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Abstract

In this paper, a de Casteljau algorithm to compute (p, q)-Bernstein Bézier curves based on (p, q)-
integers are introduced. The nature of degree elevation and degree reduction for (p, q)-Bézier
Bernstein functions are studied. The new curves have some properties similar to q-Bézier curves.
Moreover, we construct the corresponding tensor product surfaces over the rectangular domain
(u, v) ∈ [0, 1]× [0, 1] depending on four parameters. De Casteljau algorithm and degree evaluation
properties of the surfaces for these generalization over the rectangular domain are investigated.
Furthermore, some fundamental properties for (p, q)-Bernstein Bézier curves are discussed. We get
q-Bézier curves and surfaces for (u, v) ∈ [0, 1] × [0, 1] when we set the parameter p1 = p2 = 1.

In comparison to q-Bézier curves based on q-Bernstein polynomials, this generalization gives us
more flexibility in controlling the shapes of curves.

Keywords: (p, q)-integers; (p, q)-Bernstein polynomials; Degree elevation; Degree reduction;
de Casteljau algorithm; Tensor product; (p, q)-Bézier curve; (p, q)-Bézier surface;
Shape preserving.
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1. Introduction

Recently, Mursaleen et al. (2015, 2016) applied the concept of (p, q)-calculus (which is considered
as an extension of quantum-calculus) in Approximation theory and introduced the (p, q)-analogue
of Bernstein operators based on (p, q)-integers. Apart from various generalisation of Bernstein op-
erators, another paper by Mursaleen et al. (2016) which catches attention of researchers working
in Approximation theory is Bleimann-Butzer-Hahn operators defined by (p, q)-integers. After this
initiation, many researchers started working in this area. For similar works based on (p, q)-integers,
one can refer [Acar (2016); Acar et al. (2016); Cai and Zhou (2016); Kadak (2016); Kadak (2017);
Khan and Lobiyal (2017); Mursaleen et al. (2015); Mursaleen et al. (2016); Mursaleen et al. (2015);
Mursaleen et al. (2016); Mishra and Pandey (2016); Mishra and Pandey (2017); Wafi and Rao
(2016); Wafi and Rao (2017)].

Motivated by the above mentioned work, the idea of (p, q)-calculus (post quantum calculus) and its
importance, we construct (p, q)-Bézier curves and surfaces based on (p, q)-integers which is further
generalization of q-Bézier curves and surfaces.

Some of the advantages of using the extra parameter p has been discussed in [Khan and Lobiyal
(2017); Mursaleen et al. (2016)].

It was S.N. Bernstein [Bernstein (1912)], who first introduced his famous operators Bn : C[0, 1]→
C[0, 1] defined for any n ∈ N and for any function f ∈ C[0, 1]

Bn(f ;x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1], (1)

and named it Bernstein polynomials to provide a constructive proof of the Weierstrass theorem
[Korovkin (1960)]. Later, it was found that Bernstein polynomials possess many remarkable prop-
erties and has various applications in areas such as approximation theory, numerical analysis,
computer-aided geometric design, and solutions of differential equations due to its fine proper-
ties of approximation [Oruk and Phillips (2003)].

In Computer Aided Geometric Design (CAGD), Bernstein polynomials and its variants are used in
order to preserve the shape of the curves or surfaces. One of the most important curve in CAGD
[Sederberg (2014); Farouki and Rajan (1988)] is the classical Bézier curve [Bézier (1972)] con-
structed with the help of Bernstein basis functions.

In recent years, generalization of the Bézier curve with shape parameters has received continu-
ous attention. Several authors were concerned with the problem of changing the shape of curves
and surfaces, while keeping the control polygon unchanged and thus, they generalized the Bézier
curves in [Farouki and Rajan (1988); Hana et al. (2014); Oruk and Phillips (2003); Rababah and
Manna (2011)].
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Lupaş (1987) introduced the first q-analogue of Bernstein operators (rational) as follows:

Ln,q(f ;x) =

n∑
k=0

f

(
[k]q
[n]q

) [
n

k

]
q

q
k(k−1)

2 xk (1− x)n−k

n∏
j=1
{(1− x) + qj−1x}

, (2)

and investigated its approximating and shape-preserving properties.

