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Abstract 
 

This study presents two new numerical techniques for solving time-fractional one-

dimensional cable differential equation (FCE) modeling neuronal dynamics. We have 

introduced new formulations for the approximate-analytical solution of the FCE by using 

modified homotopy perturbation method defined with conformable operator (MHPMC) and 

reduced differential transform method defined with conformable operator (RDTMC), which 

are derived the solutions for linear-nonlinear fractional PDEs. In order to show the 

efficiencies of these methods, we have compared the numerical and exact solutions of 

fractional neuronal dynamics problem. Moreover, we have declared that the proposed models 

are very accurate and illustrative techniques in determining to approximate-analytical 

solutions for the PDEs of fractional order in conformable sense. 
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1.  Introduction 
 

Many scientist pay attention to fractional ordinary/partial differential equations on a day-to-

day basis. During the last few decades, they have especially used the FDEs in modelling and 

describing certain problems such as diffusion processes, biology, chemistry, engineering, 

economic, material sciences and other areas of application. In recent years, some special 
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analytical-approximate solution methods such as Adomian decomposition Evirgen et al. 

(2011), Ilie et al. (2018), Yavuz et al. (2018c), Yavuz et al. (2019), homotopy decomposition 

Atangana et al. (2013), homotopy perturbation transform Singh et al. (2015), local fractional 

Laplace variational iteration Jafari et al. (2016), separation of variables Bishehniasar et al. 

(2017), fractional homotopy analysis transform Kumar et al. (2014), Laplace perturbation 

method Yavuz et al. (2018), optimal homotopy asymptotic method, Ilie et al. (2019), rational 

approximation Özdemir et al. (2017), Turut et al. (2016), Turut et al. (2013), inverse Laplace 

homotopy Yavuz et al. (2018b), improved G'/G-expansion Biazar et al. (2011), mesh-free 

radial basis function interpolation Usta (2017) and other methods Ali et al. (2016), Baskonus 

et al. (2015), Bildik et al. (2006), Çenesiz et al. (2017), Evirgen et al. (2012), Hristov (2016), 

Koca et al. (2016), Kurulay et al. (2013), Morales-Delgado et al. (2016), Özdemir et al. 

(2009), Yavuz et al. (2018a), Yavuz et al. (2016), Yokus et al. (2018) have been used in order 

to obtain solutions of fractional partial differential equations (FPDEs). Khalil et al. (2014) 

defined the conformable derivative operator in 2014 and this operator has been applied to 

many fractional PDEs in different fields. In addition, many authors have been applied this 

derivative operator to their studies such as Abdeljawad et al. (2016), Al-Salti et al. (2017), 

Atangana et al. (2016), Atangana et al. (2016), Avcı et al. (2017), Avci et al. (2017), Caputo 

et al. (2015), Eroğlu et al. (2017), Evirgen (2017), Gómez-Aguilar et al. (2016), Hristov 

(2017), Koca et al. (2017), Koca et al. (2016), Scherer et al. (2011), Yavuz (2018). After that, 

new improvements and applications of the conformable operator have been developed by 

Abdeljawad, (2015), Anderson et al. (2015), Atangana et al. (2015), Avcı et al. (2017), Avci 

et al. (2017), Batarfi et al. (2015), Eroğlu et al. (2017), Yavuz (2018). 

 

The fractional cable equation (FCE) can be given in its general form as Liu et al. (2009): 

 

 
   

   1 2

2

1 12

0 0 02

, ,
, , ,t t

u x t u x t
K u x t f x t

t x

  

 

  
        

   (1) 

 

with the initial condition 

 

    ,0 , 0u x g x x L      (2) 

 

and the boundary conditions 

 

        0, , , , 0 ,u t t u L t t t T        (3) 

 

where 1 20 , 1,    0K   and 
2

0  are constants, and  11

0 ,t u x t


  is the conformable 

derivative operator of order 11 .  In the literature, there are some processes of approximate 

solutions of the FCE. Conformable ADM and conformable VIM Yavuz et al. (2017), implicit 

numerical methods (INM) Liu et al. (2009), the implicit compact difference scheme (ICDS) 

Hu et al. (2012), and explicit numerical methods (ENM) Quintana-Murillo et al. (2011) have 

been applied to the FCE. 

