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Abstract

This paper is concerned with the axisymmetric thermoelastic problem to investigate the influence
of nonlinear heat conduction equation, displacement functions and thermal stresses of a func-
tionally graded transversely isotropic hollow cylinder that is presented in the elliptical coordinate
system. The method of integral transform technique is used to produce an exact solution of the heat
conduction equation in which sources are generated according to a linear function of the tempera-
ture. An explicit exact solution of the governing thermoelastic equation is proposed when material
properties are power-law functions with the exponential form of the radial coordinate. Numerical
calculations are also carried out for Material I with the nearly isotropic feature, along with Material
II as an anisotropic material and illustrated graphically. The validity of the solution is demonstrated
by comparing with the previous results.
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1. Introduction

The concept of functionally graded materials (FGMs) has been proposed at the beginning of the
90’s by Japanese researchers. FGMs are characterised by continuous or step-wise varying composi-
tions within the material. The mathematical modeling of FGMs is currently an active research area
because of its increasing application in industrial engineering. Since the mathematical problems
arising are complicated, a significant part of the work on FGMs has been carried out numerically,
e.g. using finite element method (FEM), perturbation method and so on.

It has become necessary to develop other approaches for such a problem, particularly boundary
value problems, which provide an invaluable check on the accuracy of numerical or approximate
schemes and allow for widely relevant parametric studies. So, it is meaningful to examine the
thermoelastic behaviour with defined boundary conditions. Thus, uniformly loaded homogeneous
and isotropic plate has attracted the focus of the researchers over the past several years owing to
its application on various machines and structures.

In past some authors have undertaken the work on uniformly loaded functionally graded (FG)
structures, which can be summarised as given below. [Obata and Noda (1994)] used Laplace trans-
formation and perturbation method to obtain one-dimensional steady thermal stress response in a
hollow circular cylinder and a hollow sphere based on the perturbation method. [Horgan and Chan
(1999)] analysed the classic problem of stress distribution in an inhomogeneous isotropic rotating
solid disc and pressurised hollow cylinder. [Lutz and Zimmerman (1999)] have presented a solu-
tion to the issue of the uniform heating of an FG cylinder with simple forms for the variation of the
moduli with radius using the method of Frobenius series. [Chen et al. (2002); Chen et al. (2001)]
in his axisymmetric thermoelastic problem of a uniformly heated FG isotropic hollow cylinder and
cylindrical shell of finite length investigated thermal stress effect. [Wang et al. (2004)] obtained
the analytical solutions of stresses in FG circular hollow cylinder with finite length using Sine
transform, which was expressed in a triangle and power series. [Varghese and Khobragade (2008);
Varghese and Khobragade (2008); Kamdi et al. (2008)] studied the displacement and stress func-
tions of an FGM subjected to a uniform temperature field with thermo-mechanical boundary con-
ditions taking various material profiles.

Recently, [Abrinia et al. (2008)] proposed a new analytical solution for computing the radial and
circumferential stresses in an FGM thick cylindrical vessel under the influence of internal pres-
sure and arbitrary steady state temperature field, by using the variation of parameters method (La-
grange). Therefore, a number of theoretical studies on different objects have been reported so far.
However, to simplify the analysis, almost all research was carried out with uniform temperature
distribution throughout the surfaces. However, only a few studies concerned with heat conduction
problems in elliptical objects were observed.

Very recently, [Hsieh et al. (2006)] investigated the inverse issue of an FGM elliptical plate with
large deflection based on the classical nonlinear von Karman plate theory and solved the non-
classical problem using a perturbation technique. [Kumar et al. (2009)] performed the parametric
studies on the prediction of vibro-acoustic response from an elliptic disc made up of FGM by
using the finite element method. [Cheng et al. (2000)] obtained a closed form solution for thermo-
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mechanical deformations of an isotropic linear thermoelastic FG elliptic plate rigidly clamped
at the edges in which the effective material properties at a point were computed by the Mori
Tanaka scheme. Recently, [Asemi et al. (2013)] studied the static and dynamic behaviours of
FGMs elliptical plates based on the principle of minimum potential energy and Rayleigh-Ritz
method. [El Dhaba et al. (2003)] used boundary integral method to solve the problem of the
plane, uncoupled linear thermoelasticity with heat sources for an infinite cylinder with the el-
liptical cross-section, subjected to a uniform pressure having thermal radiation condition at its
boundary. [Hasheminejad et al. (2011)] obtained an exact solution for the dynamic response of
an elastic elliptical membrane by employing eigenfunction expansion in terms of transcendental
and modified Mathieu functions. [Khorshidvand et al. (2010); Khorshidvand and Jabbari (2012);
Khorshidvand and Jabbari (2012)] presented a new solution for one-dimensional steady-state
mechanical and thermal stresses in an FG rotating thick hollow cylinder and disk farmed in
elliptical coordinate system assuming the temperature distribution to be a function of radius
along the thickness, with general thermal and mechanical boundary conditions on the surface
of the cylinder. Very recently, [Bhad et al. (2016); Bhad et al. (2017); Bhad et al. (2017);
Bhad et al. (2017)] obtained few solutions for the governing equation considering internal heat
generation within the homogeneous elliptical objects in elliptical coordinates applying few ex-
tended integral transforms.