In 1996, Phillips (1997) proposed another q-variant of the classical Bernstein operators, the so-
called Phillips q-Bernstein operators which attracted lots of investigations.

Bn,q(f ;x) =

n∑
k=0

[
n

k

]
q

xk
n−k−1∏
s=0

(1− qsx) f

(
[k]q
[n]q

)
, x ∈ [0, 1], (3)

where Bn,q : C[0, 1]→ C[0, 1] defined for any n ∈ N and any function f ∈ C[0, 1].

The q-variants of Bernstein polynomials provide one shape parameter for constructing free-form
curves and surfaces, Phillips q-Bernstein operator was applied well in this area.

In 2003, Oruk and Phillips [Oruk and Phillips (2003)] used the basis functions of Phillips q-
Bernstein operator for construction of q-Bézier curves, which they call Phillips q-Bézier curves,
and studied the properties of degree reduction and elevation.

Thus with the development of (p, q)-analogue of Bernstein operators and its variants, one natural
question arises, how it can be used in order to preserve the shape of the curves or surfaces. In this
way, it opens a new research direction which requires further investigations.

Recently, (p, q)-analogue of Lupaş Bernstein operators are defined as follows in [Khan and Lobiyal
(2017)]:

For any p > 0 and q > 0, the linear operators Ln
p,q : C[0, 1]→ C[0, 1]

Ln
p,q(f ;x) =

n∑
k=0

f

(
pn−k [k]p,q

[n]p,q

) [
n

k

]
p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 xk (1− x)n−k

n∏
j=1
{pj−1(1− x) + qj−1x}

, (4)

is (p, q)-analogue of Lupaş Bernstein operators.

Again when p = 1, Lupaş (p, q)-Bernstein operators turns out to be Lupaş q-Bernstein operators as
given in [Mahmudov and Sabancigil (2010)].

3

Khan et al.: A de Casteljau Algorithm for Bernstein type Polynomials

Published by Digital Commons @PVAMU, 2018



1000 Khalid Khan et al.

When p = q = 1, Lupaş (p, q)-Bernstein operators turns out to be classical Bernstein operators.

Let us recall certain notations of (p, q)-calculus .

For any p > 0 and q > 0, the (p, q) integers [n]p,q are defined by

[n]p,q = pn−1 + pn−2q + pn−3q2 + ...+ pqn−2 + qn−1 =



pn−qn
p−q , when p 6= q 6= 1,

n pn−1, when p = q 6= 1,

[n]q, when p = 1,

n, when p = q = 1,

where [n]q denotes the q-integers and n = 0, 1, 2, · · · .

It is obvious that [n]p,q = pn−1 [n] q

p
.

The formula for (p, q)-binomial expansion is as follows:

(ax+ by)np,q :=

n∑
k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2

[
n

k

]
p,q

an−kbkxn−kyk.

For a = b = 1,

(x+ y)np,q :=

n∑
k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2

[
n

k

]
p,q

xn−kyk.

On using,

(x+ y)np,q = (x+ y)(px+ qy)(p2x+ q2y) · · · (pn−1x+ qn−1y),

one can write,

(x)np,q = (x)(px)(p2x) · · · (pn−1x) = p
n(n−1)

2 xn,

which implies

(1)np,q = (1)(p)(p2) · · · (pn−1) = p
n(n−1)

2 .
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The (p, q)-analogue of Euler’s identity is as follows:

(1− x)np,q =

n−1∏
s=0

(ps − qsx) = (1− x)(p− qx)(p2 − q2x)...(pn−1 − qn−1x)

=

n∑
k=0

(−1)kp
(n−k)(n−k−1)

2 q
k(k−1)

2

[
n

k

]
p,q

xk.

