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Abstract

We have studied the existence, location and stability of the libration points in the model of restricted
four-body problem (R4BP) with variable mass. It is assumed that three primaries, one dominant
primary and the other two with equal masses, are always forming an equilateral triangle. We have
determined the equations of motion of the above mentioned problem for the fourth body which is
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an infinitesimal mass. The libration points have been determined numerically for different values
of the parameters considered. It is found that there are eight or ten libration points out of which six
are non-collinear and two or four are collinear depending upon the values of mass parameter and
the constant of proportionality occurring in Jeans’ law. The regions of motion of the infinitesimal
mass have been drawn and investigated. We have also examined the stability of each libration
point and found that all the libration points are unstable. Further, the Newton-Raphson basins of
attraction are drawn for different set of parameters used.

Keywords: R4BP; Libration Point; Zero Velocity Curve; Newton-Raphson Basins of Attraction

MSC 2010 No.: 37N05, 70F07, 70F15

1. Introduction

The few-body problem (specially three and four-body problem) has always captivated many math-
ematicians and astronomers. History of the restricted three-body problem begins with Newton
(1687), where he considered the motion of the Earth and Moon around the Sun. Further, a special
form of the general three-body problem was suggested by Euler (1767) and he was the first to
formulate the circular restricted three-body problem in a rotating coordinate system.

Later on, several modifications have been proposed for the study of the motion of the test particle in
the restricted three-body problem to be more realistic. A large number of researchers and scientists
devoted their sweat to examine the existence and stability of the libration points in the restricted
three-body problem: by including the small perturbations in the Coriolis and centrifugal forces
(for example, Bhatnagar and Hallan (1978), the photogravitational effect (for example, Kumar and
Choudhry (1986), Bhatnagar and Chawla (1979), Abouelmagd (2012)), the additions of the oblate-
ness coefficient to the potential (for example, Sharma and Subba Rao (1975, 1976)). The existence
of periodic orbits on the same problem has been discussed by many authors: (for example, Sharma
(1981), Mittal et al. (2009a,b)). Suraj et al. (2014) have studied the photo-gravitational version of
the R3BP by taking the primaries as heterogeneous spheroid with three layers.

It was Shrivastava and Ishwar (1983), who introduced variable mass of the test particle in the
restricted problem of three bodies. Further, Singh and Ishwar (1984) have studied the effect of
perturbations on the location of equilibrium points with variable mass in the restricted problem
of three bodies while Singh and Ishwar (1985) have extended their study to examine the stability
of the equilibrium points. Later, Singh (2003) has examined the photogravitational version of the
restricted three-body problem by taking more massive primary as variable while Singh and Leke
(2010) have taken both the primaries as luminous body as well as their masses as variable.

In the same vein, many authors and scientists have extended these ideas in the restricted four-
body problem. The existence of equilibrium points and their stability (for example, Baltagiannis
and Papadakis (2011), Asique et al. (2015b)), with radiation effect (for example, Papadouris and
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Papadakis (2013), Suraj and Hassan (2014), Asique et al. (2015a), Singh and Vincent (2015b,
2016)), including oblateness of the primaries (for example, Kumari and Kushvah (2014)), including
triaxiality of the primaries (for example, Asique et al. (2016), Asique et al. (2017), Suraj et al.
(2017)), and effect of the Coriolis and centrifugal forces (for example„ Singh and Vincent (2015a),
Suraj et al. (2017)).

In a series of papers, Kaur and Aggarwal (2012, 2013, 2014) and Aggarwal and Kaur (2014)
have extended Robe’s restricted three body problem to Robe’s 2+2 body problem. By taking the
primaries as oblate Roche ellipsoid, they have discussed the existence and stability of the libration
points in all the cases.

Recently, Mittal et al. (2016) have shown the existence and locations of the libration points in the
circular restricted four-body problem with variable mass and found that there exist eight libration
points which are substantially influenced by the parameters used. Moreover, they have investigated
the stability of the libration points for α > 0 in the linear sense and found that all the libration
points are unstable for all combination of mass parameter and constant of proportionality α. In
addition, they have also discussed the regions of possible motion and revealed that these regions
are highly influenced by the values of Jacobian constant as well as by the perturbation parameters.

The present paper is continuation of Mittal et al. (2016). It is the first time, we have numerically
investigated the influence of the mass parameter µ and parameter α on the geometry and the shape
of the Newton-Raphson basins of convergence in a systematic way. These facts lead to the novel
contribution of our work.