In all the above cited literature, the authors have not taken into consideration any thermoelastic
problem for hollow cylinder expressed in elliptical coordinates [i.e. projecting the two-dimensional
elliptic coordinate system in the perpendicular z-direction] with boundary conditions of radiation
type, in which heat sources are generated according to the linear function of the temperatures,
which satisfies the time-dependent heat conduction equation. It has been noticed that heat pro-
duction in solids have led to various technical problems in mechanical applications in which heat
produced is rapidly sought to be transferred or dissipated. For instance, gas turbines blades, walls
of the internal combustion engine (ICE), the outer surface of a space vehicle, etc. all depend for
their durability on rapid heat transfer from their surfaces. Things get further complicated when
internal heat generation persists on the object under consideration. This further becomes unpre-
dictable when sectional heat supply is impacted on the body. Both analytical and numerical tech-
niques have proved to be the best methodology to solve such problems. Nonetheless, numerical
solutions are preferred and prevalent in practice, due to either the non-availability or mathematical
complexity of the corresponding exact solutions. Rather, limited utilization of analytical solutions
should not diminish their merit over numerical ones; since exact solutions, if available, provide an
insight into the governing physics of the problem, that is often missing in any numerical solution.
Moreover, analysing closed-form solutions to obtain optimal design options for any particular ap-
plication of interest is relatively simpler. However, to the best of authors knowledge, no work has
been published till date to determine the temperature distribution and its associated stresses of a
functionally graded hollow cylinder considering internal heat supply with boundary conditions of
radiation type on the outside and inside surfaces, with independent radiation constants. Owing to
the lack of research in FG cylindrical objects in the elliptical coordinate system, the authors have
been motivated to conduct this study.

This paper dealt with the theoretical treatments of a hollow cylinder occupying the space D =
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(ξ, `) ∈ R2 : a ≤ ξ ≤ b, z ∈ (0, `) having radiation type boundary conditions on both surfaces im-
pacted by arbitrary initial temperature. The solution to the heat conduction equation is obtained
using a new integral transformation involving ordinary and modified Mathieu functions of first and
second kind of order n. Inversion formula has been established, and some properties are mentioned.
The general solution of displacement formulation is obtained by the introduction of appropriate
transformation, and the analyses are carried out by taking parameters of the exponential profile.
The theoretical calculation has been considered using the dimensional parameter, whereas, graph-
ical calculations are made using the dimensionless parameter. The success of this research mainly
lies on the new mathematical procedures which present a rather simpler approach for optimization
of the design in terms of material usage and performance in engineering problem, particularly in
determining thermoelastic behaviour. During the designing phase, both the elliptical and cylin-
drical curved structures are taken on a common coordinate system, i.e. either elliptic, cylindrical
or elliptical-cylindrical coordinate system. For example, in a nuclear reactor, particularly inter-
coolers, pressure vessels or furnaces, a combination of different curved profiles are needed. Most
of the investigation on hollow elliptical patterns mentioned above in the elliptical-cylindrical coor-
dinate system has already been discussed. In this manuscript, we intend to study the thermoelastic
behaviour considering hollow circular objects in the elliptical-cylindrical coordinate system as a
novel approach.

2. Notation and governing equations

Consider a transversely isotropic elastic body of finite length ` occupying the space D in the ellip-
tical coordinate system. The cylinder is bounded by the region a ≤ ξ ≤ b, where a and b denote
the inner and outer radii respectively, whereas 0 ≤ z ≤ ` and η is constant [i.e. geometry param-
eters are denoted as ξ ∈ [a, b] and z ∈ (0, `)]. Here we assume that when a semi-focal length
parameter ‘c’ approaches zero value, the elliptical surface goes to a cylindrical surface. Thus, it
will bring about sinh ξ = cosh ξ, and in this particular case, the equation of hollow cylinder can
be stated as x2 + y2 = c2 cosh2 ξ [Khorshidvand et al. (2010); Khorshidvand and Jabbari (2012);
Khorshidvand and Jabbari (2012)] in which c cosh ξ represents the radius of the cylinder. The
curves η = constant constitute a family of confocal hyperbolas while the curves ξ =constant pose a
family of confocal ellipses (refer to Figure 1). Both sets of curves intersect each other orthogonally
at every point in space. The displacement components are indicated by (uξ, 0, uz) and stress com-
ponents by σξξ, σηη etc. In this problem, we assume that the material parameters cij (i, j = 1, 2, 3)

and the thermal expansion coefficient αi (i = 1, 3) are functions of ξ but not of η and z.

2.1. Basic equations

The basic equations corresponding to the transversely isotropic functionally graded materials can
be summarised as follows [Khorshidvand et al. (2010)]:

(1) Strain-displacement relationships:

εξξ =
1

c cosh ξ

∂uξ
∂ξ

, εηη =
uξ

c cosh ξ
, εzz =

∂uz
∂z

. (1)

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 2, Art. 18

https://digitalcommons.pvamu.edu/aam/vol13/iss2/18



896 Tara Dhakate et al.

Figure 1. Cylinder configuration in elliptical coordinates

(2) Equilibrium equations for axisymmetric stresses in the presence of body force, reduced to the
single equation:

1

a cosh ξ

{
∂

∂ξ
σξξ + (σξξ − σηη)

}
+ ρFξ = 0, (2)

with ρ as the mass density and Fξ as the body force.

(3) Stress components in terms of infinitesimal strains and the temperature in a stress-free state
are denoted as:

σξξ = c11 εξξ + c12 εηη + c13 εzz − β1 T (ξ, z, t),

σηη = c12 εξξ + c11 εηη + c13 εzz − β1 T (ξ, z, t),

σzz = c13 [ εξξ + εηη] + c33 εzz − β3 T (ξ, z, t),

 (3)

in which we assume σξz = σξη = σηz = 0.

