
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 13 Issue 2 Article 19 

12-2018 

Numerical studies for MHD flow and gradient heat transport past Numerical studies for MHD flow and gradient heat transport past 

a stretching sheet with radiation and heat production via DTM a stretching sheet with radiation and heat production via DTM 

Khadijah M. Abualnaja 
Taif University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Fluid Dynamics Commons, and the Numerical Analysis and Computation Commons 

Recommended Citation Recommended Citation 
Abualnaja, Khadijah M. (2018). Numerical studies for MHD flow and gradient heat transport past a 
stretching sheet with radiation and heat production via DTM, Applications and Applied Mathematics: An 
International Journal (AAM), Vol. 13, Iss. 2, Article 19. 
Available at: https://digitalcommons.pvamu.edu/aam/vol13/iss2/19 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol13
https://digitalcommons.pvamu.edu/aam/vol13/iss2
https://digitalcommons.pvamu.edu/aam/vol13/iss2/19
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss2%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss2%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss2%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol13/iss2/19?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss2%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 13, Issue 2 (December 2018), pp. 915–924

Numerical studies for MHD flow and gradient heat transport past a
stretching sheet with radiation and heat production via DTM

Khadijah M. Abualnaja

College of Science
Department of Mathematics and Statistics

Taif University
Taif, KSA

dujam@windowslive.com

Received: July 5, 2017; Accepted: May 5, 2018

Abstract

This paper presents a numerically study for the effect of the internal heat generation, magnetic
field and thermal radiation effects on the flow and gradient heat transfer of a Newtonian fluid over
a stretching sheet. By using a similarity transformation, the governing PDEs can be transformed
into a coupled non-linear system of ODEs with variable coefficients. Numerical solutions for these
equations subject to appropriate boundary conditions are obtained by using the differential trans-
formation method (DTM). The effects of various physical parameters such as viscosity parameter,
the suction parameter, the radiation parameter, internal heat generation or absorption parameter
and the Prandtl number on velocity and temperature are discussed by using graphical approach.

Keywords: MHD Newtonian fluid, Exponentially stretching sheet, DTM
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1. Introduction

The study of flow and heat transfer of a Newtonian fluid due to stretching sheet is a vital problem
in classical fluid mechanics due to its vast applications in many manufacturing processes in indus-
try, such as extraction of polymer sheet, wire drawing, paper production, glass-fiber production,
hot rolling, solidification of liquid crystals, petroleum production, continuous cooling and fibers
spinning, exotic lubricants and suspension solutions. Much work on the boundary-layer Newtonian
fluids has been carried out both experimentally and theoretically. Crane [Crane (1970)] was the first
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916 Khadijah M. Abualnaja

one who studied the stretching problem taking into account the fluid flow over a linearly stretched
surface. Numerous studies [Gupta and Gupta (1977)-Cortell (2007)] have been conducted later to
extend the pioneering work of Crane [Crane (1970)]. Using the homotopy analysis method, series
solutions were obtained by [Hayat, et al. (2004)] for the stretching sheet problem with mixed con-
vection. El-Aziz [El-Aziz (2009)] focused on the effect of thermal radiation in his studies for the
flow and heat transfer over an unsteady stretching sheet. Due to the fact that the rate of cooling
influences the quality of the product with desired characteristics, [Akyildiz and Siginer (2010)]
investigated the thermal boundary layer flow by considering the non-linear stretching surface. Re-
cently, [Mukhopadhyay (2013)] investigated the numerical solution for the thermally stratified
medium subject to suction effects on the flow and heat transfer over an exponentially stretching
sheet.

The DTM is a semi-numerical-analytic-technique that formalizes the Taylor series in a totally
different manner. It was first introduced by Zhou in a study about electrical circuits [Zhou (1986)].
[Borhanifar and Abazari (2010a), (2010b)] used it for solving the linear and non-linear problems.
In this paper, we extended DTM for obtaining the numerical solutions of the introduced problem.
The DTM plays an important rule in recent researches in this field. This technique reduces the
problem to a system of recurrence equations. It has been shown that this procedure is a power-
ful tool for solving various kinds of problems [Bildik and Konuralp (2006)-Arikoglu and Ozkol
(2008)].