From (p, q)-binomial expansion, or by using induction on n, one can easily verify that

n∑
k=0

[
n

k

]
p,q

p
k(k−1)

2 xk
n−k−1∏
s=0

(ps − qsx) = p
n(n−1)

2 , x ∈ [0, 1]. (5)

Again by some simple calculations and using the property of (p, q)-integers, one can find (p, q)-
analogue of Pascal’s relation as follows:

[
n

k

]
p,q

= qn−k

[
n− 1

k − 1

]
p,q

+ pk

[
n− 1

k

]
p,q

(6)

[
n

k

]
p,q

= pn−k

[
n− 1

k − 1

]
p,q

+ qk

[
n− 1

k

]
p,q

. (7)

Details on (p, q)-calculus can be found in [Hounkonnou et al. (2013); Jagannathan and Srinivasa
(2005)].

The (p, q)-Bernstein Operators introduced by Mursaleen et al. (2015, 2016) for 0 < q < p ≤ 1 and
x ∈ [0, 1] are as follows:

Bn,p,q(f ;x) =
1

p
n(n−1)

2

n∑
k=0

[
n

k

]
p,q

p
k(k−1)

2 xk
n−k−1∏
s=0

(ps − qsx) f

(
[k]p,q

pk−n[n]p,q

)
. (8)

Note when p = 1, (p, q)-Bernstein Operators given by (8) turns out to be Phillips q-Bernstein Op-
erators.

The operators given by (4) and (8) are respective generalization of q-Lupaş and q-Phillips operators.

For other works relevant to this field, one can see [Agarwal et al. (2013); Aral et al. (2013); Mishra
and Deepmala (2013); Mursaleen and Khan (2013); Mursaleen and Nasiruzzaman (2017); Victor
and Pokman (2002)].

5

Khan et al.: A de Casteljau Algorithm for Bernstein type Polynomials

Published by Digital Commons @PVAMU, 2018



1002 Khalid Khan et al.

We apply post-quantum calculus to introduce the (p, q)-Bézier curves and surfaces based on (p, q)-
integers constructed with the help of Bernstein basis of (8) which is further generalization of q-
Bézier curves and surfaces, for example, [Lupaş (1987); Hana et al. (2014); Oruk and Phillips
(2003)].
The outline of this paper are as follows: Section 2 introduces a (p, q)-analogue of the Phillips q-
Bernstein functionsBk,n

p,q and its Properties. Section 3 introduces degree elevation and degree reduc-
tion properties for (p, q)-analogue of the Bernstein functions. Section 4 introduces a de Casteljau
type algorithm for Bk,n

p,q . In Section 5, we define a tensor product patch based on algorithm 1 and its
geometric properties as well as a degree elevation technique are investigated. Furthermore, tensor
product of (p, q)-Bézier surfaces on [0, 1] × [0, 1] for (p, q)-Bernstein polynomials are introduced
and its properties that is inherited from the univariate case are being discussed. In section 6, we
discuss Shape control of (p, q)-Bernstein curves.

2. (p, q)-Bernstein functions

For any p > 0 and q > 0 and t ∈ [0, 1], the (p, q)-Bernstein functions are defined as follows:

Bk,n
p,q (t) =

1

p
n(n−1)

2

[
n

k

]
p,q

p
k(k−1)

2 tk(1− t)n−kp,q , (9)

where

(1− t)n−kp,q =

n−k−1∏
s=0

(ps − qst).

Note: The (p, q)-analogue of Bernstein operators introduced by Mursaleen et al. generate positive
linear operators only if 0 < q < p ≤ 1.

2.1. Properties of the (p, q)-analogue of the Bernstein functions

Theorem 2.1.

The (p, q)-analogue of the Bernstein functions possess the following properties:

(1). Non-negativity: Bk,n
p,q (t) ≥ 0 k = 0, 1, ..., n, t ∈ [0, 1].

(2). Partition of unity:
n∑

k=0

Bk,n
p,q (t) = 1, for every t ∈ [0, 1].

6
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Figure 1. Cubic Bezier blending functions

(3). Both sided end-point property:

Bk,n
p,q (0) =


1, if k = 0,

0, k 6= 0,

Bk,n
p,q (1) =


1, if k = n,

0, k 6= n,

when p = 1, then, both side end point interpolation property holds.

