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Abstract

In this work, we study the thermoelastic interactions in an unbounded medium with a spherical
cavity in the context of a very recently proposed heat conduction model established by Quintanilla
(2011). This model is a reformulation of three-phase-lag conduction model and is an alternative
heat conduction theory with a single delay term. We make an attempt to study the thermoelastic
interactions in an isotropic elastic medium with a spherical cavity subjected to three types of ther-
mal and mechanical loads in the contexts of two versions of this new model. Analytical solutions
for the distributions of the field variables are found out with the help of the integral transform tech-
nique. A detailed analysis of analytical results is provided by short-time approximation concept.
Further, the numerical solutions of the problems are obtained by applying numerical inversion of
Laplace transform. We observe significant variations in the analytical results predicted by different
heat conduction models. Numerical values of field variables are also observed to show significantly
different results for a particular material. Several important points related to the prediction of the
new model are highlighted.

Keywords: Generalized thermoelasticity; Non-Fourier heat conduction model; Quintanilla
model; Spherical Cavity; Ramp type heating; Thermal shock
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864 B. Kumari et al.

1. Introduction

It has been realized in recent years that Fourier law is applicable only to the problems that involve
large spatial dimension and when the focus is on long time behaviour. However, it yields unac-
ceptable results in situations involving temperature near absolute zero, extreme thermal gradients,
high heat flux conduction and short time behaviour, such as laser-material interactions. Hence, in-
tense efforts are put forth since 1950s to better understand the limitations of Fourier law and for
more accurate predictions of temperature. Accordingly, some non-Fourier heat conduction models
are proposed and they have become the centre of active research for last few decades. Classical
coupled dynamic thermoelasticity theory is based on Fourier law of heat conduction and suffers
from the drawback of infinite speed of thermal signal. Generalized coupled dynamical thermoe-
lasticity theory is free from this so called classical paradox. Furthermore, besides the paradox of
infinite propagation speed, the classical coupled dynamic thermoelasticity theory predicts poor de-
scription of a solid’s response to a fast transient loading (say, due to short laser pulses) and at low
temperatures. During last few decades, such drawbacks have been addressed by researchers and the
generalized theories are advocated accordingly. A systematic development in the heat conduction
theory and thermoelasticity theory can be found out in the review articles/books (Ignaczak, 1989;
Joseph and Preziosi, 1989; Chandrasekhariah, 1998; Hetnarski and Ignaczak, 1999; Ignaczak and
Starzewski, 2010; Straughan, 2011). Here, we also find studies concerning applicability of these
generalized theories.

The first pioneering contribution to this field is provided by Lord and Shulman (1967) who derived
a generalized thermoelasticity theory with the modification of governing equations of classical
coupled theory with the introduction of one relaxation time. The heat conduction law is therefore
replaced with the Cattaneo-Vernotte heat conduction model. This theory overcomes the paradox of
infinite propagation of thermal signal. Subsequently, another modification of classical thermoelas-
ticity theory was reported by Green and Lindsay (1972) in an alternative way. This theory is based
on a generalized dissipation inequality and introduces two relaxation times in the description of
thermoelastic process. Later on, Green and Naghdi (1993; 1992; 1993) proposed a completely
new thermoelasticity theory by developing an alternative formulation of heat propagation. They
incorporated the approach based on Fourier law (refereed as type-I), the theory without energy dis-
sipation (type-II), and theory with energy dissipation (type-III). The type-III model is more general
one. In the theories by Green and Naghdi, the gradient of thermal displacement, ν is considered as a
new constitutive variable. The thermal displacement, ν satisfies ν̇ = θ, where, θ is the temperature.
The heat conduction law for GN-III model is given by

q = −[k∇θ + k∗∇ν],

where, q is the heat flux vector, k is thermal conductivity and k∗, a material parameter called
as conductivity rate of the material, is also newly introduced in this theory and is considered as
the characteristic of the theory. In an attempt to model ultra fast processes of heat transport, Tzou
(1995) proposed a dual-phase-lag heat conduction model (DPLM) in which heat transport equation
relating q at a point r to ∇θ at r is introduced in the form

q(r, t+ τq) = − [k∇θ(r, t+ τθ)] ,
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where, τq and τθ stands for the phase-lag of the heat flux and temperature gradient, respectively.
The phase-lags are assumed to be positive and they are intrinsic properties of the medium (Tzou,
1995). Chandrasekharaiah (1998) extended this DPL model of heat conduction to a generalized
thermoelasticity theory. Subsequently, Roychoudhari (2007) established the three phase-lag (TPL)
thermoelasticity theory in which a modified constitutive realtion for heat conduction is taken by
introducing the phase-lag of the heat flux, temperature gradient and thermal displacement gradient
in heat conduction equation proposed in type-III model by Green and Naghdi. The constitutive
equation for the heat flux vector in the three-phase-lag theory (2007) is proposed to be

q(r, t+ τq) = − [k∇θ(r, t+ τθ) + k∗∇ν(r, t+ τν)] .

Here, τν is the additional phase-lag known as phase-lag of thermal displacement gradient. This
phase-lag is understood as a delay in terms of the micro-structure of the material.

In recent years, the above referred thermoelasticity theories have drawn the significant attention
of researchers and they find distinct attributes of various models. A big interest has been evolved
to analyze the different Taylor approximations to these heat transport equations (Horgon, 2005;
Kumar and Mukhopadhyay, 2010; Mukhopadhayay et al., 2010; Quintanilla, 2002; Quintanilla,
2003; Quintanilla and Racke, 2006; Quintanilla and Racke, 2007; Quintanilla and Racke, 2008).
Some critical analysis on these models are also discussed. For example, critical analysis on dual
phase-lag and three phase-lag heat conduction models is reported by Dreher et al. (2009). They
have addressed the point that when we combine this constitutive equation with energy equation

−∇q(x, t) = cθ̇(x, t),

we find that a sequence of eigenvalues in the point spectrum always exists and the real parts of
eigen values tend to infinity (Dreher et al., 2009). This signify the ill-posedness of the problem
in the Hadamard sense. We can not obtain continuous dependence of the solution with respect
to initial parameters. The mathematical consequences of such theories do not agree with what one
would expect a priori (Dreher et al., 2009, see also Quintanilla, 2011). Recently, Quintanilla (2011)
has reformulated the three-phase-lag heat conduction model in an alternative way and described the
stability and spatial behavior of the new proposed model. By defining τν < τq = τθ and τ = τq− τν ,
and adjoining three-phase-lag equation with energy equation they obtain the field equation with a
single delay term in the form

cν̈(t) = k4θ(t) + k∗4ν(t− τ).