2. Formulation of the problem

Consider the two-dimensional boundary layer flow of an incompressible Newtonian fluid towards
an exponentially stretching sheet. The origin is located at a slit, through which the sheet (see
Figure 1) is drawn through the fluid medium [Mukhopadhyay (2013)]. The x−axis is chosen along
the sheet and y−axis is taken normal to it. The stretching surface has the velocity U = U0e

x

L , where
U0 is the reference velocity and L is the reference length. Also, the sheet is assumed to be porous
and a variable suction velocity vw is taken into consideration. The surface of the sheet is held at a
constant heat flux qw and the ambient fluid temperature is T∞.After using the usual boundary layer
approximations, our governing equations can be written as:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=
µ

ρ

∂2u

∂y2
− σB2

0

ρ
u, (2)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+
q′′′

ρcp
, (3)

where u and v are the velocity components in the x and y directions, respectively. ρ and κ are the
fluid density and the thermal conductivity, respectively. σ is the electrical conductivity, B0 is the
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Figure 1. Flow geometry and coordinate system

magnetic field strength, T is the temperature of the fluid, ν is the fluid kinematic viscosity, cp is the
specific heat at constant pressure, q′′′ is the rate of internal heat generation and qr is the radiative
heat flux. Also, qr is employed according to Rosseland approximation [Raptis (1998)] such that

qr = −(4σ∗/3k∗)(T 4)y, (4)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. Following
[Raptis (1999)] and expanding T 4 in a Taylor series about T∞ and neglecting higher-order terms,
we have

T 4 ∼= 4T 3
∞T − 3T 4

∞. (5)

Also, the boundary conditions can be written as

u = U, v = −vw, −κ(
∂T

∂y
) = qw at y = 0, (6)

u→ 0, T → T∞ as y →∞. (7)

Here, assume that vw = v0e
x

2L , where v0 is a constant. The mathematical analysis of the problem is
simplified by introducing the following dimensionless coordinates

η = y

√
U

2νL
, u = Uf ′(η), v = −

√
νU

2L

(
f(η) + ηf ′(η)

)
, (8)

θ(η) =
κ

qw
(T − T∞)

√
Re

2L2
, (9)
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where θ(η) is the dimensionless temperature, f(η) is the dimensionless stream function and
Re = UL

ν is the Reynolds number.

The internal heat generation or absorption q′′′ is modeled according to the following equation
[Chamkha and Khaled (2001)]

q′′′ = κ

(
Re

2L2

)[
a∗ (Tw − T∞) e−η + b∗(T − T∞)

]
, (10)

where Tw is the surface temperature.

After using the previous dimensionless coordinates, the boundary layer governing equations (1)-(3)
can be written in the following non-dimensional form:

f
′′′

+ ff
′′ − 2f

′2 −Mf
′

= 0, (11)

(1 +R) θ
′′

+ Pr(fθ
′
+ f

′
θ) + a∗e−η + b∗θ = 0. (12)

The transformed boundary conditions are

f = fw, f
′

= 1, θ′ = −1 at η = 0, (13)

f ′ → 0, θ → 0 as η →∞, (14)

where M = 2σB2
0L

ρUe
x
L

is the magnetic parameter, Pr = µcp
κ is the Prandtl number, R = 16σ∗T 3

∞
3k∗κ is the

radiation parameter and fw = v0

(
µU0

2ρL

)−1

2 is the dimensionless suction velocity.

On the other hand, we must refer that there exist a physical quantities which is called the skin-
friction coefficient which is proportional to −f ′′(0) and the Nusselt number which is proportional
to 1

θ(0) .

3. Solution procedure using DTM

Our aim in this section is to use the differential transformation method to solve Equations (11)-(12)
at the bounded domain (0, η∞), η∞ = 6 with the boundary conditions (13)-(14). Using DTM on
Equations (11)-(12) and from Table 1 [Ozdemir and Kaya (2006)] we get
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(k + 1)(k + 2)(k + 3)F (k + 3) = 2

k∑
r=0

(r + 1)(k − r + 1)F (r + 1)F (k − r + 1)

−
k∑
r=0

(k − r + 1)(k − r + 2)F (r)F (k − r + 2) +M(k + 1)F (k + 1),

(15)

(k + 1)(k + 2)Θ(k + 2) = −
(

Pr

1 +R

)( k∑
r=0

(k − r + 1) (Θ(r)F (k − r + 1) + F (r)Θ(k − r + 1))

)

−
(

1

1 +R

)(
a∗e−η + b∗Θ(k)

)
,

(16)

where F (k) and Θ(k) are the differential transforms of f(η) and θ(η), respectively.