(4). Reducibility: when p = 1, formula (2.1) reduces to the q-Bernstein bases.

Proof:

All these property can be deduced easily from equation (9).

Figure 2 shows the (p, q)-analogues of the Bernstein basis functions of degree 3 with q = 0.5, p =

0.8. Here we can observe that sum of blending fuctions is always unity and also end point interpo-
lation property holds, when we put p = 1, it turns out to be q-Bernstein basis which is shown in
Figure 1.

Apart from the basic properties above, the (p, q)-analogue of the Bernstein functions also satisfy
some recurrence relations, as for the classical Bernstein basis.
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Figure 2. Cubic Bezier blending functions

3. Degree elevation and reduction for (p, q)-Bernstein functions

Technique of degree elevation has been used to increase the flexibility of a given curve. A degree
elevation algorithm calculates a new set of control points by choosing a convex combination of the
old set of control points which retains the old end points. For this purpose, the identities (12),(13)
and Theorem (3.2) are useful.

Theorem 3.1.

Each (p, q)-Bernstein functions of degree n is a linear combination of two (p, q)-Bernstein functions
of degree n− 1 :

Bk,n
p,q (t) = qn−kpk−1 t Bk−1,n−1

p,q (t) + (pn−1 − pkqn−k−1t) Bk,n−1
p,q (t), (10)

Bk,n
p,q (t) = pn−1 t Bk−1,n−1

p,q (t) + (qkpn−k−1 − qn−1t) Bk,n−1
p,q (t). (11)
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Proof: On using Pascal’s type relation based on (p, q)-integers i.e (6), we get

Bk,n
p,q (t) =

1

p
n(n−1)

2

(
qn−k

[
n− 1

k − 1

]
p,q

+ pk

[
n− 1

k

]
p,q

)
p

k(k−1)

2 tk(1− t)n−kp,q

=
1

p
n(n−1)

2

qn−k

[
n− 1

k − 1

]
p,q

p
k(k−1)

2 tk(1− t)n−kp,q

+
1

p
n(n−1)

2

pk

[
n− 1

k

]
p,q

p
k(k−1)

2 tk(1− t)n−kp,q

=
1

p
n(n−1)

2

qn−kpk−1 t

[
n− 1

k − 1

]
p,q

p
(k−1)(k−2)

2 tk−1(1− t)n−kp,q

+
1

p
n(n−1)

2

pk(pn−k−1 − qn−k−1t)

[
n− 1

k

]
p,q

p
k(k−1)

2 tk(1− t)n−k−1p,q

= qn−kpk−1 t Bk−1,n−1
p,q (t) + (pn−1 − pkqn−k−1t) Bk,n−1

p,q (t).

Thus,

Bk,n
p,q (t) = qn−kpk−1 t Bk−1,n−1

p,q (t) + (pn−1 − pkqn−k−1t) Bk,n−1
p,q (t).

Similarly, if we use (7), we have

Bk,n
p,q (t) = pn−1 t Bk−1,n−1

p,q (t) + (qkpn−k−1 − qn−1t) Bk,n−1
p,q (t).

3.1. Degree elevation

qn−kpk t Bk,n
p,q (t) =

(
1−

pk+1 [n− k]p,q
[n+ 1]p,q

)
Bk+1,n+1

p,q (t), (12)

(pn − pkqn−k t) Bk,n
p,q (t) =

(
pk [n+ 1− k]p,q

[n+ 1]p,q

)
Bk,n+1

p,q (t). (13)

Proof:

qn−kpk t Bk,n
p,q (t) =

1

p
n(n−1)

2

qn−kpk t

([
n

k

]
p,q

p
k(k−1)

2 tk (1− t)n−kp,q

)

= qn−k
[k + 1]p,q
[n+ 1]p,q

1

p
n(n−1)

2

([
n+ 1

k + 1

]
p,q

p
(k+1)(k)

2 tk+1(1− t)n−kp,q

)

= qn−k
[k + 1]p,q
[n+ 1]p,q

Bk+1,n+1
p,q (t).
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By some simple calculation, we have

qn−k
[k + 1]p,q
[n+ 1]p,q

= 1−
pk+1 [n− k]p,q

[n+ 1]p,q
,

using this result, we get

qn−kpk t Bk,n
p,q (t) =

(
1−

pk+1 [n− k]p,q
[n+ 1]p,q

)
Bk+1,n+1

p,q (t).