The present paper has following structure: the important properties of the dynamical system are
presented in Sect. 2. The parametric evolution of the libration points is presented in Sect. 3. In
the Sect. 4, we have discussed how the mass parameter and perturbation parameter influence the
possible regions of motion. The following section deals with the stability of the obtained libration
points. The numerical results corresponding to the evolution of the Newton-Raphson basins of
convergence associated with the libration points are presented in Sec. 6. The paper ends with
Sec.7, where we have described the obtained results in detail.

2. Description of the mathematical model

This section deals with the formulation of the restricted four-body problem with variable mass. A
dimensionless barycentric rotating system of co-ordinate Oxyz is taken into consideration, where
three primary bodies of masses m1,m2 and m3 (m1 ≥ m2 = m3) situated at the vertices of an
equilateral triangle having side l moving in their circular orbits with angular velocity ω about
the center of mass O. The center of mass O is taken as the origin of the co-ordinate system, the
line passing through the primary m1 and O is taken as x−axis, the line passing through O and
perpendicular to x−axis and in the plane of motion of the primaries is taken as y−axis. The line
passing through origin and perpendicular to xy−plane is taken as z−axis (see Figure 1).
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Figure 1. The configuration of the restricted four-body problem with variable mass

Then, the co-ordinates of the primaries are given by the following relations (Baltagiannis and
Papadakis (2011))

x1 =
|K|M
K

, y1 = 0,

x2 = −
|K|[(m2 −m3)m3 +m1(2m2 +m3)]

2KM
,

y2 =

√
3

2

m3

m
3/2
2

√
m3

2

M
,

x3 = −
|K|
2
√
M
,

y3 = −
√
3

2

1

m
1/2
2

√
m3

2

M
,

z1 = z2 = z3 = 0,

where

|K| = m2(m3 −m2) +m1(m2 + 2m3),

M =
√
m2

2 +m2m3 +m2
3.

Let the co-ordinates of the infinitesimal mass m4 = m be (x, y, z). Adopting the terminol-
ogy of Mittal et al. (2016), the coordinates of the primaries are: P1(x1, y1, z1) = (m2

√
3, 0, 0),

P2(x2, y2, z2) = (−
√
3
2 (1− 2m2),−1

2 , 0) and P3(x3, y3, z3) = (−
√
3
2 (1− 2m2),

1
2 , 0).

The kinetic energy T in the rotating frame of reference Oxyz is:

T =
1

2
m[(ẋ− ωy)2 + (ẏ + ωx)2 + ż2],

= T0 + T1 + T2, (1)
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where

T0 =
1

2
m(ẋ2 + ẏ2 + ż2),

T1 = mω(xẏ − ẋy),

T2 =
1

2
mω(x2 + y2).

The potential energy V is:

V = −Gm
{m1

r1
+m2

( 1

r2
+

1

r3

)}
, (2)

where G is gravitational constant and

r21 = (x− x1)2 + y2 + z2,

r22 = (x− x2)2 + (y − y2)2 + z2,

r31 = (x− x3)2 + (y − y3)2 + z2.

Let the modified potential energy be U = V − T2.

Therefore, the lagrangian becomes:

L =
1

2
m(ẋ2 + ẏ2 + ż2) +mω(xẏ − ẋy)− U. (3)

The equations of motion of the fourth particle is:

d

dt

(∂L
∂ẋ

)
− ∂L

∂x
= 0,

d

dt

(∂L
∂ẏ

)
− ∂L

∂y
= 0,

d

dt

(∂L
∂ż

)
− ∂L

∂z
= 0. (4)

Now, we choose m2

m1+m2+m3
= µ and units of mass, length and time are so chosen that m1 +m2 +

m3 = 1, l = 1 and G = 1 respectively. Therefore, angular velocity ω = 1, masses m2 = m3 = µ

and m1 = 1 − 2µ. Thus, the coordinates of the primaries P1, P2 and P3 become: P1(x1, y1, z1) =

(
√
3µ, 0, 0), P2(x2, y2, z2) = (−

√
3
2 (1− 2µ),−1

2 , 0), and P3(x3, y3, z3) = (−
√
3
2 (1− 2µ), 12 , 0).