This newly developed model has been studied in a detailed way by Leseduarte and Quintanilla
(2013). The spatial behavior of the solutions for this theory are explored by them. They found that
a Phragmen- Lindelof type alternative can be obtained and it has been shown that the solutions
either decay in an exponential way or blow-up at infinity in an exponential way. The obtained
results are extended to a thermoelasticity theory by considering the Taylor series approximation
of the equation of heat conduction to the delay term and Phragmen-Lindelof type alternative is
obtained for the forward and backward in time equations. Stability of the model is also discussed.
Recently, Kumari and Mukhopadhyay (2016) established uniqueness of solution of this theory
(Quintanilla, 2011; Leseduarte and Quintanilla, 2013). They also discussed variational principle
and reciprocity theorem of this model. Kumar and Mukhopadhyay (2016) investigated a problem

3
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of thermoelastic interactions on this theory in which state-space approach is used to formulate the
problem and the formulation is then applied to a problem of an isotropic elastic half-space with its
plane boundary subjected to sudden increase in temperature and zero stress.

In the present problem, we consider the newly developed thermoelasticity theory based on the heat
conduction model with a single delay term (Quintanilla, 2011; Leseduarte and Quintanilla, 2013).
We make an attempt to study the thermoelastic interactions in an isotropic elastic medium with a
spherical cavity subjected to three different types of thermal and mechanical boundary conditions.
The Laplace transform technique is applied to obtain the solution of the problem. In view of the fact
that delay time parameter is of small value, we attempted to obtain the short-time approximated
solution for the field variables. We provide a detailed analysis of analytical results. An attempt has
also been made to illustrate the problem and numerical values of field variables are obtained for
a particular material. We analyze the results with different graphs and compare these results with
GN-III model. It is believed that the analyses of the present study would be helpful to understand
the basic features of this new heat conduction model.

2. Governing Equations

By following Quintanilla (2011) and Leseduarte and Qunitanilla (2013), we consider the basic
governing equations in the absence of body forces and heat sources for an isotropic elastic medium
in indicial notation as follows:

Stress-strain-temperature relation:

σij = λeδij + 2µeij − γθδij , (1)

Stress equation of motion:

σij,j = ρ
∂2ui
∂t2

, (2)

Heat conduction equation:

{k ∂
∂t

+ k∗(1 + τ
∂

∂t
+

1

2
τ2ξ

∂2

∂t2
)}θ,ii = γθ0

∂2e

∂t2
+ ρcv

∂2θ

∂t2
, (3)

where, e = eii.

Here, λ and µ are Lame elastic constants, ui is the component of displacement vector, θ is the tem-
perature above reference temperature θ0. σij and eij are the components of stress tensor and strain
tensor, respectively. ρ is the mass density, cv is the specific heat at constant strain, γ = (3λ+ 2µ)αt,
where, αt is the coefficient of linear thermal expansion, k is the thermal conductivity and k∗ is
the thermal conductivity rate of the medium, and τ is the delay time due to new model (Lesed-
uarte and Qunitanilla, 2013). The subscripts followed by comma denote the derivatives w.r.t space
co-ordinate xi. The parameter ξ has been used here to formulate the problem under two different
models of heat conduction in a unified way. We obtain two different versions of heat conduction
equation by Leseduarte and Quintanilla (2013) by assuming ξ = 1 and ξ = 0,whereas in the second
case (i.e.,when ξ = 0), we neglect the second order effect in the Taylor series approximation of the

4
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equation of heat conduction to the delay term. The case when we assume τ = 0 represents the case
in the context of GN-III model.

Hence, we study our problem by considering equations (1), (2) and (3) to analyze the results under
two different cases as follows:

(1) New model 1 :τ 6= 0, ξ = 1,

(2) New model 2 :τ 6= 0, ξ = 0.

3. Problem Formulation

We consider an infinitely extended homogeneous isotropic elastic medium with a spherical cavity
of radius a. The center of the cavity is taken to be the origin of the spherical polar co-ordinate
system (r,θ, φ). By assuming spherical symmetry in our problem, the displacement and temperature
components are taken to be function of r and t only. The non-zero strain component are therefore
given by

err =
∂u

∂r
, eθθ = eφφ =

u

r
.

Then, non-zero stress components are obtained as

σrr = λ(
∂u

∂r
+

2u

r
) + 2µ

∂u

∂r
− γθ, (4)

σθθ = σφφ = λ(
∂u

∂r
+

2u

r
) + 2µ

µ

r
− γθ. (5)

Hence, the equation of motion (1) reduces to the form

ρ
∂2u

∂t2
=

∂

∂r
σrr +

2

r
(σrr − σθθ). (6)

Now, for simplicity we introduce the following dimensionless variables and quantities:

r′ =
r

a
, t′ =

c1

a
t, θ′ =

θ

θ0
, u′ =

u

a
, τ ′ =

c1
a
τ, a0 =

ak∗

kc1
, a1 =

γθ0
λ+ µ

,

a2 =
aρcvc1
k

, a3 =
aγc1
k

, σ′rr =
σrr

λ+ 2µ
, σ′φφ =

σφφ
λ+ 2µ

, and λ1 =
λ

λ+ 2µ
.

Then, (4), (5) and (6) reduce to

σrr =
∂u

∂r
+ 2λ1

u

r
− a1θ, (7)

σφφ = λ1
∂u

∂r
+ (λ1 + 1)

u

r
, (8)

∂2u

∂t2
=
∂e

∂r
− a1

∂θ

∂r
. (9)

In above equations, we omit the primes for simplicity.
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Further, the equation of heat conduction is simplified to the dimensionless form as

{ ∂
∂t

+ a0(1 + τ
∂

∂t
+

1

2
τ2ξ

∂2

∂t2
)}∇2θ = a3

∂2e

∂t2
+ a2

∂2θ

∂t2
. (10)

We consider that the medium is at rest and undisturbed at the beginning and the initial conditions
are given by

u(r, t) |t=0 =
∂

∂t
u(r, t) |t=0= 0,

θ(r, t) |t=0 =
∂

∂t
θ(r, t) |t=0= 0,

σrr(r, t) |t=0 = 0.