Similarly on considering,

(pn − pkqn−k t) Bk,n
p,q (t) = (pn − pkqn−k t)

(
1

p
n(n−1)

2

[
n

k

]
p,q

p
k(k−1)

2 tk (1− t)n−kp,q

)

=
(pn − pkqn−k t)
(pn−k − qn−k t)

1

p
n(n−1)

2

[n+ 1− k]p,q
[n+ 1]p,q

×
([

n+ 1

k

]
p,q

p
k(k−1)

2 tk (1− t)n+1−k
p,q

)
,

finally we get

(pn − pkqn−k t) Bk,n
p,q (t) =

(
pk [n+ 1− k]p,q

[n+ 1]p,q

)
Bk,n+1

p,q (t).

Theorem 3.2.

Each (p, q)-Bernstein function of degree n is a linear combination of two (p, q)-Bernstein functions
of degree n+ 1.

Bk,n
p,q (t) =

(
pk−n [n+ 1− k]p,q

[n+ 1]p,q

)
Bk,n+1

p,q (t) + p−n
(

1−
pk+1 [n− k]p,q

[n+ 1]p,q

)
Bk+1,n+1

p,q (t). (14)

Proof:

From equation (12) and (13), we have

Bk,n
p,q (t) =

(
pk−n [n+ 1− k]p,q

[n+ 1]p,q

)
Bk,n+1

p,q (t) + p−n
(

1−
pk+1 [n− k]p,q

[n+ 1]p,q

)
Bk+1,n+1

p,q (t).

For n = 3, the blending functions are given by:

B0,3
p,q =

1

p3

[
3

0

]
p,q

(1− t)(p− qt)(p2 − q2t),

10
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B1,3
p,q =

1

p3

[
3

1

]
p,q

t(1− t)(p− qt),

B2,3
p,q =

1

p3

[
3

2

]
p,q

pt2(1− t),

B3,3
p,q =

[
3

3

]
p,q

t3.

We observed that the both sided end point interpolation property and partition of unity property
always holds in case of (p, q)-Bernstein functions.
The de Casteljau algorithm describes how to subdivide a Bézier curve, when a Bézier curve is
repeatedly subdivided, the collection of control polygons converge to the curve. Thus, the way of
computing a Bézier curve is to simply subdivide it an appropriate number of times and compute
the control polygons.

4. (p, q)-Bernstein Bézier curves:

Let us define the (p, q)-Bézier curves of degree n using the (p, q)-analogues of the Bernstein func-
tions as follows:

P(t; p, q) =

n∑
i=0

Pi B
i,n
p,q(t), (15)

where Pi ∈ R3 (i = 0, 1, ..., n) and p > q > 0. Pi are control points. Joining up adjacent points Pi,

i = 0, 1, 2, ..., n to obtain a polygon which is called the control polygon of (p, q)-Bézier curves.

4.1. Some basic properties of (p, q)-Bézier curves.

Theorem 4.1.

From the definition, we can derive some basic properties of (p, q)-Bézier curves:

1. (p, q)-Bézier curves have geometric and affine invariance.
2. (p, q)-Bézier curves lie inside the convex hull of its control polygon.
3. The end-point interpolation property: P(0; p, q) = P0, P(1; p, q) = Pn.

4. Reducibility: when p = 1, formula 15 gives the q-Bézier curves.

Proof:

These properties of (p, q)-Bézier curves can be easily deduced from corresponding properties of
the (p, q)-analogue of the Bernstein functions.
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4.2. Degree elevation for (p, q)-Bézier curves

(p, q)-Bézier curves have a degree elevation algorithm that is similar to that possessed by the clas-
sical Bézier curves. Using the technique of degree elevation, we can increase the flexibility of a
given curve.