The stress-temperature coefficient βi(i = 1, 3) is related to αi and indicated as β1 = (c11 + c12)α1 +

c13α3, β3 = 2c13α1 + c33α3 with body force as Fξ = 0, T (ξ, z, t) is the temperature of the plate at a
point (ξ, z) in time t, and cij is the elastic coefficient parameter.

Substituting the Equations (1) and (3) in Equation (2), the thermoelastic equilibrium equation of
the hollow cylinder can be obtained as

1

c cosh ξ

{
c11

∂2uξ
∂ξ2

+ c′11
∂uξ
∂ξ

+ (c′12 − c11)uξ
}

= [β1T ]′ − c′13
∂uz
∂z

, (4)

where the prime (′) denotes differentiation with respect to ξ.

2.2. Boundary conditions

For a complete solution as suggested by [Spencer et al. (1992)] to the thermoelastic problem,
displacement field is to be determined such that for T 6= 0; zero traction is noticed on all surfaces
of the hollow cylinder. Thus we assume the following:

5
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(1) Zero traction conditions on the inner and outer curved surfaces

σξξ = 0, σξη = 0, σξz = 0 at ξ = a, b. (5)

(2) Zero normal force on z = 0, `:

2π

∫ b

a
σzz ξ dξ = 0. (6)

(3) Boundary conditions of the finite length hollow cylinder be simply supported at the two longi-
tudinal edges, i.e.,

σzz = 0, ση z = 0, σξz = 0 at z = 0, `. (7)

As the problem is concerned with the radial direction only, we have not considered zero resultant
force and bending moment at the edges η = 0, η0. It has been learned from the previous literature
that the solution may leave un-equilibrated bending moment and a shear force on the ends of the
finite length functionally graded hollow cylinder. To neutralise this moment and force, it requires
an additional solution that involves stress that depends on the angle η as well as variable ξ.

3. Heat transfer formulation

The governing equation of heat conduction with internal heat source in elliptical coordinates as

h2
∂

∂ξ

(
λ(ξ)

∂T

∂ξ

)
+

∂

∂z

(
λ(ξ)

∂T

∂z

)
+ Θ (ξ, z, t, T ) = cv(ξ) ρ

∂T

∂t
, (8)

subjected to the following initial and boundary conditions

T (ξ, z, 0) = T0, (9)

∂

∂ξ
T (a, z, t) + k1 T (a, z, t) = 0, (10)

∂

∂ξ
T (b, z, t) + k2 T (b, z, t) = 0, (11)

T (ξ, 0, t) = 0, (12)

T (ξ, `, t) = 0, (13)

in which λ(ξ) is the coefficient of thermal conductivity along the respective directions, cv(ξ) is the
heat capacity, Θ(ξ, z, t, T ) is the source function, ki (i = 1, 2) are the given surface coefficients
linearly related to the corresponding heat transfer coefficients at the internal and external radial
surfaces ξ = a and ξ = b, T0 represents the initial temperature at t = 0, and the metric coefficient is
given as

h2 = 2/(c2 cosh 2ξ). (14)

6
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4. Reformulation of the problem

In a related theoretical study done by [Horgan and Chan (1999)] and [Chen et al. (2002);
Chen et al. (2001)], the variation in thermo-mechanical properties was described by the nonlin-
ear function as a simple power law model. As pointed out by [Eraslan and Akis (2005)], their
model is not as flexible as the general parabolic model. Here, we have considered the function-
ally graded material with non-constant elastic parameters that vary exponentially along the radius.
With this general exponential model, a wide range of nonlinear and continuous profiles can be
obtained to describe the reasonable variation in the thermoelastic properties giving the minimum
stress level. For theoretical treatments, we consider the elastic coefficient parameter cij , thermal
expansion coefficient αi, and the thermal conductivity λi, and heat capacity coefficient cv as

cij = c0ij (γ ekξ), αi = α0
i (γ ekξ), λi = λ0 (γ ekξ), cv = c0v(γ e

kξ), ρ = ρ0, (15)

in which c0ij , α
0
i , λ

0, c0v and ρ0 are arbitrary constants having the same dimension as cij , αi, λ, cv
and ρ respectively; γ and k are the physical parameters whose combination forms a broad range
of nonlinear and continuous profiles to describe the reasonable variation of material constants and
thermal expansion coefficients.

5. Heat conduction reformulation

Using equation (15) in equation (8), we obtain

h2
(
∂2T

∂ξ2
+ k

∂T

∂ξ

)
+
∂2T

∂z2
+

Θ (ξ, z, t, T )

γ ekξλ0
=
c0v ρ

0

λ0
∂T

∂t
. (16)

Now, we assume that Θ (ξ, z, t, T ) is a known function of position, time and temperature, which
can be taken in a manner [Sneddon (1995)] given below

Θ (ξ, z, t, T ) = Φ (ξ, z, t) + ψ (t) θ (ξ, z, t), (17)

and

θ (ξ, z, t) = T (ξ, z, t) e−
∫ t
0
ψ (τ) dτ ,

χ (ξ, z, t) = Φ (ξ, z, t) e−
∫ t
0
ψ (τ) dτ ,

}
(18)

in which θ(ξ, z, t) is the temperature of the plate at a point (ξ, z) in time t, χ(ξ, z, t) is the energy
generation, Φ (ξ, z, t) is a function of coordinates and the time, but ψ (t) is a function of the time
only.