4. Solution of the problem

We introduce the Laplace transform defined by

f̄(r, p) =

∞∫
0

e−ptf(r, t)dt,

where, p is a Laplace transform parameter.

Therefore, by applying the Laplace transform on time to equations (7)-(10) with respect to time t,
we get following equations:

σ̄rr = ē− 2(1− λ1)
ū

r
− a1θ̄, (11)

σ̄φφ = λ1ē+ (1− λ1)
ū

r
− a1θ̄, (12)

p2ū =
∂ē

∂r
− a1

∂θ̄

∂r
, (13)

{p+ a0(1 + τp+
1

2
ξτ2p2)}∇2θ̄ = a3p

2ē+ a2p
2θ̄. (14)

Decoupling equations (13) and (14) and solving them, we get the general solutions for ē and θ̄

bounded at infinity as

ē =
1√
r

[X1K 1

2
(m1r) +X2K 1

2
(m2r)], (15)

θ̄ =
1√
r

[Y1K 1

2
(m1r) + Y2K 1

2
(m2r)]. (16)

Here, Xi, Yi, i = 1, 2 are the arbitrary constants independent of r, K 1

2
(mir) are modified Bessel

functions of order half and m1,m2 satisfy the following equation:

{p+ a0(1 + τp+
1

2
ξτ2p2)}m4

−{p3 + εp2 + a2p
2 + a0p

2(1 + τp+
1

2
ξτ2p2)}m2 + a2p

4 = 0. (17)

6
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Here, ε = γ2θ0
ρ2cvc21

is the thermoelastic coupling constant.

Now, by using (13), (15), and (16), we find the relation between Xi and Yi as

Yi = FiXi, i = 1, 2, (18)

where,

Fi =
m2
i − p2

a1m2
i

, i = 1, 2.

We apply the following relation:

d

dr
K 1

2
(mir) =

1

2r
K 1

2
(mir)−miK 3

2
(mir) for i = 1, 2.

in order to find the solutions for displacement and stresses from equations (7)-(10), (15) and (16)
as

ū = − 1√
r

[
1

m1
X1K 3

2
(m1r) +

1

m2
X2K 3

2
(m2r)], (19)

σ̄rr =
1√
r

[X1σr1 +X2σr2], (20)

σ̄φφ =
1√
r

[X1σφ1 +X2σφ2], (21)

where,

σri = [1− a1Fi]K 1

2
(mir) +

2(1− λ1)
mir

K 3

2
(mir), i = 1, 2,

σφi = [λ1 − a1Fi]K 1

2
(mir)−

(1− λ1)
mir

K 3

2
(mir), i = 1, 2.

We can obtain the values of X1 and X2 with the help of boundary conditions.

4.1. Applications:

Now, we apply above formulation to investigate the nature of solutions in different cases of ther-
moelastic interactions. Hence, we consider three problems that correspond to three types of thermal
and mechanical boundary conditions as follows:

Problem-1: Ramp-type varying temperature and zero stress on the boundary of the
spherical cavity of the medium

We consider a homogeneous isotropic thermoelastic solid with homogeneous initial conditions.The
surface of the cavity, r = 1 is considered to be stress free and is affected by ramp-type heating
which depends on the time t. Hence, we assume boundary conditions as:

7
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σrr |r=1 = 0, (22)

θ |r=1 =


0 t < 0,

T0
t
t0

0 < t < t0,

T0 t > t0.

(23)

where, t0 indicates the length of time to rise the heat and T0 is a constant. This means that the
boundary of the surface of cavity, which is initially at rest is suddenly raised to an increased
temperature equal to the function F (t) = T0

t
t0

and after the instance t = t0 coming, we let the
temperature at constant value T0 maintain from then on.

The Laplace transform of equations (22) and (23) yield

σ̄rr |r=1= 0, (24)

θ̄ |r=1=
T0(1− e−pt0)

t0p2
. (25)

Therefore, with the help of boundary conditions (24) and (25), we find the constants X1 and X2

involved in solutions of different field variables in Laplace transform domain as:

X1 = − σ0r2T0(1− e−pt0)
t0p2[σ0r1F2K 1

2
(m2)− σ0r2F1K 1

2
(m1)]

,

X2 =
σ0r1T0(1− e−pt0)

t0p2[σ0r1F2K 1

2
(m2)− σ0r2F1K 1

2
(m1)]

,

where,

σ0ri = [1− a1Fi]K 1

2
(mi) +

2(1− λ1)
mi

K 3

2
(mi), i = 1, 2.

Problem-2: Unit step increase in temperature and zero stress on the boundary of the
cavity

Here, we assume that the surface of cavity, r = 1 is stress free and is subjected to a unit step
increase in temperature, i.e., we consider

σrr |r=1= 0, (26)
θ |r=1= T ∗H(t), (27)

where, T ∗ is a constant temperature and H(t) is the Heaviside unit step function.

The Laplace transform of equations (26) and (27) are given by

σ̄rr |r=1= 0, (28)

θ̄ |r=1=
T ∗

p
. (29)

8
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Similarly, with the help of (28) and (29), the constants X1, X2 are obtained as:

X1 = − σ0r2T
∗

p[σ0r1F2K 1

2
(m2)− σ0r2F1K 1

2
(m1)]

,

X2 =
σ0r1T

∗

p[σ0r1F2K 1

2
(m2)− σ0r2F1K 1

2
(m1)]

.

Problem-3: Normal load on the boundary of the spherical cavity

In this case, we assume that the surface of the cavity is kept at the constant reference temperature,
and it is subjected to a normal load. Therefore, the boundary conditions for this problem are of the
forms

σrr |r=1= −σ∗H(t), (30)
θ |r=1= 0. (31)

The Laplace transform of (30) and (31) yields

σ̄rr |r=1= −
σ∗

p
, (32)

θ̄ |r=1= 0. (33)

In this case, the constants X1, X2 are found to be of the forms

X1 =
F2K 1

2
(m2)σ

∗

p[σ0r2F1K 1

2
(m1)− σ0r1F2K 1

2
(m2)]

,

X2 = −
F1K 1

2
(m1)σ

∗

p[σ0r2F1K 1

2
(m1)− σ0r1F2K 1

2
(m2)]

.