Hence, the equations of motion of the restricted problem of four bodies, when mass of the infinites-
imal body varies with respect to time t, are:

ẍ− 2ωẏ +
ṁ

m
(ẋ− ωy) = − 1

m

∂U

∂x
,

ÿ + 2ωẏ +
ṁ

m
(ẏ + ωy) = − 1

m

∂U

∂y
,

z̈ +
ṁ

m
ż = − 1

m

∂U

∂z
, (5)

where

U =
m

2
(x2 + y2) +m

{1− 2µ

r1
+ µ

( 1

r2
+

1

r3

)}
. (6)
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According to Jeans’ Law (1928)

dm

dt
= −αmn, (7)

where α is constant of proportionality, the exponent n ∈ [0.4, 4.4] for the star of the main sequence.
Now, we introduce the space-time transformations (Meshcherskii (1949), Meshcherskii (1952))
which preserve the dimensions of the space and time

ξ = γqx, η = γqy, ζ = γqz,

dτ = γυdt, ri = γ−qρi, (i = 1, 2, 3),

such that γ = m
mini

, mini is the mass of the fourth body at the initial time (t = 0). Shrivastava and
Ishwar (1983) have stated that the applicable values of (n, q, υ) are n = 1, q = 1

2 , and υ = 0. Hence,
the velocity and acceleration components are read as:

γ
1

2 ẋ = ξ′ +
1

2
αξ,

γ
1

2 ẏ = η′ +
1

2
αη,

γ
1

2 ż = ζ ′ +
1

2
αζ,

γ
1

2 ẍ = ξ′′ + αξ′ +
1

4
α2ξ,

γ
1

2 ÿ = η′′ + αη′ +
1

4
α2η,

γ
1

2 z̈ = ζ ′′ + αζ ′ +
1

4
α2ζ, (8)

where

(′) =
d

dτ
, (.) =

d

dt
,&

d

dt
=

d

dτ
.

Using the procedure of Mittal et al. (2016) and Equations (5-8), the equations of motion in the
transformed co-ordinates are:

ξ̈ − 2η̇ =Wξ,

η̈ + 2ξ̇ =Wη,

ζ̈ =Wζ , (9)

where

W =
1

2

(
1 +

α2

4

)
(ξ2 + η2) + γ3/2

(
1− 2µ

ρ1
+
µ

ρ2
+
µ

ρ3

)
+
α2

8
ζ2,

ρ1
2 =

(
ξ −
√
3µγ1/2

)2
+ η2 + ζ2,

ρ2
2 =

(
ξ +

√
3

2
(1− 2µ)γ1/2

)2

+

(
η +

1

2
γ1/2

)2

+ ζ2,

ρ3
2 =

(
ξ +

√
3

2
(1− 2µ)γ1/2

)2

+

(
η − 1

2
γ1/2

)2

+ ζ2. (10)
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The equations of motion (9) posses only one integral of motion known as Jacobi integral which is
given by the equation:

J(ξ, η, ζ, ξ̇, η̇, ζ̇) = (ξ̇2 + η̇2 + ζ̇2)− 2W + C + 2

∫ t

0
Wtdt = 0, (11)

where C is similar to Jacobi constant.

3. Libration points

Lagrange showed that a classical restricted three-body problem possesses five stationary solutions
which are also known as libration points or Lagrangian points. Baltagiannis and Papadakis (2011)
found that there exist at most ten libration points in the classical restricted four-body problem. The
libration points are obtained by solving the equations:

Wξ = 0,

Wη = 0,

Wζ = 0, (12)

where

Wξ =

(
1 +

α2

4

)
ξ − γ3/2

{
(1− 2µ)(ξ −

√
3µγ1/2)

ρ31
+ µ

(
ξ +

√
3
2 (1− 2µ)γ

1

2

ρ32

)
+µ

(
ξ +

√
3
2 (1− 2µ)γ

1

2

ρ33

)}
,

Wη =

(
1 +

α2

4

)
η − γ3/2

{
(1− 2µ)η

ρ31
+ µ

(
η + 1

2γ
1

2

ρ32

)
+ µ

(
η − 1

2γ
1

2

ρ33

)}
,

Wζ =
α2

4
ζ − γ3/2

{
(1− 2µ)ζ

ρ31
+
µζ

ρ32
+
µζ

ρ33

}
.

The intersections of Equations (12) define the locations of the libration points in this problem. The
location of these libration points for fixed value of γ = 0.4 and varying values of µ and α are shown
in Figure 2. We strongly believe that the number and location of these libration points depend on
the mass parameter µ and constant α. We have further observed that there exist eight libration
points out of which two are collinear and rest are non-collinear (see panels (a) and (b) of Figure 2)
whereas, panel (c) shows there exist ten libration points (four collinear and six non-collinear). The
libration points L1,2,9,10 denote the collinear libration points which lie on the ξ-axis and L3,4,5,6,7,8

are non-collinear libration points. It may be noted that for fixed value of µ = 0.3, we may find a
critical value of α viz. αc. When α < αc, there exist ten libration points and for α > αc, there exist
eight libration points.