Substituting equation (17) and (18) in the heat conduction equation (16), we assume the equivalent
form as

h2
(
∂2θ

∂ξ2
+ k

∂θ

∂ξ

)
+
∂2θ

∂z2
+
Qi δ(z − `0) f(t)

λ0
=

1

κ

∂θ

∂t
, (19)
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subjected to the following initial and boundary conditions

θ(ξ, z, 0) = θ0, (20)

∂

∂ξ
θ(a, z, t) + k1 θ(a, z, t) = 0, (21)

∂

∂ξ
θ(b, z, t) + k2 θ(b, z, t) = 0, (22)

θ(ξ, 0, t) = 0, (23)

θ(ξ, `, t) = 0, (24)

where f(t) as a function of time t, and thermal diffusivity is taken as κ = λ0/ρ0c0v. For the sake of
brevity, we assume that there are physical situations wherein the rate of internal heat energy per
unit volume is influenced by material properties that vary exponentially along the radius [that is, at
position (ξ, z )] and with time t, which leads to

χ ( ξ, z , t) = Qi γ e
(k/2)ξδ(z − `0) f(t), 0 < `0 < `,

wherein the initial temperature is taken as θ0 and heat flux as Qi.

5.1. Displacement equation reformulation

Using equation (15) in equation (4), we obtain a standard form of differential equation as
1

c cosh ξ

{
∂2uξ
∂ξ2

+ k
∂uξ
∂ξ
−
[
1− k(c012/c

0
11)
]
uξ

}
= −k(c013/c

0
11)

∂uz
∂z

+ (β01/c
0
11)

[
kT +

∂T

∂ξ

]
. (25)

Equation (25) is a differential equation, which can be solved by introducing a new function u∗ξ(ξ)
and applying the transformations

uξ(ξ) = e−kξ/2 u∗ξ(ξ), uη(η) = 0, uz(z) = Gz, (26)

with G as the unknown constant (that is, independent of variable ξ) and will be determined later.
The term uξ(ξ) = e−kξ/2 u∗ξ(ξ) represents a radial expansion or contraction in which, the inner and
outer radii change, in general, whereas the angle remains constant and uz(z) = Gz is a uniform
axial extension or contraction.

Substituting equation (26) into Equation (25), and rewriting the governing equation as
∂2u∗ξ
∂ξ2

− ℘2 u∗ξ = c ekξ/2 cosh ξ {−kG (c013/c
0
11) + (β01/c

0
11) [kT +

∂T

∂ξ
]}, (27)

in which

℘2 = 1 + (k2/22)− k(c012/c
0
11).

The Equations (3), (8)-(13) and (27) constitute mathematical formulation of the problem under
consideration.

8
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6. Solution for the Problem

6.1. The solution for temperature profile

It is convenient to introduce a new dependent function ϑ(ξ, z, t) at the first instance in Equation
(19) and boundary conditions (20)-(24)

θ(ξ, z, t) = e−kξ/2 ϑ(ξ, z, t). (28)

Substituting equation (28) in the heat conduction equation (19) and boundary conditions (20)-(24),
we assume the equivalent form

h2
(
∂2

∂ξ2
− k2

22

)
ϑ(ξ, z, t) +

∂2

∂z2
ϑ(ξ, z, t) +

Qi δ(z − `0) f(t)

λ0
=

1

κ

∂

∂t
ϑ(ξ, z, t), (29)

subjected to the following initial and boundary conditions

ϑ(ξ, z, 0) = ϑ0 e
kξ/2, (30)

∂

∂ξ
ϑ(a, z, t) +

k1
2
ϑ(a, z, t) = 0, (31)

∂

∂ξ
ϑ(b, z, t) +

k2
2
ϑ(b, z, t) = 0, (32)

ϑ(ξ, 0, t) = 0, (33)

ϑ(ξ, `, t) = 0. (34)

Considering the finite Fourier-Sine transformation to the differential equation (29), and boundary
conditions (33)-(34) into account, we get

h2
(
∂2

∂ξ2
− k2

22

)
ϑ̄(ξ, n, t)− n2π2

`2
ϑ̄(ξ, n, t) +

Qif̄(t)

λ0
sin

(
nπ`0
`

)
=

1

κ

∂

∂t
ϑ̄(ξ, n, t), (35)

in which n is the transformed parameter, ϑ̄(ξ, n, t) and f̄(t) are the transformed function of ϑ(ξ, n, t)

and f(t) respectively.

After some algebraic calculation for Equation (35), it leads to considerable mathematical simplifi-
cation as {

∂2

∂ξ2
− [λ∗ + 2q∗ cosh 2ξ]

}
ϑ̄(ξ, n, t) +

Qif̄(t)

λ0h2
sin

(
nπ`0
`

)
=

1

κh2
∂

∂t
ϑ̄(ξ, n, t), (36)

moreover, the boundary as

ϑ(ξ, z, 0) = ϑ0 e
kξ/2, (37)

∂

∂ξ
ϑ̄(a, n, t) +

k1
2
ϑ̄(a, n, t) = 0, (38)

∂

∂ξ
ϑ̄(b, n, t) +

k2
2
ϑ̄(b, n, t) = 0, (39)

9
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in which

λ∗ = k2/4, 2q∗ = c2 (nπ/`)2 /2.