5. Short-time approximation

We will find the solutions of distributions of displacement, temperature and stresses in the phys-
ical domain (r, t) by inverting the expressions for ū, θ̄, σ̄rr, σ̄φφ obtained in previous section by
using the Laplace inverse transforms. However, these expressions involve complicated functions
of Laplace transform parameter, p. Hence, the closed form inversion of Laplace transforms for any
values of p is formidable task. Therefore, in this section, we attempt to get the short-time approx-
imated solutions of the field variables in the time domain for small values of time, i.e., for large
values of p.

Firstly, with the help of Maclaurin’s series expansion and neglecting the higher powers of small
terms, we get the roots m1, m2 of equation (17) under different models as follows:

9
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For New Model -I:

m1 = b11p+ b12
1

p
, (34)

m2 = b13 − b14
1

p
, (35)

For New Model -II:

m1 = b21p+ b22, (36)

m2 = b23
√
p− b24

1
√
p
, (37)

where,

b11 = 1, b12 =
A2 −A0 − a2

2A3
, b13 =

√
a2
A3
, b14 =

A1
√
a2

2(A3)
3

2

,

b21 = 1, b22 =
A2 −A0 − a2

2A1
, b23 =

√
a2
A1
, b24 =

√
a2

2(A1)
3

2

(A0 + ε),

A0 = a0, A1 = 1 + a0τ, A2 = ε+ a0 + a2, A3 =
1

2
a0τ

2.

Now, by substituting m1 and m2 from equations (34)-(37) into solutions given by equations (16)
and (19)-(21) and using the expression

Kν(z) ≈
√

π

2z
e−z

[
1 +

4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2(8z)2
+ ...

]
,

we get the short-time approximated solutions for the distributions of displacement, temperature
and stresses in the Laplace transform domain (r, p) for different problems 1-3 under New model-I
and New model-II as follows:

Case of prolem-1:

In the context of New model-I:

u (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
B1
i1

pi+2
+
B1
i2

pi+3

]
, (38)

θ (r, p) ' T0
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
C1
i1

p6−2i
+

C1
i2

p6−i

]
, (39)

σrr (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
D1
i1

p2
+
D1
i2

pi+2

]
, (40)

σφφ (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
E1
i1

p2
+
E1
i2

pi+2

]
. (41)
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In the context of New model-II:

u (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)

[
B2
i1

p
i+5

2

+
B2
i2

p4

]
, (42)

θ (r, p) ' T0
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
C2
i1

p4−i
− C2

i2

p5−i

]
, (43)

σrr (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
D2
i1

p2
+
D2
i2

p3

]
, (44)

σφφ (r, p) ' T0a1
rt0

2∑
i=1

e−mi(r−1)(1− e−pt0)
[
E2
i1

p2
+
E2
i2

p3

]
. (45)

Case of problem-2:

In the context of New model-I:

u (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)
[
B1′
i1

pi+1
+
B1′
i2

pi+2

]
, (46)

θ (r, p) ' T ∗

r

2∑
i=1

e−mi(r−1)
[
C1′
i1

p5−2i
+
C1′
i2

p5−i

]
, (47)

σrr (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)
[
D1′
i1

p
+
D
′

i2

pi+1

]
, (48)

σφφ (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)
[
E1′
i1

p
+
E1′
i2

pi+1

]
. (49)

In the context of New model-II:

u (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)

[
B2′
i1

p
i+3

2

+
B2′
i2

p3

]
, (50)

θ (r, p) ' T ∗

r

2∑
i=1

e−mi(r−1)
[
C2′
i1

p3−i
+
C2′
i2

p4−i

]
, (51)

σrr (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)
[
D2′
i1

p
+
D2′
i2

p2

]
, (52)

σφφ (r, p) ' T ∗a1
r

2∑
i=1

e−mi(r−1)
[
E2′
i1

p
+
E2′
i2

p2

]
. (53)
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Case of problem-3:

In the context of New model-I:

u (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)
[
B1′′
i1

p3i−1
+
B1′′
i2

p3i

]
, (54)

θ (r, p) ' σ∗

ra1

2∑
i=1

e−mi(r−1)
[
C1′′
i1

p3
+
C1′′
i2

p4

]
, (55)

σrr (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)
[
D1′′
i1

p2i−1
+
D1′′
i2

p2i

]
, (56)

σφφ (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)
[
E1′′
i1

p2i−1
+
E1′′
i2

p2i

]
. (57)

In the context of New model-II:

u (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)

[
B2′′
i1

p
3i+1

2

+
B2′′
i2

pi+2

]
, (58)

θ (r, p) ' σ∗

ra1

2∑
i=1

e−mi(r−1)
[
C2′′
i1

p2
+
C2′′
i2

p3

]
, (59)

σrr (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)
[
D2′′
i1

pi
+
D2′′
i2

pi+1

]
, (60)

σφφ (r, p) ' σ∗

r

2∑
i=1

e−mi(r−1)
[
E2′′
i1

pi
+
E2′′
i2

pi+1

]
. (61)

where, different notations used in solutions given by (38)-(61) are given by following expressions:

B1
11 = B1′

11 = D1
21 = D1′

21 = D1′′
11 = E1

21 = E1′
21 = −1,

C1
21 = C1′

21 = D1
11 = D1′

11 = B1′′
11 = 1,

B1
12 = B1′

12 = −1−2r+2rλ1

r , B1
21 = B1′

21 = 1+b13r
r , B1′′

12 = 1−2r+2rλ1

r ,

B1
22 = B1′

22 = −b14,C1
11 = C1′

11 = C1′′
21 = C1′

22 = D1′′
21 = 2b12,

C1
12 = C1′

12 = C1′′
22 = D1′′

22 = −4b12(1− λ1),

E1′′
22 = C1′′

12 = 4b12(1− λ1), E1′′
21 = C1′′

11 = C1
22 = −2b12,

D1
12 = D1′

12 = D1′′
12 = 2(1−λ1)(r−1)

r , E1′′
12 = −2(1+2rλ1)(λ1−1)

r

D1
22 = D1′

22 = −2+2b13r−2b12r2+(b13)
2r2−2λ1−2b13rλ1

r2 , E1
11 = λ1,

E1′
12 = λ1−2rλ1+2rλ2

1−1
r , E1

22 = E1′
22 = − b13r

2λ1+b13rλ1+λ1−2b12r−b13r−1
r2 ,
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B1′′
21 = 2b12(1+b