P(t; p, q) =

n∑
k=0

Pk B
k,n
p,q (t),

P(t; p, q) =

n+1∑
k=0

P′k B
k+1,n
p,q (t),

where

Pk
∗ = pnP′ =

(
1−

pk [n+ 1− k]p,q
[n+ 1]p,q

)
Pk−1 + pk

(
[n+ 1− k]p,q

[n+ 1]p,q

)
Pk. (16)

The statement above can be derived using the identities (12) and (13). Consider

pnP(t; p, q) = (pn − pkqn−kt) P(t; p, q) + pkqn−kt P(t; p, q).

We obtain

pnP(t; p, q) =

n∑
k=0

(
pk

[n+ 1− k]p,q
[n+ 1]p,q

)
P0

kB
k,n+1
p,q (t)

+

n∑
k=0

(
1−

pk+1 [n− k]p,q
[n+ 1]p,q

)
P0

kB
k+1,n+1
p,q (t).

Now by shifting the limits, we have

pnP(t; p, q) =

n+1∑
k=0

(
pk

[n+ 1− k]p,q
[n+ 1]p,q

)
P0

kB
k,n+1
p,q (t)

+

n+1∑
k=0

(
1−

pk [n+ 1− k]p,q
[n+ 1]p,q

)
P0

k−1B
k,n+1
p,q (t),

where P0
−1is defined as the zero vector. Comparing coefficients on both side, we have

Pk
∗ = pnP′ =

(
1−

pk [n+ 1− k]p,q
[n+ 1]p,q

)
Pk−1 + pk

(
[n+ 1− k]p,q

[n+ 1]p,q

)
Pk,

12
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where k = 0, 1, 2, ..., n+ 1 and P−1 = Pn+1 = 0.

When p = 1, formula (16) reduces to the degree evaluation formula of the q-Bézier curves. Let
P = (P0, P1, ..., Pn)T denote the vector of control points of the initial (p, q)-Bézier curve of degree
n, and P(1) = (P ∗0 , P

∗
1 , ..., P

∗
n+1) the vector of control points of the degree elevated (p, q)-Bézier

curve of degree n+ 1, then, we can represent the degree elevation procedure as:

P(1) = Tn+1P,

where

Tn+1 =
1

[n+ 1]p,q
×

[n+ 1]p,q 0 . . . 0 0

[n+ 1]p,q − p[n]p,q p[n]p,q . . . 0 0
...

... . . . ...
...

0 . . . [n+ 1]p,q − pn−1[2]p,q pn−1[2]p,q 0

0 0 . . . [n+ 1]p,q − pn[1]p,q pn[1]p,q
0 0 . . . 0 [n+ 1]p,q


(n+2)×(n+1).

For any l ∈ N, the vector of control points of the degree elevated (p, q)-Bézier curves of degree n+ l

is: P(l) = Tn+l Tn+2, ..., Tn+1P. As l −→ ∞, the control polygon P(l) converges to a (p, q)-Bézier
curve.

4.3. de Casteljau algorithm:

(p, q)-Bézier curves of degree n can be written as two kinds of linear combination of two (p, q)-
Bézier curves of degree n−1, and we can get the two selectable algorithms to evaluate (p, q)-Bézier
curves. The algorithms can be expressed as:

Algorithm 1.


P0

i (t; p, q) ≡ P0
i ≡ Pi i = 0, 1, 2, ..., n

Pr
i (t; p, q) = pr−1t Pr−1

i+1 (t; p, q) + (qkpr−i−1 − qr−1t) Pr−1
i (t; p, q)

r = 1, ..., n, i = 0, 1, 2, ..., n− r.,

(17)

or

13
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
P0

i (t; p, q) ≡ P0
i ≡ Pi i = 0, 1, 2, ..., n

Pr
i (t; p, q) = piqr−i−1t Pr−1

i+1 (t; p, q) + (pr−1 − piqr−i−1t) Pr−1
i (t; p, q).

r = 1, ..., n, i = 0, 1, 2, ..., n− r.