The positions of the libration points are determined numerically for different values of the param-
eters 0 < µ ≤ 1

3 , 0 ≤ α ≤ 2.2 and γ = 0.4 which are shown in the tables (1, 2, 3). We find that
numerical and graphical results are in excellent agreement.
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Table 1. Libration points of the R4BP with variable mass in ξη-plane for µ = 0.019

α L1 L2 L3,4 L5,6 L7,8
0.5 (0.627795, 0) (-0.605112, 0) (-0.429138,±0.25915) (-0.125826,± 0.599354) (-0.628948,± 0.376772)
0.6 (0.622571, 0) (-0.59931, 0) (-0.428035,± 0.258571) (-0.127665,± 0.593476) (-0.626815,±0.375542)
0.7 (0.61662, 0) (-0.592712, 0) (-0.426714,± 0.257882) (-0.12979,±0.58675) (-0.624436,± 0.374167)
0.8 (0.610033, 0) (-0.585426, 0) (-0.425164,± 0.257079) (-0.132181,±0.579267) (-0.621868,± 0.372678)

1.25 (0.574962, 0) (-0.547063, 0) (-0.415107,± 0.252061 ) (-0.145697,± 0.538612) (-0.60926,± 0.365327)
1.34 (0.567314, 0) (-0.538816, 0) (-0.412441,± 0.250792) (-0.148845,± 0.529531) (-0.606736,± 0.363846)
1.5 (0.553523, 0) (-0.524066, 0) (-0.407132,± 0.248355) (-0.154739,± 0.512916) (-0.602372,± 0.361281)
2.2 (0.494474, 0) (-0.462709, 0) (-0.375411,± 0.237126) (-0.184373,± 0.436608) (-0.586111,± 0.351661)

Table 2. Libration points of the R4BP with variable mass in ξη-plane for µ = 0.3

α L1 L2 L3,4 L5,6 L7,8 L9 L10
0.5 (0.729199, 0) (-0.580932, 0) (0.238986,±0.520725) (0.027247,±0.148229) (-0.423144,±0.606447) (-0.084413, 0) (-0.170613, 0)
0.6 (0.724793, 0) (-0.574036, 0) (0.235994,± 0.514866) (0.027948,± 0.149171) (-0.420706,±0.603077) (-0.083238, 0) (-0.173473, 0)
0.7 (0.719785, 0) (-0.566082, 0) (0.23255,± 0.508136) (0.0287844,±0.1503) (-0.41794,± 0.59925) (-0.0819309, 0) (-0.176802, 0)
0.8 (0.714255, 0) (-0.557143, 0) (0.228691,± 0.500614) (0.029758,±0.151625) (-0.414891,±0.595028) (-0.0805175, 0) (-0.180593, 0)
1.25 (0.685068, 0) (-0.506426, 0) (0.207131,± 0.458964) (0.036011,± 0.16034) (-0.398902,± 0.572806) (-0.073423, 0) (-0.203592, 0)
1.34 (0.678762, 0) (-0.494404, 0) (0.202145,± 0.449425) (0.0376742,± 0.162716) (-0.39547,± 0.56802) (-0.0719443, 0) (-0.209535, 0)
1.5 (0.667447, 0) (-0.471392, 0) (0.192814,± 0.431667) (0.0410349,± 0.167584) (-0.389333,± 0.559446) (-0.0693172, 0) (-0.22158, 0)
2.2 (0.619584, 0) – (0.142845,± 0.338821) (0.0658814,± 0.20585) (-0.363815,± 0.523605) (-0.0583929, 0) –

Table 3. Libration points of the R4BP with variable mass in ξη-plane for α = 1.5

µ L1 L2 L3,4 L5,6 L7,8 L9 L10
0.005 (0.547269, 0) (-0.539519, 0) (-0.447289,± 0.262238) (-0.171278,± 0.514788 ) (-0.584954,± 0.341107) – –
0.01 (0.549503, 0) (-0.534002, 0) (-0.4308,± 0.25608) (-0.165377,± 0.514131 ) (-0.594337,± 0.350056) – –
0.019 (0.553523, 0) (-0.524066, 0) (-0.407132,± 0.248355 ) (-0.154739,± 0.512916) (-0.602372,± 0.361281 ) – –
0.04 (0.562885, 0) (-0.500852, 0) (-0.362797,± 0.23638) (-0.129832,± 0.509907 ) (-0.606452,± 0.379871) – –
0.08 (0.580601, 0) (-0.456448, 0) (-0.292336,± 0.221274 ) (-0.0820345,± 0.503411) (-0.59503,± 0.407139 ) – –
0.1 (0.589369, 0) (-0.434089, 0) (-0.259939,± 0.215266) (-0.0579396,± 0.499721) (-0.584852,± 0.419647) – –
0.2 (0.631464, 0) (-0.307001, 0) (-0.107852,± 0.190527 ) (0.0649507,± 0.474955) (-0.507966,± 0.48419) – –
0.3 (0.667447, 0) (-0.471392, 0) (0.192814,± 0.431667 ) (0.0410349,± 0.167584 ) (-0.389333,± 0.559446 ) (-0.0693172, 0) (-0.22158, 0)