1
3r)

r , B1′′
22 = 2b12(−2−2b13r−b14r+2λ1+2b13rλ1)

r , E
′′1
11 = −λ1,

B2
11 = B2′

11 = B2′′
11 = D2

21 = D2′′
11 = E2

21 = E2′
21 = D2′

21 = −1,

D2
11 = D2′

11 = C2
21 = C2′

21 = 1, B2
12 = B2′

12 = −(1−2r−rb22+rb23+2λ1)
r ,

B2
21 = B2′

21 = b23, B
2
22 = B2′

22 = 1
r ,

C2
12 = −b22(−4− 3b22 + 2(b23)

2 + 4λ1), E2
11 = E2′

11 = λ1, E2′′
11 = −λ1,

D2
12 = D2′

12 = 1
r (2− 2r − 2rb22 + (rb23)

2 − 2λ1 + 2rλ1),

D2
22 = D2′

22 = −(−2b22 + (b23)
2), C2

22 = C2′
22 = C2′′

11 = D2′′
21 = E2′′

21 = −2b22,

E2
12 = E2′

12 = 1
r (−1− 2rb22 + λ1 − 2rλ1 + rλ1(b

2
3)

2 + 2rλ21), E2
22 = − 1

2b23
,

C2′.
12 = b22(−4− 3b22 + (b23)

2 + 4λ1), E
2′
22 = −4b22b

2
3 + (b23)

2λ1,

B2′′
12 = −1

r (−1 + 2r + rb22 − 2rλ1), B
2′′
21 = −2b22b

2
3, B

2′′
22 = 1

r (−2b22),

C2′′.
12 = C2′′.

22 = b22(4 + 3b22 − 4λ1), D
2′′
12 = 2

r (−1 + r + rb22 + λ1 − rλ1),

D2′′
22 = (4 + 3b22 − 2(b23)

2 − 4λ1), E
2
12 = 1

r (−1− 2rb22 + λ1 − 2rλ1 + 2rλ21),

E2′′
22 = 4 + 3b22 − 4λ1 − 2(b23)

2λ1.

5.1. Solutions in the physical domain:

Now, we use inversion of the Laplace transform for the above obtained Laplace transforms. For
this we use the convolution theorem and the formulae listed below (Oberhettinger,1973).

L−1

[
e−

a

p

pν+1

]
=

(
t

a

) ν

2

Jν(2
√
at), Re(ν) > −1, a > 0,

L−1

[
e
a

p

pν+1

]
=

(
t

a

) ν

2

Iν(2
√
at), Re(ν) > −1, a > 0,

L−1
[
e−a
√
p

p
ν

2
+1

]
= (4t)

ν

2 iνerfc(
a

2
√
t
), ν = 0, 1, 2... .

Here, Jν , Iν are the Bessel and modified Bessel functions of order ν and of the first kind, and
inerfc(x) is complementary error function of nth order defined by

inerfc(x) =

∫ ∞
x

in−1erfc(u)du, n = 1, 2, 3... ,

with

erfc(x) =
2√
π

∞∫
x

e−t
2

dt.
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Now, taking inverse Laplace transforms of equations (38)-(61), we get the approximated analytical
solutions for the distributions of displacement, temperature and stresses in space-time domain for
all three problems in the following forms:

Problem-1:

Solutions in the context of New model- I:

u (r, t) =
T0a1
rt0

2∑
i=1

[
B1

1i

(
t1
b12r1

)i+1/2

Ji+1

(
2
√
b12r1t1

)
H(t1)

+B1
2ie
−b13r1

(
t

b14r1

) 2+i

2

I2+i

(
2
√
b14r1t

)]
− T0a1

rt0

2∑
i=1

[
B1

1i

(
t2
b12r1

)i+1/2

Ji+1

(
2
√
b12r1t2

)
H(t2)

+ B1
2ie
−b13r1

(
t
′

b14r1

) 2+i

2

I2+i

(
2
√
b14r1t

′

)
H(t

′
)

]
, (62)

θ (r, t) =
T0
rt0

2∑
i=1

[
C1
1i

(
t1
b12r1

)(i+2)/2

Ji+2

(
2
√
b12r1t1

)
H(t1)

+ C1
2ie
−b13r1

(
t

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

)]
− T0
rt0

2∑
i=1

[
C1
1i

(
t2
b12r1

)(i+2)/2

Ji+2

(
2
√
b12r1t2

)
H(t2)

+ C1
2ie
−b13r1

(
t
′

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

′

)
H(t

′
)

]
, (63)

σrr (r, t) =
T0a1
rt0

2∑
i=1

[
D1

1i

(
t1
b12r1

)i/2

Ji

(
2
√
b12r1t2

)
H(t1)

+ D1
2ie
−b13r1

(
t

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

)]
− T0a1

rt0

2∑
i=1

[
D1

1i

(
t2
b12r1

)i/2

Ji

(
2
√
b12r1t2

)
H(t2)

+ D1
2ie
−b13r1

(
t
′

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

′

)
H(t

′
)

]
, (64)
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σφφ (r, t) =
T0a1
rt0

2∑
i=1

[
E1

1i

(
t1
b12r1

)i/2

Ji

(
2
√
b12r1t1

)
H(t1)

+E1
2ie
−b13r1

(
t

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

)]
− T0a1

rt0

2∑
i=1

[
E1

1i

(
t2
b12r1

)i/2

Ji

(
2
√
b12r1t2

)
H(t2)

+ E1
2ie
−b13r1

(
t
′

b14r1

)(2i−1)/2

I2i−1

(
2
√
b14r1t

′

)
H(t

′
)

]
. (65)

Solutions in the context of New model-II:

u (r, t) =
T0a1
rt0

2∑
i=1

e−b
2
2r1

[
B1

1i

(t3)
i+1

4i− 2
H(t3)−B2

1iH(t4)
(t4)

i+1

4i− 2

]

+
T0a1
rt0

2∑
i=1

[
B2

2i(4t)
i+2

2 ii+4erfc(
b23r1

2
√
t
)−B2

2i(4t)
i+2

2 ii+4erfc(
b23r1

2
√
t′

)H(t
′
)

]
, (66)

θ (r, t) =
T0
rt0

2∑
i=1

e−b
2
2r1

[
C2
1i

(t3)
i+1

4i− 2
H(t3)− C2

1iH(t4)
(t4)

i+1

4i− 2

]