In order to solve hyperbolic type of differential Equation (36) using the theory on integral trans-
formation, we firstly introduce a integral transform of order m over the variable ξ as{

f̄( qm)

f̄(−qm)

}
=

∫ b

a

{
Sm(α1, α2, ξ, qm)

Sm(α1, α2, ξ,−qm)

}
cosh(2ξ) f(ξ) dξ. (40)

Inversion theorem of (40) is

f(ξ) =

∞∑
m=1

{
f̄( qm)

f̄(−qm)

} {
Sm(α1, α2, ξ, qm)

Sm(α1, α2, ξ,−qm)

}
/Nm, (41)

in which ± qm is a root of a transcendental equation of
Cem(α1, a, ±qm)

Cem(α2, b, ±qm)
− Feym(α1, a, ±qm)

Feym(α2, b, ±qm)
= 0, (42)

where the kernel is defined as
Sm(α1, α2, ξ, ±qm) = Cem(ξ, ±qm)[Feym(α1, a, ±qm) + Feym(α2, b, ±qm)]

−Feym(ξ, ±qm) [Cem(α1, a, ±qm) + Cem(α2, b, ±qm)] ,
(43)

in which

Cem(αi, a, q) = Cem(a, q) + αiCe
′
m(a, q),

F eym(αi, a, q) = Feym(a, q) + αi Fe
′ym(a, q) ,

}
(i = 1, 2)

and

Nm = π

∫ b

a
S2
m(α1, α2, ξ, qm) cosh 2ξ dξ,

whereas, Cem(ξ,±qm) and Feym(ξ,±qm) represents modified Mathieu function of first and second
kind of order m respectively, which is denoted as Cem(ξ, q) =

∑∞
r=0A

(m)
2r cosh 2rξ , the recurrence

[McLachlan (1947)]

Feym(ξ, q) =
ce2n(0, q)

A
(m)
0

∞∑
r=0

A
(m)
2r Y2r(2k

′ sinh ξ)

(
|sinh ξ| > 1

R(ξ) > 0

)
,

with y in Fey signifies the Y-Bessel function and q = k′2 = λc2/4. The kernel of above transform
is represented in the form of elliptical function, and it replaces the differential equation defined in
(36) for the boundary conditions (37)-(39) of the third kind. The operational property is given as

∫ b
a

(
∂2f
∂ξ2

)
Sm(α1, α2, ξ, qm) dξ =

(
α2

∂f
∂ξ + f

) ∣∣∣
ξ=b

Sm(α1, α2, b, qm)

+
(
α1

∂f
∂ξ + f

) ∣∣∣
ξ=a

Sm(α1, α2, a, qm)− 2qmf̄ .
(44)
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On applying the proposed integral transform (40) to the differential Equation (36), and taking
property (44) into account under the conditions (38) and (39), one obtains

∂

∂t
¯̄ϑ(qm, n, t) + κλ2m

¯̄ϑ(qm, n, t) =
Qi κ

λ0
¯̄f(qm, n, t), (45)

in which

λ2m = 4qm/a
2,

subjected to the following initial conditions

ϑ(ξ, z, 0) = ϑ0G0,

whereas,

G0 =

∫ b

a
Sm(α1, α2,ξ,qm) cosh 2ξ ekξ/2dξ,

and

¯̄f(qm, n, t) =

∫ b

a

¯̄f( t) sin

(
nπ `0
`

)
Sm(k1/2, k2/2, ξ,−qm) cosh 2ξ dξ,

in which ¯̄ϑ(qm, n, t) and ¯̄f( t) are the transformed functions of ϑ̄(ξ, n, t) and f̄( t), respectively.

The general solution to the differential equation (45), taking the transformed initial condition (30)
as ϑ(ξ, z, 0) = ϑ0 e

kξ/2 into account, leads to

¯̄ϑ(qm, n, t) = e−κλ
2
mt

(
ϑ0G0 +

Qi κ

λ0

∫ t

0
eκλ

2
mτ ¯̄f(qm, n, τ) dτ

)
. (46)

Applying inversion theorems of the transform rules defined by Equation (41) on the equation (46),
results into

ϑ̄(ξ, n, t) =
∑∞

m=1 e
−κλ2

mt
(
ϑ0G0 + Qi κ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ) dτ

)
×Sm(k1/2, k2/2, ξ,−qm)/Nm.

(47)

Further accomplishing inversion theorems of the finite Fourier-Sine transform on equation (47),
the temperature is obtained as:

ϑ(ξ, z, t) = 2
`

∑∞
n=0

∑∞
m=1

[
e−κλ

2
mt
(
ϑ0G0 + Qi κ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ) dτ

)]
×Sm(k1/2, k2/2, ξ,−qm) sin

(
nπ z
`

)
/Nm.

(48)

Taking into account Equation (28) and the first equation of Equation (18), the temperature distri-
bution is finally represented by

T (ξ, z, t) =
{

2
` e
−kξ/2∑∞

n=0

∑∞
m=1

[
e−κλ

2
mt
(
ϑ0G0 + Qiκ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ)dτ

)]
×Sm(k1/2, k2/2, ξ,−qm) sin

(
nπz
`

)
/Nm

}
e−

∫ t
0
ψ(τ)dτ .

(49)

The above function is given in Equation (49) represents the temperature at every instant and at all
points of the hollow cylinder of finite height under conditions of radiation type on the surface.
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6.2. The solution for displacement and thermal stresses

The general solution of non-homogeneous differential equation (27) can be expressed as a combi-
nation of complementary function and particular solution. It can be represented as

u∗ξ = ucξ + upξ , (50)

then, the homogeneous solution can be expressed as

ucξ = C1 e
ξ℘ + C2 e

−ξ℘, (51)

for the associated homogeneous equation
∂2u∗ξ
∂ξ2

− ℘2 u∗ξ = 0, (52)

in which Ci (i = 1, 2) is an arbitrary integration constant to be determined.