(a) (b) (c)

Figure 2. The locations of libration points in the restricted four-body problem with variable mass for fixed γ = 0.4. (a)
α = 1.5 and varying µ = 0.005, 0.01, 0.019, 0.04, 0.08 (b) µ = 0.3 and α = 2.2. (c) µ = 0.3 and varying
α = 0.5, 0.6, 0.7, 0.8, 1.25, 1.34, 1.5. The red dots show the position of the primaries and black dots show
the location of the libration points

4. Regions of motion

The zero velocity curves of our problem are determined by using the relation 2W −C−2
∫ t
0 Wtdt =

0. The motion of the test particle is possible when 2W − C − 2
∫ t
0 Wtdt ≥ 0. In Figure 3, ZVCs

have been drawn for fixed energy constant C = CL5,6
= 1.4245, γ = 0.4, µ = 0.3 and varying α,

(0 ≤ α ≤ 2.2). In panel (a), α = 0.5, it is observed that the fourth particle can move in the white
circular regions near the primaries and is restricted to cross the boundaries of the shaded region.
Two limiting situations are observed at L5 and L6. In panel (b), α = 0.8, corridors are available at
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L5,6,7,8 and a limiting situation is observed at L1. The entire forbidden region is divided into three
disjoint regions containing L2,9,10, L3 and L4 respectively. Now, the fourth particle is free to move
from one primary to another but restricted to move in the shaded regions. In panel (c), α = 1.25, the
region of motion increases and allow the test particle to move anywhere in the white region. Here,
the three disjoint regions shrink towards L2,9,10, L3 and L4 respectively. In panel (d), it is observed
for α = 2.2, the forbidden regions containing the libration points L3 and L4 disappear completely
at these libration points and the forbidden region containing the libration points L2, L9 and L10

shrinks to a triangular island which contains L9. Now, the fourth particle is allowed to move freely
in the white region and restricted to move in the shaded region. Further increase in α, the forbidden
region disappears completely at L9 and the test particle is free to move in the space.

(a) (b)

(c) (d)
Figure 3. The ZVCs of the R4BP with variable mass for fixed values of the parameters γ = 0.4, µ = 0.3 and the energy

constant C = CL5,6
= 1.4245 and varying α. a) α = 0.5, b) α = 0.8, c) α = 1.25, d) α = 2.2. Here the

black dots represent the libration points and the red dots represent positions of the primaries. The white area
corresponds to the region of motion and the purple area is the forbidden region

In Figure 4, panels (a)-(f), the ZVCs are drawn for fixed values of α = 1.5, γ = 0.4, C = CL5,6
=

1.4048 and for varying values of µ. In panel (a), µ = 0.005, it is observed that the forbidden region
contains the libration points L1,2,5,6. The limiting situations exist at L3 and L4 where cusps are
formed. The test particle is confined to move in the white circular region around the primary
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m1 but can not move in the shaded region. Also, it can move outside the shaded region. Thus,
it can move from primary m2 to m3 and vice-versa but can’t move to primary m1. In panel (b),
µ = 0.01, the horseshoe shaped forbidden region splits into two disjoint regions, one containing
the libration point L2 and other containing L1,5,6. The corridors at L3 and L4 are available and
the fourth body can now move from one primary to another primary and vice-versa but restricted
to move in the shaded region. In panel (c), µ = 0.0137, it is noticed that the forbidden regions
constitute three branches in which two are tadpole shaped regions containing the libration points
L5 and L6 respectively while the other island shaped region contains the libration point L2. A
corridor is observed at L1 where the test particle can move from one primary to another and vice-
versa. In panels (d) and (e), it has been observed that the forbidden regions containing the libration
points L2,5,6 take the shapes of a flattened islands. In panel (f) µ = 0.3, in this case there exist
four collinear libration points and a sudden change in the pattern of forbidden region around L2

is observed. A limiting situation is also observed at L10 where cusp is formed. Therefore, it is
concluded that µ has substantial impacton the ZVCs.