+
T0
rt0

2∑
i=1

[
C2
2i(4t)

ii2ierfc(
b23r1

2
√
t
)− C2

2i(4(t− t0))ii2ierfc(
b23r1

2
√
t′

)H(t
′
)

]
, (67)

σrr (r, t) =
T0a1
rt0

2∑
i=1

e−b
2
2r1

[
D2

1i

(t3)

i
H(t3)−D2

1iH(t4)
(t4)

i

i

]

+
T0a1
rt0

2∑
i=1

[
D2

2i(4t)
ii2ierfc(

b23r1

2
√
t
)−D2

2i(4(t
′
))ii2ierfc(

b23r1

2
√
t′

)H(t
′
)

]
, (68)

σφφ (r, t) =
T0a1
rt0

2∑
i=1

e−b
2
2r1

[
E2

1i

(t3)
i

i
H(t3)− E2

1iH(t4)
(t4)

i

i

]

+
T0a1
rt0

2∑
i=1

[
E2

2i(4t)
ii2ierfc(

b23r1

2
√
t
)− E2

2i(4t
′
)ii2ierfc(

b23r1

2
√
t′

)H(t
′
)

]
. (69)
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Problem-2:

Solutions in the context of New model-I:

u (r, t) =
T ∗a1
r

[ 2∑
−

i=1

B1′

1i

(
t1
b12r1

) i

2

Ji

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

B1′

2ie
−b13r1

(
t

b14r1

) i+1

2

Ii+1

(
2
√
b14r1t

)]
, (70)

θ (r, t) =
T ∗

r

[ 2∑
i=1

C1′

1i

(
t1
b12r1

)(i+1)/2

Ji+1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

(−1)i+1C1′

2ie
−b13r1

(
t

b14r1

)2i−2/2

I2i−2

(
2
√
b14r1t

)]
, (71)

σrr (r, t) =
T ∗a1
r

[ 2∑
i=1

D1′

1i

(
t1
b12r1

)(i−1)/2

Ji−1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

D1′

2ie
−b13r1

(
t

b14r1

)(2i−2)/2

I2i−2

(
2
√
b14r1t

)]
, (72)

σφφ (r, t) =
T ∗a1
r

[ 2∑
i=1

E1′

1i

(
t1
b12r1

)(i−1)/2

Ji−1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

E1′

2ie
−b13r1

(
t

b14r1

)(2i−2)/2

I2i−2

(
2
√
b14r1t

)]
. (73)

Solutions in the context of New model-II:

u (r, t) =
T ∗a1
r

2∑
i=1

[
e−b

2
2r1

{
B2′

1i

(t3)
i

i
H(t3)

}
+

{
B2′

2i(4t)
i+2

2 ii+2erfc(
b23r1

2
√
t
)

}]
, (74)

θ (r, t) =
T ∗

r

2∑
i=1

[
e−b

2
2r1

{
C2′

1i

(t3)
i

i
H(t3)

}
+

{
C2′

2i(4t)
i−1i2i−2erfc(

b23r1

2
√
t
)

}]
, (75)

σrr (r, t) =
T ∗a1
r

2∑
i=1

[
e−b

2
2r1
{
D2′

1i(t3)
i−1H(t3)

}
+

{
D2′

2i(4t)
i−1i2i−2erfc(

b23r1

2
√
t
)

}]
, (76)

σφφ (r, t) =
T ∗a1
r

2∑
i=1

[
e−b

2
2r1
{
E2′

1i(t3)
i−1H(t3)

}
+

{
E2′

2i(4t)
i−1i2i−2erfc(

b23r1

2
√
t
)

}]
. (77)
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Problem-3:

Solutions in the context of New model-I:

u (r, t) =
σ∗

r

[ 2∑
i=1

B1′′

1i

(
t1
b12r1

) i

2

Ji

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

B1′′

2i e
−b13r1

(
t

b14r1

) i+3

2

Ii+3

(
2
√
b14r1(t)

)]
, (78)

θ (r, t) =
σ∗

ra1

[ 2∑
i=1

C1′′

1i

(
t1
b12r1

)(i+1)/2

Ji+1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

C1′′

2i e
−b13r1

(
t

b14r1

)(i+1)/2

Ii+1

(
2
√
b14r1t

)]
, (79)

σrr (r, t) =
σ∗

r

[ 2∑
i=1

D1′′

1i

(
t1
b12r1

)(i−1)/2

Ji−1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

D1′′

2i e
−b13r1

(
t

b14r1

)(i+1)/2

Ii+1

(
2
√
b14r1t

)]
, (80)

σφφ (r, t) =
σ∗

r

[ 2∑
i=1

E1′′

1i

(
t1
b12r1

)(i−1)/2

Ji−1

(
2
√
b12r1t1

)
H(t1)

+

2∑
i=1

E1′′

2i e
−b13r1

(
t

b14r1

)(i+1)/2

Ii+1

(
2
√
b14r1t

)]
. (81)

Solutions in the context of New model-II:

u (r, t) =
σ∗

r

2∑
i=1

[
e−b

2
2r1

{
B2′′

1i

(t3)
i

i
H(t3)

}
+

{
B2′′

2i (4t)
3i

2 i3ierfc(
b23r1

2
√
t
)

}]
, (82)

θ (r, t) =
σ∗

ra1

2∑
i=1

[
e−b

2
2r1

{
C2′′

1i

(t3)
i

i
H(t3)

}
+

{
C2′′

2i (4t)ii2ierfc(
b23r1

2
√
t
)

}]
, (83)

σrr (r, t) =
σ∗

r

2∑
i=1

[
e−b

2
2r1
{
D2′′

1i (t3)
i−1H(t3)

}
+

{
D2′′

2i (4t)ii2ierfc(
b23r1

2
√
t
)

}]
, (84)

σφφ (r, t) =
σ∗

r

2∑
i=1

[
e−b

2
2r1
{
E2′′

1i (t3)
1−iH(t3)

}
+

{
E2′′

2i (4t)ii2ierfc(
b23r1

2
√
t

}]
, (85)

where,

r1 = (r − 1), t
′

= t− t0, t1 = t− b11r1,
t2 = t− b11r1 − t0, t3 = t− b21r1, t4 = t− b21r1 − t0.
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6. Analysis of analytical results