The particular integral solution upξ of Equation (27) is determined by the method of variation of
parameters. It is assumed to be of the form

upξ = Û1 e
ξ℘ + Û2 e

−ξ℘, (53)

where

W (ξ) = det

(
eξ℘ e−ξ℘

℘eξ℘ −℘e−ξ℘

)
= −2℘, (54)

Û1 =
1

2℘

∫ b

a
e−ξ℘g(ξ) dξ, (55)

Û2 = − 1

2℘

∫ b

a
eξ℘g(ξ) dξ, (56)

and g(ξ) represents the non-homogeneous term of the differential equation as

g(ξ) = c cosh ξ
e−kξ/2

〈
−kG (c013/c

0
11) + (β01/c

0
11) e

−
∫ t
0
ψ (τ) dτ

{
2
` e
−kξ/2

×
∑∞

n=0

∑∞
m=1

[
e−κλ

2
mt
(
ϑ0G0 + Qi κ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ) dτ

)]
×[k Sm + S′m] sin

(
nπ z
`

)
/Nm

}〉
,

(57)

in which the prime (′ ) denotes differentiation with respect to the variable ξ.

With the form Equation (50) in Equation (26) of the radial displacement, the stresses (3) become

σξξ = γ e(2℘+k)ξ/2

2c cosh ξ {[C1 + Û1 ]((2℘− k)Û ′1 + Λ1)

−e(−2℘ξ)[C2 + Û2 ] ((2℘+ k)Û ′2 + Λ2) }
+γ ekξ[(c013/c

0
11)G− (β01/c

0
11)T ],

(58)

σηη = γe(2℘+k)ξ/2

2c cosh ξ {[C1 + Û1 ]((c012/c
0
11)(2℘− k)Û ′1 + Λ3)

−e(−2℘ξ)[C2 + Û2 ]((c012/c
0
11)(2℘+ k)Û ′2 + Λ4)}

+γ ekξ[(c013/c
0
11)G− (β01/c

0
11)T ],

(59)
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σzz = γe(2℘+k)ξ/2

2c cosh ξ { [C1 + Û1 ][(c013/c
0
11)(2℘− k) Û ′1 + Λ5]

−e−2℘ξ(C2 + Û2) ((c013/c
0
11)(2℘+ k)Û ′2 + Λ6)}

+γ ekξ[(c013/c
0
11)G− (β03/c

0
11)T,

(60)

in which

Λ1 = 2(c012/c
0
11)− k + 2℘, Λ2 = −2(c012/c

0
11) + k + 2℘,

Λ3 = (c012/c
0
11)[2℘− k] + 2 , Λ4 = (c012/c

0
11)[2℘+ k]− 2,

Λ5 = (c013/c
0
11)(2− k + 2℘), Λ6 = (c013/c

0
11)(−2 + k + 2℘).

7. Further investigation

7.1. The homogeneous case

For γ = 1 and k = 0, one obtains all material constants of the Equation (15), that are independent
of radial coordinates, then cij = c0ij , αi = α0

i , λi = λ0 and cv = c0v. Taking homogeneous material
constants into consideration, the temperature distribution and displacement reduces to

T (ξ, z, t) = 2
`

∑∞
n=0

∑∞
m=1

[
e−κλ

2
mt
(
ϑ0G0 + Qi κ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ) dτ

)]
× Sm(k1/2, k2/2, ξ,−qm) sin

(
nπ z
`

)
e−

∫ t
0
ψ (τ) dτ/Nm,

(61)

uξ(ξ) = C1 e
ξ + C2 e

−ξ + Û1 e
ξ + Û2 e

−ξ, (62)

in which

Û1 =
1

4

∫ b

a
e−ξg(ξ) dξ, Û2 =

1

4

∫ b

a
eξg(ξ) dξ, (63)

and

g(ξ) = c cosh ξ
〈

(β01/c
0
11) e

−
∫ t
0
ψ (τ) dτ

{
2
`

∑∞
n=0

∑∞
m=1

[
e−κλ

2
mt

×
(
ϑ0G0 + Qi κ

λ0

∫ t
0 e

κλ2
mτ ¯̄f(qm, n, τ) dτ

)]
S′m sin

(
nπ z
`

)
/Nm

}〉
.

(64)

The thermo-mechanical boundary conditions to evaluate integration constants C1 and C2 are σξξ =

0, σξη = 0, σξz = 0 at ξ = a, b, where the last two conditions get automatically satisfied. Then, by
virtue of Equations (5) and (62), Equation (58) can be rewritten as

C1[c
0
12 + (Û ′1(a) + 1) c011] + C2e

−2a[c012 − (Û ′2(a) + 1) c011]

+Gc cosh(a) e−a c013 = c cosh(a) e−a β01 T (a),
(65)

C1[c
0
12 + (Û ′1(aω) + 1) c011] + C2e

−2aω[c012 − (Û ′2(aω) + 1) c011]

+Gc cosh(aω) e−aω c013 = c cosh(aω) e−aω β01 T (aω),
(66)
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in which ω = b/a is the outer radius to inner radius ratio. In more specific manner, we will consider
ω = 1.05 for thin and ω = 1.50 for the thick functionally graded hollow cylinder. Apart from the
boundary conditions along the radial direction, we should also examine the conditions at z = 0 and
z = `. The last two conditions ση z = 0, σξ z = 0 at z = 0, ` automatically gets fulfilled and the first
condition 2π

∫ b
a σzz ξ dξ = 0 at z = 0, ` gives

C1

∫ aω
a

[
eξ

c cosh ξ (Û ′1(ξ) + 2)
]
ξ dξ + C2

∫ aω
a

[
e−ξ

c cosh ξ Û
′
2(ξ)

]
ξ dξ +G

∫ aω
a ξ dξ

=
∫ aω
a

[
β0
3

c013
T (ξ)− eξ

c cosh ξ

[
Û1(ξ)(Û

′
1(ξ) + 2)− e−2ξ Û2(ξ) Û

′
2(ξ)

]]
ξ dξ.