(a) (b) (c)

(d) (e) (f)

Figure 4. The ZVCs of the R4BP with variable mass for different values of µ and for fixed values of γ = 0.4, α = 1.5
and the energy constant C = CL3,4

= 1.4048. a) µ = 0.005, b) µ = 0.01, c) µ = 0.0137, d) µ = 0.1,
e) µ = 0.2 and f) µ = 0.3. Here the black dots represent the libration points and the red dots represent the
primaries. The white region is the region of motion and the purple region is the forbidden region
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5. Stability of the libration points

If the test particle oscillates about a point when it is given a small displacement from it, the point is
said to be stable point and if the test particle departs rapidly from the neighborhood of the point, the
point is said to be unstable. The stability of the libration points has been examined in the restricted
four body problem with variable mass. We denote the libration point by (ξ0, η0, ζ0) (for a fixed time
t) and to investigate its stability, we give a small displacement (u, v, w) from it, as:

ξ = ξ0 + u, η = η0 + v, ζ = ζ0 + w, (u, v, w << 1). (13)

Using equations (13) in equations (9), the following variational equations are obtained

ü− 2v̇ = (Wξξ)0u+ (Wξη)0v + (Wξζ)0w,

v̈ + 2u̇ = (Wηξ)0u+ (Wηη)0v + (Wηζ)0w,

ẅ = (Wζξ)0u+ (Wζη)0v + (Wζζ)0w, (14)

where the subscript ’0’ in equations (14) indicates that the values are to be calculated at the respec-
tive libration point (ξ0, η0, ζ0) and,

Wξξ =

(
1 +

α2

4

)
+ 3γ

3

2

{
(1− 2µ)

(ξ −
√
3µγ1/2)2

ρ15
+ µ

(ξ +
√
3
2 (1− 2µ)γ1/2)2

ρ25

+ µ
(ξ +

√
3
2 (1− 2µ)γ1/2)2

ρ35

}
− γ3/2

(
1− 2µ

ρ13
+

µ

ρ23
+

µ

ρ33

)
,

Wηξ = 3γ
3

2

{
(1− 2µ)

(ξ −
√
3µγ1/2)η

ρ15
+ µ

(ξ +
√
3
2 (1− 2µ)γ1/2)(η + γ1/2

2 )

ρ25

+ µ
(ξ +

√
3
2 (1− 2µ)γ1/2)(η − γ1/2

2 )

ρ35

}
,

=Wξη,

Wηη = 1 +
α2

4
+ 3γ

3

2

{
(1− 2µ)

η2

ρ15
+ µ

(η + γ1/2

2 )2

ρ25
+ µ

(η − γ1/2

2 )2

ρ35

}
− γ3/2

(
1− 2µ

ρ13
+

µ

ρ23
+

µ

ρ33

)
,

Wζξ =Wξζ = 3γ
3

2 ζ

{
(1− 2µ)

(ξ −
√
3µγ1/2)

ρ15
+ µ

(ξ +
√
3
2 (1− 2µ)γ1/2)

ρ25
+ µ

(ξ +
√
3
2 (1− 2µ)γ1/2)

ρ35

}
,

Wηζ =Wζη = 3γ
3

2 ζ

{
(1− 2µ)

η

ρ51
+ µ

(η + γ1/2

2 )

ρ52
+ µ

(η − γ1/2

2 )

ρ53

}
,

Wζζ = 3γ
3

2 ζ2

(
1− 2µ

ρ51
+
µ

ρ52
++

µ

ρ53

)
− γ3/2

(
1− 2µ

ρ31
+
µ

ρ32
+
µ

ρ33

)
+
α2

4
.

For α 6= 0, the coordinates of three primaries and their distances to the libration point (ξ0, η0, ζ0)
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change with time. Rewriting the Equations (14) in phase space as follows:

u̇ = u1, v̇ = v1, ẇ = w1,

u̇1 − 2v1 = (Wξξ)0u+ (Wξη)0v + (Wξζ)0w,

v̇1 + 2u1 = (Wηξ)0u+ (Wηη)0v + (Wηζ)0w,

ẇ1 = (Wζξ)0u+ (Wζη)0v + (Wζζ)0w. (15)

Using space-time inverse transformations x = γ−1/2ξ, y = γ−1/2η and z = γ−1/2ζ, and taking

x′ = γ−1/2u, u′ = γ−1/2u1,

y′ = γ−1/2v, v′ = γ−1/2v1,

z′ = γ−1/2w, w′ = γ−1/2w1,

the system (15) can be written as:

dx′

dt
dy′

dt
dz′

dt
du′

dt
dv′

dt
dw′

dt


=



α
2 0 0 1 0 0

0 α
2 0 0 1 0

0 0 α
2 0 0 1

(Wξξ)0 (Wξη)0 (Wξζ)0
α
2 2 0

(Wηξ)0 (Wηη)0 (Wηζ)0 −2 α
2 0

(Wζξ)0 (Wζη)0 (Wζζ)0 0 0 α
2





x′

y′

z′

u′

v′

w′


. (16)

