

7. Conclusion 

This paper investigates the dynamics of an Eco-Epidemiological model. A deterministic model for 

the transmission dynamics of a disease in a Prey with the optimal control is designed and analyzed. 

Incorporating the optimal control for infected prey in the model provides more realistic and plays 

an important role in biological control for the spread of the disease. The boundedness and positivity 

hold which implies that the system is biologically well behaved as also obtained by (Hugo et al. 

(2012)). We obtain the equilibria of the model and its stability analysis was rigorously analyzed 

with the respective biological meaning conditions. Mathematically, our results stand upon the local 

stability of the disease-free equilibrium point (DFE) and the conditions for global stability which 

was determined using the Lyapunov function. Furthermore, the strategies for eliminating the 

disease in the prey-predator system were evaluated using Pontryagin’s Maximum Principle (PMP) 

and the numerical results show that separation of infected prey into susceptible prey and predator 

saves more species. We further observed that as we increase the control rate of the infected prey 

tends to lower the disease in the population and hence, we recommend the infected population 

should be separated from susceptible to avoid the contaminations.  
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