(18)

Then,

P(t; p, q) =

n−1∑
i=0

P1
i (t; p, q) = ... =

∑
Pr

i (t; p, q) B
i,n−r
p,q (t) = ... = Pn

0 (t; p, q). (19)

It is clear that the results can be obtained from Theorem (3.2). When p = 1, formula (17) and
(18) recover the de Casteljau algorithms of classical q-Bézier curves. Let P 0 = (P0, P1, ..., Pn)T ,
P r = (P r

0 , P
r
1 , ...., P

r
n−r)

T , then, de Casteljau algorithm can be expressed as:

Algorithm 2.

Pr(t; p, q) = Mr(t; p, q)...M2(t; p, q)M1(t; p, q)P
0, (20)

where Mr(t; p, q) is a (n− r + 1)× (n− r + 2) matrix and

Mr(t; p, q) =


(pr−1 − qr−1t) pr−1t . . . 0 0

0 (qpr−2 − qr−1t) pr−1t 0 0
...

... . . . ...
...

0 . . . (qn−r−1p2r−n−2 − qr−1t) pr−1t 0

0 0 . . . (qn−rp2r−n−1 − qr−1t) pr−1t


or

Mr(t; p, q) =
(pr−1 − qr−1t) qr−1t . . . 0 0

0 (pr−1 − pqr−2t) pqr−2t 0 0
...

... . . . ...
...

0 . . . 0

0 0 . . . (pr−1 − pn−rq−n−1t) pn−rq−n−1t

 .

5. Tensor product (p, q)-Bernstein Bézier surfaces on [0, 1] × [0, 1]

We define a two-parameter family P(u, v) of tensor product surfaces of degree m× n as follows:

14
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P(u, v) =

m∑
i=0

n∑
j=0

Pi,j B
i,m
p1,q1(u) Bj,n

p2,q2(v), (u, v) ∈ [0, 1]× [0, 1], (21)

where Pi,j ∈ R3 (i = 0, 1, ...,m, j = 0, 1, ..., n) and two real numbers p1 > q1 > 0, p2 > q2 > 0,

Bi,m
p1,q1(u), Bj,n

p2,q2(v) are (p, q)-analogue of Bernstein functions respectively with the parameter p1, q1
and p2, q2. We call the parameter surface tensor product (p, q)-Bézier surface with degree m × n.
We refer to the Pi,j as the control points. By joining up adjacent points in the same row or column
to obtain a net which is called the control net of tensor product (p, q)-Bézier surface.

5.1. Properties

1. Geometric invariance and affine invariance property:

Since
m∑
i=0

n∑
j=0

Bi,m
p1,q1(u) Bj,n

p2,q2(v) = 1, (22)

P(u, v) is an affine combination of its control points.

2. Convex hull property: P(u, v) is a convex combination of Pi,j and lies in the convex hull of its
control net.

3. Isoparametric curves property: The isoparametric curves v = v∗ and u = u∗ of a tensor
product (p, q)-Bézier surface are respectively the (p, q)-Bézier curves of degree m and degree n,
namely,

P(u, v∗) =

m∑
i=0

( n∑
j=0

Pi,j B
j,n
p2,q2(v

∗)

)
Bi,m

p1,q1(u) , u ∈ [0, 1],

P(u∗, v) =

n∑
j=0

( m∑
i=0

Pi,j B
j,n
p1,q1(u

∗)

)
Bi,m

p2,q2(v) , v ∈ [0, 1].

The boundary curves of P(u, v) are evaluated by P(u, 0), P(u, 1), P(0, v) and P(1, v).

4. Corner point interpolation property: The corner control net coincide with the four corners of
the surface. Namely, P(0, 0) = P0,0, P(0, 1) = P0,n, P(1, 0) = Pm,0, P(1, 1) = Pm,n.

5. Reducibility: When p1 = p2 = 1, formula (21) reduces to a tensor product q-Bézier patch.
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5.2. Degree elevation and de Casteljau algorithm

Let P(u, v) be a tensor product (p, q)-Bézier surface of degree m × n. As an example, let us take
obtaining the same surface as a surface of degree (m + 1) × (n + 1). Hence we need to find new
control points P∗i,j such that

P(u, v) =

m∑
i=0

n∑
j=0

Pi,j B
i,m
p1,q1(u) Bj,n

p2,q2(v) (23)

=

m+1∑
i=0

n+1∑
j=0

P∗i,j B
i,m+1
p1,q1 (u) Bj,n+1

p2,q2 (v).