We choose suitable initial conditions

F (0) = fw, F (1) =
1

2
, F (2) =

1

6
`1, Θ(0) = `2, Θ(1) = −1

2
. (17)

From Equations (15)-(16), for k = 0, 1, ..., and using initial values (17) we get

F (3) =
1

6

[
2(F (1))2 − 2F (0)F (2) +MF (1)

]
=

1

6
(0.5− 1

3
fw`1 + 0.5M),

Θ(2) =
1

2

[(
Pr

1 +R

)
(Θ(0)F (1) + F (0)Θ(1))−

(
1

1 +R

)
(b∗Θ(0))

]
=

1

2

[(
Pr

1 +R

)
(0.5`2 − 0.5fw)−

(
1

1 +R

)
(b∗`2)

]
,

F (4) =
1

24
[8F (1)F (2)− (6F (0)F (3) + 2F (1)F (2)) +MF (2)]

=
1

24

(
0.5`1 − 6fwF (3) +

1

6
M`1

)
,

Θ(3) =
1

6

[(
Pr

1 +R

)
(2Θ(0)F (2) + 2F (0)Θ(2) + 2Θ(1)F (1))−

(
1

1 +R

)
(b∗Θ(1))

]
=

1

6

[(
Pr

1 +R

)(
1

3
`1`2 + 2fwΘ(2)− 0.5

)
−
(

1

1 +R

)
(−0.5b∗)

]
, ... .

(18)

In the same manner, the rest of components can be obtained using the Mathematica Package.
Substituted the quantities listed on (18) when η0 = 0, the approximate solution in a series form of
the proposed problem (11)-(12) is given by
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0.2
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0.6

0.8

1.0

f '

M 1.5, 0.5, 0.0

At M 0.0 f '' 0 2.20348

At M 1.5 f '' 0 2.65822

fw 1.5

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

M 0.0, 0.5, 1.5

fw 1.5, R 0.5, Pr 1.0

At M 0.0 1 0 0.766352

At M 1.5 1 0 0.763615

a 0.2, b 0.2

Figure 2. (a) Velocity distribution for M . (b) Temperature distribution for M

f(η) ∼=
n∑
k=0

F (k)ηk = F (0) + F (1)η + F (2)η2 + F (3)η3 + F (4)η4 + ...+ F (n)ηn,

θ(η) ∼=
n∑
k=0

Θ(k)ηk = Θ(0) + Θ(1)η + Θ(2)η2 + Θ(3)η3 + Θ(4)η4 + ...+ Θ(n)ηn.

(19)

Now, we will find the constants `1 and `2 using imposing the boundary conditions (13)-(14) where
we take the values M = 0.2, R = 1.0, P r = 0.7, fw = 1.0, a∗ = 0, b∗ = −0.3, η∞ = 6. These
values are `1 = −0.321568, `2 = 4.987546. Having F (k), Θ(k) k = 0, 1, ..., n, the solution are as in
(19).

4. Results and discussion

This section provides the numerical evaluation for the solutions of the proposed problem and the
results are illustrated graphically in the Figures 2-5. Effects of the magnetic parameter M on veloc-
ity and temperature profiles are shown in Figure 2. It is observed that the velocity decreases sharply
near the wall as the magnetic parameter increases. Likewise, from Figure 2 (b), it is noticed that an
increase in the magnetic parameter results in an increase in the temperature distribution. Also, the
numerical results in these figures indicate that the momentum boundary layer thickness decreases
in terms of η at increasing distances from the leading edge, but the reverse is true for the thermal
boundary layer as the magnetic parameter increases. Likewise, the Nusselt number is reduced but
the skin friction coefficient is increased with increasing for values of M . The effects of suction
parameter on the fluid flow and the temperature distribution has been analyzed and the results are
presented in Figures 3. From Figure 3 (a) it is clear that the velocity at any point near to the plate
decreases as the suction parameter increases. From Figure 3 (b), it is evident that the fluid suc-
tion decreased the thickness of the thermal boundary layer and enhanced the rate of heat transfer.
Also, it is noticed that increases in the suction parameter leads to an increase in both the local
skin-friction coefficient and the local number.
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2 4 6 8