(67)

From Equations (65), (66) and (67), we have

C1 =
A4(B2D3 +D2B3)−A2(B4D3 −D4B3) +A3(−B4D2 −D4B2)

A1(B2D3 +D2B3)−A2(B1D3 −D1B3) +A3(−B1D2 −D1B2)
, (68)

C2 =
A1 (B4D3 −D4B3)−A4 (B1D3 −D1B3) +A3 (B1D4 −D1B4)

A1 (B2D3 +D2B3)−A2 (B1D3 −D1B3) +A3 (−B1D2 −D1B2)
, (69)

G =
A1 (B2D4 +D2B4)−A2(B1D4 −D1B4) +A4(−B1D2 −D1B2)

A1 (B2D3 +D2B3)−A2 (B1D3 −D1B3) +A3 (−B1D2 −D1B2)
, (70)

in which

A1 = c012 + (Û ′1(a) + 1)c011, A2 = e−2a[c012 − (Û ′2(a) + 1)c011], A3 = c cosh(a)e−ac013,

A4 = c cosh(a) e−aβ01T (a), B1 = c012 + (Û ′1(aω) + 1)c011,

B2 = e−2aω[c012 − (Û ′2(aω) + 1)c011], B3 = c cosh(aω)e−aωc013,

B4 = c cosh(aω)e−aωβ01T (aω), D1 =

∫ aω

a

[
eξ

c cosh ξ
(Û ′1(ξ) + 2)

]
ξdξ,

D2 =

∫ aω

a

[
e−ξ

c cosh ξ
Û ′2(ξ)

]
ξdξ,D3 =

∫ aω

a
ξdξ,

D4 =

∫ aω

a

{(
β03
c013

)
T (ξ)− eξ

c cosh ξ

[
Û1(ξ)(Û

′
1(ξ) + 2)− e−2ξÛ2(ξ)Û

′
2(ξ)

]}
ξdξ.

It can be concluded that the stress component vanishes everywhere in a homogeneous transversely
isotropic hollow cylinder when it is impacted by uniformly heated heat supply with γ = 0 and k >
0 as the inhomogeneity parameter. It is also observed that as k → 0, then, cij = c0ij γ and αi = α0

i γ

→ constant, irrespective of γ. One discovers that all material constants are independent of the radial
coordinate and governing equation reduces to the Euler differential equation.
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7.2. The inhomogeneous case

For the inhomogeneity parameter γ 6= 1 and k 6= 0, the radial stress expression (58) can be rewritten
utilising thermo-mechanical boundary conditions (7) as

C1[(2℘− k)Û ′1 + Λ1]− C2 e
(−2℘a)[(2℘+ k)Û ′2 + Λ2] + 2 c cosh a

×e(k−2℘) a/2(c013/c011)G = 2c cosh a e(k−2℘) a/2(β01/c
0
11)T

−Û1((2℘− k)Û ′1 + Λ1) + Û2e
(−2℘a) ((2℘+ k)Û ′2 + Λ2),

(71)

C1((2℘− k)Û ′1 + Λ1)− C2 e
(−2℘ aω)((2℘+ k)Û ′2 + Λ2) + 2c cosh a

× e(k−2℘) aω/2(c013/c011)G = 2c cosh a e(k−2℘) aω/2(β01/c
0
11)T

−Û1((2℘− k)Û ′1 + Λ1) + Û2e
(−2℘ aω) ((2℘+ k)Û ′2 + Λ2).

(72)

As pointed out by [Spencer et al. (1992)], the form of solution considered, does not permit the
point-by-point specification of traction at the two ends z = 0 and z = `. Only resultant forces
and moments can be specified on the basis of Saint Venant’s principle. From the problem we have
considered, we get the boundary condition (6) as

C1

∫ aω
a

[
c013(−k + 2℘)Û ′1(ξ) + Λ5

]
ξdξ − C2

∫ aω
a e−2℘ξ

[
c013(k + 2℘)Û ′2(ξ) + Λ6

]
ξdξ

−2Gc
∫ aω
a

[
cosh ξe(3k+2℘)ξ/2c013

]
ξdξ =

∫ aω
a

[
cosh ξe(3k+2℘)ξ/2β01T

]
ξdξ

+
∫ aω
a

{
Û2(ξ)e

−2℘ξ
[
c013(k + 2℘)Û ′2(ξ) + Λ6

]
− Û1(ξ)

[
c013(−k + 2℘)Û ′1(ξ) + Λ5

]}
ξdξ.

(73)

The general expressions for stress and displacement contain unknown integration constants C1,
C2 and unknown coefficient constant G. For the determination of all three unknown constants,
there are three non-redundant conditions (71), (72) and (73) available. It is also observed that
displacement function u is continuous at ξ = a and b, and σξξ vanishes at the inner and outer
boundary of the circular hollow cylinder.

8. Numerical Results, Discussion and Remarks

For mathematical computations, we have considered two materials as (i) hexagonal Zinc as Mate-
rial I [Sharma and Sharma (2002)] which is nearly isotropic, (ii) Lithium Tantalate as Material II
[www.korth.de (1999)] which is an anisotropy in nature, in a particular case. Data of the physical
properties are enlisted in Table 1 and Table 2 and shown below For the sake of simplicity of
calculation, we introduce the following dimensionless values

ξ̄ = ξ/b, z̄ = z/b, T̄ = T/T0, τ = κt/b2, ūξ = uξ
/

(c011α
0
1T0), σ̄ξξ = σξξ/(c011α

0
1T0),

σ̄ηη = σηη/(c011α
0
1T0), σ̄zz = σzz/(c011α

0
1T0).