Let αi = 1− pi
1 [m+1−i]

p1,q1

[m+1]p1,q1

, βj = 1− pj
2 [n+1−j]

p2,q2

[n+1]p2,q2

.

Then,

P∗i,j = αi βj Pi−1,j−1 + αi (1− βj) Pi−1,j + (1− αi) (1− βj) Pi,j , (24)

which can be written in matrix form as[
1− pi

1 [m+1−i]
p1,q1

[m+1]p1,q1

pi
1 [m+1−i]

p1,q1

[m+1]p1,q1

] [Pi−1,j−1 Pi−1,j
Pi,j−1 Pi,j

]1− pj
2 [n+1−j]

p2,q2

[n+1]
p2,q2

pj
2 [n+1−j]p2,q2

[n+1]
p2,q2

 .
The de Casteljau algorithms are also easily extended to evaluate points on a (p, q)-Bézier surface.
Given the control net Pi,j ∈ R3, i = 0, 1, ...,m, j = 0, 1, ..., n, we have



P0,0
i,j (u, v) ≡ P0,0

i,j ≡ Pi,j i = 0, 1, 2, ...,m; j = 0, 1, 2, ..., n.

Pr,r
i,j (u, v) =

[
(qi1p

r−i−1
1 − qr−11 u) pr−11 u

] [Pr−1,r−1
i,j Pr−1,r−1

i,j+1

Pr−1,r−1
i+1,j Pr−1,r−1

i+1,j+1

][
(qj2p

r−j−1
2 − qr−12 v)

pr−12 v

]
r = 1, ..., k, k = min(m,n) i = 0, 1, 2...,m− r; j = 0, 1, ..., n− r

(25)

or

P0,0
i,j (u, v) ≡ P0,0

i,j ≡ Pi,j i = 0, 1, 2, ...,m; j = 0, 1, 2, ..., n.

Pr,r
i,j (u, v) =

[
(pr−11 − pi1q

r−i−1
1 u) pi1q

r−i−1
1 u

] [Pr−1,r−1
i,j Pr−1,r−1

i,j+1

Pr−1,r−1
i+1,j Pr−1,r−1

i+1,j+1

][
(pr−12 − pj2q

r−j−1
2 v)

pj2q
r−j−1
2 v

]
.

r = 1, ..., k, k = min(m,n) i = 0, 1, 2, ...,m− r; j = 0, 1, ..., n− r.
(26)

When m = n, one can directly use the algorithms above to get a point on the surface. When m 6= n,

to get a point on the surface after k applications of formula (25) or (26), we perform formula (20)
for the intermediate point Pk,k

i,j .

Note: We get q-Bézier curves and surfaces for (u, v) ∈ [0, 1] × [0, 1] when we set the parameter
p1 = p2 = 1 as proved in [Disibuyuk and Oruc (2008)] and [Disibuyuk (2009)].
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Figure 3. The effect of the shape of (p, q)-Bézier curves.
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Figure 4. The effect of the shape of (p, q)-Bézier curves.

6. Shape control of (p, q)-Bernstein curves

We have constructed (p, q)-Bernstein functions which holds both the end point interpolation prop-
erty as shown in Figure 1 and 2. Parameter p and q have been used to control the shape of curves
which can be observed through Figures 3-7.
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Figure 5. The effect of the shape of (p, q)-Bézier curves.
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Figure 6. The effect of the shape of (p, q)-Bézier curves.

7. Conclusion

In this paper, we have further studied various results for (p, q)-Bernstein basis function used in
(p, q)-Bernstein operators (8). In comparison to q-Bézier curves based on q-Bernstein polynomials,
this generalization gives us more flexibility in controlling the shapes of curves.
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Figure 7. The effect of the shape of (p, q)-Bézier curves.
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