From the short-time approximated solutions obtained for the case of problem-1, i.e., when the
boundary of the spherical cavity is subjected to a ramp-type heating, we observe that the distri-
butions of displacement, temperature and stresses for the case of New model-I consist of four
different terms. The terms involving H(t− b11r1) and H(t− b11r1 − t0) correspond to a wave propa-
gating with non dimensional finite speed 1

b11
. These waves can be identified as predominantly elastic

waves propagating with different phases. The expressions given by equations (62)–(65) reveal that
under New model-I, the modified elastic waves propagate without any attenuation. This is a dis-
tinct feature predicted by the theory and it has a similarity with case of GN-II model. Furthermore,
we note that the speed of elastic waves do not depend on the delay parameter or any other material
parameter. The second and fourth part of the solutions of the field variables do not indicate to be
a contribution of a wave. On the contrary, it is diffusive in nature indicating an exponential decay
with distance with an attenuating coefficient b13. This represents that under this present model, the
thermal wave do not propagate with finite wave speed like other generalized thermoelasticity theo-
ries, namely Lord-Shulman model, Green-Lindsay model, GN-II model, dual-phase-lag model, or
three-phase-lag model. However, a similar nature of the second part of the solution of field vari-
ables is observed under GN-III model. Furthermore, we note that the solutions for all fields given
by equations (62) - (65) are continuous in nature.

In the context of New model-II, we observe that solutions for the distributions of displacement,
temperature and stresses given by equations (66) - (69) also consist of four different contributions.
As in the previous case, here the terms involving H(t − b21r1) and H(t − b21r1 − t0) correspond to
two waves propagating with non dimensional finite speed 1

b21
, which correspond to modified elastic

waves. Unlike New model-I, this New model-II predicts that elastic waves decay exponentially
with an attenuating coefficient b22. The wave speeds in case of New model-I and New model-II is
exactly same and do not depend on any material parameter. However, the attenuation coefficient
of modified elastic wave in case of New model-II depend on the delay time as well as on the
material parameters. The other parts of solution are diffusive in nature due to the damping term.
The solutions of all fields are continuous in nature in this case too.

From the solutions given by equations (70)–(77) in case of problem-2, we observe that as in
problem-1, each of the distributions of temperature, displacement, and stress consist of two main
parts. In the first part, the terms involving H(t−b11r1) and H(t−b21r1) correspond to pre-dominantly
elastic wave propagating with non dimensional finite speeds of 1

b11
and 1

b21
for New model-I and

New model- II, respectively. The wave speeds are same as in case of problem-1. In view of the
expressions represented by equations (70)–(73) under New model- I, we note that the elastic waves
propagate without any attenuation, whereas in the solutions represented by equations (74)-(77)
under New model- II, elastic waves propagate with an attenuation coefficient b22 that depends on
the delay time and material parameter. The second part of the solutions given by equations (70)-
(77) show that the field variables do not indicate to be a contribution of a wave. Instead of that it is
diffusive in nature. It indicates an exponential decay with distance with an attenuating coefficient
b13 for New model- I. Furthermore, we note that the solutions for temperature and displacement
are continuous in nature for both the models. However, the analytical results given by equations
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(72)-(73) for New model- I show that stress distributions suffer from finite discontinuity at elastic
wave front. The finite jumps are obtained as follows:

[σrr]r1= t

b11

= σrr|r1= t+

b11

− σrr|r1= t−
b11

= D1′

11

T ∗a1
r

,

[σφφ]r1= t

b11

= σφφ|r1= t+

b11

− σφφ|r1= t−
b11

= E1′

11

T ∗a1
r

.

From the solutions of radial stress and circumferential stress distributions given by equations (76)-
(77) for New model- II, we observe similar characteristic like the solutions for New model-I. In
this case the finite jumps at the elastic wave front are found out as follows:

[σrr]r1= t

b21

= σrr|r1= t+

b21

− σrr|r1= t−
b21

= D2′

11e
− b

2
2t

b11
T ∗a1
r

,

[σφφ]r1= t

b21

= σφφ|r1= t+

b21

− σφφ|r1= t−
b21

= E2′

11e
− b

2
2t

b11
T ∗a1
r

.

In case of problem- 3, we note that the solutions for the field variables have two main parts like
the case of problem-II. The first part in each solution represents elastic wave propagating with
the speed 1

b11
and it propagates without any attenuation in the case of New model-I, whereas New

model-II predicts that the predominating elastic wave have speed 1
b21

and an attenuation coefficient
b22. The second parts of the solutions are of diffusive nature which is because of the parabolic nature
of heat transport equation for this case. As in case of problem-2, in the present case also the radial
stress and circumferential stress distributions show discontinuities with finite jumps at the elastic
wave front under both the models, i.e., under New model-I and New model-II.

7. Numerical Results and discussion

In the previous section, we derived short-time approximated analytical solutions for the physical
fields and we noted some significant features in the nature of solutions predicted by New model-
I and New model-II. In this section, we make an attempt to find the numerical solutions of the
three problems in the present work by employing a numerical procedure for Laplace inversions
of temperature, displacement, radial stress and shear stress with the help of Matlab software. We
employ here the method given by Honig and Hirdes (1984), which is based on the method proposed
by Durbin(1973) for the Laplace inversion. We also compare our results with the corresponding
results under GN-III model.

We assume that the spherical cavity is made of copper material and the physical data for which are
taken as below (Sherief and Salah, 2005).

λ = 7.76× 1010 Nm−2, µ = 3.86× 1010 Nm−2, αt = 1.78× 10−5 K−1, η = 8886.73 sm−2,

cE = 383.1 JKg−1K−1, ρ = 8954 Kg m−3, T0 = 293K.