The physical parameters as a = 0.95 m (thin), a = 0.67 m (thick), b = 1 m, ` = 0.08m,
k1 = k2 = 0.86 (assumed value) and reference temperature as T0 = 423K. The qm =1.531, 1.648,
2.745, 6.086, 7.001, 8.1178, 9.543, 10.631, 12.112, 14.123, 17.238, 19.734,. . . are the positive and
real roots of the Cem(α1, a, qm)Feym(α2, b, qm) − Cem(α2, b, qm)Feym(α1, a, qm) = 0. Figures
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Table 1. Thermo-mechanical material properties

Parameters Material I Material II
Elastic constants [1011 N/m2]
c011
c012
c013
c033

1.628
0.362
0.508
0.627

2.300
0.420
0.790
2.760

Thermal conductivity [W/mK] λ0 1.384 4.600
Thermal expansion coefficient [10−6 /K]
α0
1

α0
3

1. 798
1.383

4.00
16.00

Heat capacity coefficient [102 J/kgK] c0v 3.90 4.24
Mass density [103 kg/m3] ρ0 7.140 7.454

Table 2. Material properties in dimensionless form

Details c012
/
c011 c013

/
c011 c033

/
c011 α0

3

/
α0
1

Material I 0.222 0.312 0.385 0.769
Material II 0.183 0.343 1.200 4.000

Figure 2. Temperature distribution along z̄- direction.

2- 4 are typical dimensionless plots of temperature distribution. Figure 2 shows temperature distri-
bution along z̄- direction for different values of ξ̄ and the fixed value of time parameter τ , in which
graphs are sinusoidal in nature and attains zero temperature at both inner and outer edges a and b.
In Figure 3 temperature distribution along ξ̄ for different values of z̄ and fixed time τ , whereas in
Figure 4 temperature distribution along time parameter τ for different values of ξ̄ and fixed value
of z̄, are gradually increases at the outer edge. Figures 5- 9 illustrates the radial, tangential and ax-
ial stress distribution along the radius for different time parameter and fixed z̄ in a thin functionally
graded hollow cylinder. When the inhomogeneity parameters are considered as γ 6= 0 and k 6= 0,

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 2, Art. 18

https://digitalcommons.pvamu.edu/aam/vol13/iss2/18



908 Tara Dhakate et al.

Figure 3. Temperature distribution along ξ̄-direction.

Figure 4. Temperature distribution along time τ .

Figure 5. Radial stress σ̄ξξ along ξ̄- direction.
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Figure 6. Tangential stress σ̄ηη along ξ̄ - direction.

Figure 7. Axial stress σ̄zz along ξ̄- direction.

Figure 8. Radial stress σ̄ξξ along z̄- direction.
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Figure 9. Tangential and Axial stresses along z̄- direction.

Figure 10. Radial stress σ̄ξξ along ξ̄- direction for ω = 1.5.

the non-dimensional radial stress response are maximum at the interior, and so the outer edges of
the cylinder tend to expand more than the inner core, leading to the inner part being under tensile
stress. In particular, for negative γ the radial stress also decreases at fixed radius leading to com-
pressive radial stress. Also for negative γ, both the tangential and axial stress components change
from negative at the inner surface to positive at the outer surface and vice-versa. The distribution
σ̄ηη and σ̄zz in the thin hollow cylinder are nearly parabolic along the radial direction. Figures 8, it
is seen that the radial stress along z̄- direction for different values of ξ̄ and the fixed value of time τ
follows a sinusoidal characteristic with both extreme at zero. Similar trends were also noticed for
the tangential and axial stresses along z̄- direction for different values of ξ̄ and the fixed value of
time τ as shown in contour Figure 9. Figures 10- 12 illustrates the radial, tangential and axial stress
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Figure 11. Tangential stress σ̄ηη along ξ̄ - direction for ω = 1.5.

Figure 12. Axial stress σ̄zz along ξ̄- direction forω = 1.5.

distribution along the radius for a thick functionally graded hollow cylinder, given for comparison.
It is observed from all figures that the outcome agrees with the earlier declared results [Chen et al.
(2002)].

9. Conclusion

An analytical solution is achieved for the two-dimensional axisymmetric thermoelastic problem of
a transversely isotropic functionally graded hollow cylinder is subjected to a transient temperature
field, and the material properties are of parabolic power-law functions of the radial coordinates.
The solution and graph trends are verified by comparing with the solution of the uniformly heated
hollow cylindrical shell [Chen et al. (2001)] as well as cylinder [Chen et al. (2002)] available in
the literature.

It is found that the reduction in the thickness reduces the magnitudes of stresses and deforma-
tion. It is observed from the numerical results that γ have a significant effect on thermoelastic
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stresses. Hence it is possible to make more efficient use of the material with an appropriate choice
of gradient parameters γ and k in engineering applications to design a hollow cylinder. It is also
observed that for a transversely isotropic homogeneous hollow cylinder, stress response are negli-
gible compared with the functionally graded material. The method of the solution presented in this
paper is useful in the analysis of functionally graded hollow cylinder with transverse isotropy for
optimising the design in terms of material usage and performance.

The above solution can easily degenerate into isotropic functionally graded hollow cylinder for
the thermoelastic problem. On setting the physical parameters [Chen et al. (2001)] as c11 = c33 =

λ+ 2µ, c44 = µ, c12 = c13 = λ, λ = Eυ/[(1 + υ)(1− 2υ)] and µ = E/[2(1 + υ)] respectively, where
E is Young’s modulus, υ is Poisson’s ratio, and λ and µ are Lame elastic (Lame’s) constant.
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