The characteristic equation of the coefficient matrix given in equation (16) is:

λ6 − 3αλ5 +
(15
4
α2 + P

)
λ4 −

(5
2
α3 + Pα

)
λ3 +

(15
16
α4 +

3

2
Pα2 +Q

)
λ2

−
( 3

16
α5 +

1

2
Pα3 +Qα

)
λ+

( 1

64
α6 +

1

16
Pα4 +

1

4
Qα2 +R

)
= 0, (17)

where

P = 4− (Wξξ)0 − (Wηη)0 − (Wζζ)0,

Q = (Wξξ)0(Wζζ)0 + (Wηη)0(Wζζ)0 + (Wξξ)0(Wηη)0 − 4(Wζζ)0 − [(Wξη)0]
2,

R = −(Wξξ)0(Wηη)0(Wζζ)0 + (Wζζ)0[(Wξη)0]
2,

the values of (Wξξ)0, (Wηη)0, (Wζζ)0 and (Wξη)0 are same as in equations (14).

The eigenvalues of the equation (17) have been calculated numerically at various libration points
for γ = 0.4, 0 < µ ≤ 1/3, 0 ≤ α ≤ 2.2. We obtain at least one positive real root at each libration
point under consideration. Therefore, we conclude that all the libration points are unstable.

6. Newton-Raphson basins of convergence

The Newton-Raphson basins of convergence, associated with the libration points, reflect vari-
ous important properties of the dynamical system. Recently, many researchers have studied the
Newton-Raphson basins of convergence in various dynamical system including different perturb-
ing terms in the effective potential (for example„ Baltagiannis and Papadakis (2011), Suraj et al.
(2017), Suraj et al. (2017), Zotos (2016a), Zotos (2016b), Zotos (2017)). In order to study the
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basins of convergence associated with the libration points, we apply the multivariate version of
the Newton-Raphson iterative scheme. We scan the set of initial conditions to reveal that to which
attractor these initial conditions converge. To solve the systems of multivariate function f(X) = 0,
we apply the iterative scheme

Xi+1 = Xi − J−1f(Xi),

where J is the Jacobian matrix of f(Xn).
In the present problem, the system of differential equations are given by

Wξ = 0,

Wη = 0.

With simple calculations, we get the iterative formula for each coordinate as:

ξn+1 = ξn −
(

WξnWηnηn −WηnWξnηn

WξnξnWηnηn −WξnηnWηnξn

)
, ηn+1 = ηn +

(
WξnWηnξn −WηnWξnξn

WξnξnWηnηn −WξnηnWηnξn

)
,

where ξn, ηn denote the iterates at the n-th step of the Newton-Raphson iterative process. The sub-
scripts denote the corresponding partial derivatives of the first and second order of W (ξ, η). The
algorithm of the Newton-Raphson method is as follows:- The algorithm initiates with an initial
condition ξ0, η0 on the configuration plane and the process continues until one of the attractors (or
libration points) is reached with some predefined accuracy. The initial conditions may or may not
lead us to the attractors. The Newton-Raphson basins of attraction consists of all the initial con-
ditions which converge to the specific attractor. To reveal the structures of the basins of attraction
on the configuration plane (x, y), we define a uniform grid which consists of 1024 × 1024 initial
conditions, which are also called nodes and will be used as initial values of the numerical algo-
rithm.The iterative procedure terminates only when an accuracy of 10−15 regarding the procedure
of the libration points is reached. In our study, we have set the maximum number of iterations equal
to 500.

It has been shown, how the geometry of the Newton-Raphson basins of attraction change with the
change in the mass parameter µ and constant of proportionality α. We classify the initial conditions
on ξη -plane and modern colour coded diagrams have been used to do the same. In all the diagrams,
each pixel is assigned a particular colour according to the particular attractor (libration point). The
minimum and maximum values of ξ and η are chosen different in each case to view the complete
picture of the basins of attraction generated by the attractors.