In order to analyze the solutions for non-dimensional temperature, displacement, radial stress and
tangential stress in space-time domain inside the spherical cavity, the results under three differ-
ent problems are displayed in Figures 1(a, b, c, d)-3(a, b, c, d). In each figure, we plotted the graphs
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Figure 1(a): Variation of u vs. r for different value of t under problem 1

for the fields at two different times, t = 0.1, t = 0.3 and for three different thermoelastic models
namely, New model-I, New model-II and GN-III model. Specially, we aim to understand the ef-
fects of thermal relaxation parameter τ on the solutions at various times and highlight the specific
features of the recent heat conduction model. In the domain of influence, we observe that the nature
of variations for some field variables at any time in the region near the boundary (from r = 1 to r
= 1.5 ) that is the region near the source of thermoelastic disturbance is different as compared to
the variation at a distance far away from the boundary. The location of finite jumps at the elastic
wave front is indentified in the region for from r = 1 tor = 1.5. We observe different nature in
the solutons for three different problems. Some important facts under various cases of prescribed
boundary conditions arising out from our investigation are highlighted as follows:

Discussion on results of Problem-1:

Figures 1(a, b, c, d) show the variations in field variables u, θ, σrr and σφφ with respect to radial dis-
tance r for problem-1. From the figures, it is clear that at any particular time there is no prominent
difference in the solutions of the field variables under three models in the problem when boundary
is subjected to a ramp-type heating. This implies that there is not much effect of delay parameter,
τ for the distributions of the field variables and the recent model predicts similar results like the
Green-Naghdi model of thermoelasticity of type-III. However it is noted that under each model, the
region of influence for temperature and stress fields is much larger and it increases significantly
with the increase of time as compared to the region of influence of displacement. Displacement
distribution shows a local maximum and both the stress fields show existence of local minima.

Discussion on results of Problem-2:

Figures 2(a, b, c, d) display the distributions of the field variables under three models for the case of
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Figure 1(b): Variation of θ vs. r for different value of t under problem 1

Figure 1(c): Variation of σrr vs. r for different value of t under problem 1

problem-2, i.e., when the boundary of the cavity is subjected to a unit step increase of temperature
(thermal shock). Figure 2(a) displays that for this case, delay time parameter has not much effect on
displacement at any instant of time and all models predict almost similar results for displacement.
The region of influence is also very less. However, we find from figures 2(b, c, d) that temperature
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Figure 1(d): Variation of σφφ vs. r for different value of t under problem 1

and stress fields show prominent differences in the results under different models and there is a
significant role of the delay time parameter, τ . The disagreement in predictions of different models
is more prominent beyond r > 1.5. Figure 2(b) shows that temperature, θ increases with increase
of time t. Further, New model-I shows the highest value and GN-III predicts the lowest value
for temperature at a fixed time, i.e., τ has an increasing effect on temperature, θ. Figures 2(c, d)
indicate that as time increases, the stresses σrr and σφφ show oscillatory nature near the boundary
of the cavity. There exist a local maximum and a local minimum for redial stress as well as for
circumferential stress in the region from r = 1 to r = 1.5. σrr and σφφ show highest values in the
context of GN-III model and the lowest value under New model-I at a fixed time implying that
there is a decreasing effect of τ on σrr and σφφ. From figures 2(a, b, c, d), it is observed that the
effects of delay time parameter, τ on the field variables for problem-2 is significant for temperature
and stress fields. However, the effect decreases with the increase of time, although the region of
influence for each variable increases with time.

Discussion on results of Problem-3:

Figures 3(a, b, c, d) reveal that for problem-3 when the boundary of the cavity is subjected to a
normal load, there is no prominent effect of delay parameter on u, σrr nd σφφ. However, it affects
the temperature, θ very prominently and the region of influence is much larger for temperature
field as compared to displacement and stress fields. Like the cases of problem-I and problem 2, the
region of influence for each field increases with respect to time t for problem 3 too. Further more,
figure 3(b) shows that at lower time, the GN-III model predicts the highest value and New model-I
shows the lowest value for temperature θ. However, at higher time, the result is reverse i.e., GN-III
model predicts the lowest value and New model-I predicts the highest value for θ. Locations of
finite jumps at elastic wave front are identified for temperature and stress fields.
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Figure 1. Figure 2(a): Variation of u vs. r for different value of t under problem 2

Figure 2(b): Variation of θ vs. r for different value of t under problem 2

8. Conclusion

In the present paper, we have investigated the thermoelastic interactions in an unbounded elastic
medium with a spherical cavity under the very recent heat conduction model with single delay term
introduced by Quintanilla (2011). This model is an alternative formulation of the three-phase-
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Figure 2(c): Variation of σrr vs. r for different value of t under problem 2

Figure 2(d): Variation of σφφ vs. r for different value of t under problem 2

lag model. We have studied the thermoelastic interactions in an isotropic elastic medium with a
spherical cavity subjected to three types of thermal and mechanical loads named as problem-1,
problem-2, and problem-3 in the contexts of two versions of this New model. We find analytical as
well as numerical solutions for the distributions of displacement, temperature and stresses with the
help of the integral transform technique. We also compare numerical results with the corresponding
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Figure 3(a): Variation of u vs. r for different value of t under problem 3

Figure 3(b): Variation of θ vs. r for different value of t under problem 3

results of Green-Naghdi thermoelasticity theory of type-III. We observed following significant
facts while analyzing the numerical and analytical results:

(1) In the case of problem-1, when the boundary of the cavity is subjected to a ramp type heating,
we observe that elastic waves are propagating with finite speed. However, in the context of New
model-I, the elastic wave propagates without any attenuation and under New model-II, the elastic
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Figure 3(c): Variation of σrr vs. r for different value of t under problem 3

Figure 3(d): Variation of σφφ vs. r for different value of t under problem 3

wave decays exponentially. In this problem, the speed of elastic waves do not depend on the delay
parameter as well as on any material parameter. On the other hand, the thermal waves propagate
with infinite speed like classical thermoelasticity theory. In this case, all the fields are continuous
in nature and the results are of similar nature like Green-Naghdi model of type -III.

(2) In problem-2, when the boundary of the cavity is subjected to thermal shock, we observe
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that elastic wave propagates with finite speed but attenuation coefficient of elastic wave for New
model-II is totally dependent on the delay time and other material parameters. We also find that
temperature and stress fields show prominent differences under different models and there is a
significant role of the delay time parameter.

(3) In problem-3, when the boundary of the cavity is subjected to a normal load, there is no promi-
nent effect of delay parameter on u, σrr and σφφ. However, it affects the temperature, θ very promi-
nently.

(4) In problem-2 and problem-3, we also observe that there is a finite discontinuity of radial and
circumferential stress at elastic wave front under for both the models.

(5) A similar nature of variation in the field variables is predicted by different models near the
boundary. This implies that the difference in predictions by different models is not very signifi-
cant near the source of disturbance. However, the difference of models for each plot is prominent
beyond the region r > 1.5. It is more prominent for temperature and stress fields as compared to
displacement. The locations of wave fronts are identified to exist in the region from r = 1 to r =
1.5.
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