0.2

0.4

0.6

0.8

1.0

f '

fw 2.0, 1.5, 1.0

At fw 1.0 f '' 0 2.02809

At fw 2.0 f '' 0 2.74565

M 0.5

2 4 6 8

0.5

1.0

1.5
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fw 2.0, 1.5, 1.0

M 0.5, R 0.5, Pr 1.0

At fw 1.0 1 0 0.425036

At fw 2.0 1 0 1.080237

a 0.2, b 0.2

Figure 3. (a) Velocity distribution for fw . (b) Temperature distribution for fw

1 2 3 4 5 6

0.5

1.0

1.5

R 0.0, 0.5, 1.0

M 0.5, fw 1.5, Pr 1.0

At R 0.0 1 0 1.126390

At R 1.0 1 0 0.571123

a 0.2, b 0.2

1 2 3 4 5 6

0.5

1.0

1.5

Pr 3.0, 1.0, 0.7

M 0.5, fw 1.5, R 0.5

At Pr 0.7 1 0 0.532169

At Pr 3.0 1 0 1.987753

a 0.2, b 0.2

Figure 4. (a) Temperature distribution for R. (b) Temperature distribution for Pr

Figure 4 (a) displays the effect of the radiation parameter R on the temperature profile. It is ob-
served that both the temperature distribution and the surface temperature θ(0) increases with an
increase in the value of the radiation parameter R, i.e., the thermal boundary layer thickness in-
creases as R increases. In the second part for the same figure, we observe that, figure 4 (b) shows
the effect of Prandtl number on the temperature profiles above the sheet. It is noticed that, the
larger Prandtl number has a relatively lower thermal diffusivity. Therefore a rapid increase in the
Prandtl number Pr decreases the temperature and the thermal boundary layer thickness. On the
other hand, an increase in the Prandtl number causes an increase in the Nusselt number.

Figure 5 illustrates the effect of heat generation or absorption parameters a∗, b∗ on the temperature
profile. It is shown that the effect of heat absorption parameter a∗ < 0 and b∗ < 0 causes a drop in
the temperature as the heat following from the sheet is absorbed. Also, when a∗ > 0 and b∗ > 0 it
is clear that as the heat generation or absorption parameters a∗ and b∗ increases the temperature of
the fluid increase. Moreover, from the same figure, it is noticed that increases in the values of the
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1 2 3 4 5 6

0.5

1.0

1.5

a , b 0.3, 0.1, 0.0, 0.2, 0.3

At a , b 0.3 1 0 1.393992

At a , b 0.1 1 0 1.125180

At a , b 0.0 1 0 1.0006211

At a , b 0.3 1 0 0.6517250

M 0.5, fw 1.5

Pr 1.0, R 0.5

Figure 5. The behavior of the temperature distribution for various values of a∗ and b∗

heat generation parameter leads to a decrease in the Nusselt number. Also, it is observed that the
Nusselt number increases with the increase of the heat absorption parameter.

5. The discussion and conclusion

We applied the DTM to solve the system of ODEs which describe the MHD fluid flow which
caused solely by an exponentially stretching porous sheet with non-uniform internal heat genera-
tion/absorption and thermal radiation. It was found that the effect of increasing values of the heat
generation and the radiation parameter reduce the local Nusselt number. On the other hand it was
observed that the local Nusselt number increases as the Prandtl number, suction parameter and
heat absorption parameter increases. Moreover, it is interesting to find that as the suction param-
eter, viscosity parameter and radiation parameter increases in magnitude, causes the fluid to slow
down past the sheet, the skin-friction coefficient increases in magnitude. Moreover, numerical re-
sults indicate that, the skin-friction coefficient as well as Nusselt number are strongly affected by
the suction parameter and the magnetic parameter.
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