6.1. Case I: when α varies

We study the effect of α in the interval [0, 2.2]. In Figure 5, we have shown a collection of colour
coded graphs illustrating the Newton-Raphson basins of convergence for various values of α. The
choice of initial conditions ξ0 and η0 is highly sensitive as even a slight change in the initial con-
ditions leads to a completely different destination. Therefore, it is difficult to find which of the
libration point, each initial condition is attracted by. We have observed that a change in α does not
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(a) (b) (c)

Figure 5. The Newton-Raphson basins of attraction on the configuration plane (ξ, η) when γ = 0.4 and µ = 0.019.
(a) α = 0.5, (b) α = 1.5, (c) α = 2.2. The colour code denoting the attractors is as follows: L1 (blue), L2

(Yellow), L3 (Red) , L4 (Darker Yellow), L5 (Pink), L6 (Magenta), L7 (Cyan), L8 (Purple)

follow a specific pattern. In Figure 5, panels (a)-(c), we have observed that these basins are symmet-
rical about ξ−axis. An interesting phenomenon related to the extent of the basins of convergence is
observed. The extent of basins of convergence corresponding to the non-collinear libration points
is always finite, whereas the extent of attracting domains of the collinear libration point L2 (yellow
colour) extends to infinity. With the increase in α, the extent of basins of convergence correspond-
ing to the non-collinear libration points, shrinks whereas corresponding to the collinear libration
point L2, the extent of basins of convergence expands. For the libration point L1, the Newton-
Raphson basins of attraction look like an exotic bug in blue colour with many legs and antennas
whereas for the libration points L5 and L6, constitute multiple wings of a butterfly.
Some heart shaped curves originate at L1 and increase continuously to the right of L1. We also
notice that some tadpole shaped curves originate at the libration point L2 and they increase to the
left of L2 continuously. The boundary of the basins of attraction are chaotic mixtures of the initial
conditions corresponding to the libration points. It can be inferred that the maximum number of
initial conditions on the configuration plane are attracted by the libration point L2.

In Figure 6, panels (a)-(c), the extent of basins of convergence corresponding to the non-collinear
libration points is always finite, whereas the extent of attracting domains of the collinear libration
point L9 extends to infinity. As we increase the value of α, drastical changes are observed in the
basins of attraction. Further, it is noticed from frame (c) that almost very few initial conditions
are attracted by the libration points L2 and L10. In this case, the convergence of initial condition
are extremely slow and it takes more than 500 iterations to converge to one of the libration point
Li (i = 1, 2, ..., 10).

6.2. Case II: when µ varies

In Figure 7, panels (a)-(c) our aim is to study the effect of µ on the topology of Newton-Raphson
basins of attraction. The extent of basins of convergence corresponding to the non-collinear li-
bration points is always finite, whereas the extent of attracting domains of the collinear libration
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(a) (b) (c)

Figure 6. The Newton-Raphson basins of attraction on the configuration plane (ξ, η) when γ = 0.4 and µ = 0.3 and α
varies. (a) α = 0.5, (b) α = 1.5, (c) α = 2.2. The colour code denoting the attractors is as follows: L1 (blue),
L2 (Yellow), L3 (Red) , L4 (Darker Yellow), L5 (Pink), L6 (Magenta), L7 (Cyan), L8 (Purple), L9 (Green),
L10 (Darker Green)

(a) (b) (c)

Figure 7. The Newton-Raphson basins of attraction on the configuration plane (ξ, η) when α = 1.5, γ = 0.4 (a)
µ = 0.005, (b) µ = 0.019, (c) µ = 0.2. The color code denoting the attractors is same as in Figure 5

point L2 extends to infinity. In this case, we have observed that there is no uniform pattern for the
basins of attraction. We have noticed that the basins of convergence corresponding to finite domain
shrink. The tadpole shaped regions near the primary m1 decreases as we increase µ.

7. Discussion and conclusion

The main aim of this paper is to study the effect of the mass parameter (µ) and proportionality
constant (α) on the existence, location and stability of the libration points in the R4BP with vari-
able mass when the primaries are always in the Lagrange equilateral triangle configuration. It has
been observed that there exist ten libration points out of which four are collinear and six are non-
collinear for the case µ = 0.3, 0 ≤ α ≤ 1.5, but the number of collinear libration points decrease
from four to two for α = 2.2 and number of non-collinear libration points remains same (refer
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table 2). Whereas for µ = 0.019 the number of libration points are always eight (two collinear
and six non-collinear) for all α ∈ [0, 2.2] (Mittal et al. (2016)). The regions of motion for the pa-
rameters used are drawn and their effect are shown on regions of motion. We have further studied
the stability of the libration points and found that all the libration points are unstable for all the
values of the parameters used. The study ends with the section where the multivariate version of
Newton-Raphson iterative scheme is applied to discuss the basins of convergence. Further, our
analysis reveals that the parameters α and µ have significant impact on the geometry as well as on
the topology of the attracting domain corresponding to each libration point.

In future, it is interesting to apply other type of iterative schemes and discuss the similarities as
well as differences in the topology of the attracting domains corresponding to the libration points.
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