 

In this study, we consider the following non-homogeneous fractional cable equation for the 

special case: 
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  (4) 

 

with the special initial condition 

 

  ,0 0, 0 1u x x     (5) 

 

and the special boundary conditions 

 

    0, 0, 1, 0, 0u t u t t T    ,  (6) 

 

where 

 

   
 

1
2, 2sin 1 .

2

t
f x t x t



 


 
      

 

 

The exact solution of equations (1) - (3) is given by 2( , ) sinu x t t x  Liu et al. (2009). 

 

The main purpose of this study is to redefine MHPM and RDTM for the solution of the FCE 

by using the conformable derivative. We have solved FCE of fractional order by using the 

recommended methods and we have compared the numerical and approximate-analytical 

solutions in terms of figures and tables. Therefore, we have fulfilled the purpose. When 

looking at the results, it is obvious that these methods are very effective and accurate for 

solving fractional cable differential equation (FCDE). 

 

 

2.  Conformable Derivative Operator 
 

Definition 2.1. 

 

Given a function  : 0, ,f R   then, the conformable derivative of f  order  0,1    is 

defined by 

 

  
   1

0
lim ,t

f t t f t
f t
















 
 

, 

 

for all 0t   Khalil et al. (2014). 

 

Theorem 2.2. 

 

Let  0,1   and ,f g  be   differentiable at a point 0.t   Then, Khalil et al. (2014); 

 

i.      t t taf bg a f b g  

         for all , ,a b R  

ii.  k k

t t kt 

  , for all ,k R  
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iii.    0t f t

   for all constant functions   ,f t k  

iv.       ,t t tfg f g g f  

        

v.  
   

2
/ ,

t t

t

g f f g
f g

g

 

  



  
  and 

vi.  If  f t  is differentiable, then     1 .t

d
f t t f t

dt

 

   

Definition 2.3. 

 

Let f  be an n   times differentiable at .t  Then, the conformable derivative of f  order   is 

defined as Anderson et al. (2015), Khalil et al. (2014): 

 

  
        

1 1

0
lim ,t

f t t f t
f t

   









            




 
 

 
 

for all  0, , 1 .t n n    Here,     is the smallest integer that is greater than or equal to 

.  
 

Lemma 2.4. 

 

Let f  be an n  times differentiable at .t  Then, 

 

    t f t t f t
         

  ,
 

 

for all  0, , 1t n n  
 
Khalil et al. (2014). 

 

3.  Modified homotopy perturbation method in conformable sense 
 

In this section, we illustrate the solution strategies that are generated by modified homotopy 

perturbation method in conformable-type derivative (CMHPM). Now we introduce a solution 

algorithm in an effective way for the general linear FPDEs. In this regard, firstly, we consider 

the following linear fractional equation:  

 

     , , , , , 0,t x xxu x t L u u u v x t t

   
                                               

(7) 

 

where L  is a linear operator, v  is a known analytical function and , 1 ,t m m      shows 

the conformable derivative of order .  We also have the following initial condition  

 
     ,0 , 0,1, , 1.
k

ku x f x k m    

 

Considering the mentioned technique above, the following homotopy can be derived as:  
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         1 2, , , , , , 0,1 ,
m m

x xx tm m

u u
v x t p L u u u u x t v x t p

t t





  
      

  
            (8) 

 

where      1 2, , , .v x t v x t v x t    

 

Here, the function  ,v x t  is divided into two parts, namely  1 ,v x t  and  2 ,v x t . The 

suggestion is that only the part  1 ,v x t  is assigned to the zeroth component 0 ,u  whereas the 

remaining part  2 ,v x t  is combined with 1.u   

If we take the homotopy parameter 0,p   then equation (8) expresses the following linear 

equations,  

 1 , .
m

m

u
v x t

t





 

 

In case of 1,p   equation (8) represents the main original differential equation of fractional 

order in equation (7). Therefore, we get the solution of equation (8) by using a power series of 
:p   

2 3

0 1 2 3 .u u pu p u p u                          (9) 

 

Substituting  (9) into (8) and equating the terms with identical powers of ,p  we can obtain a 

series of linear equations of the form 

 

       

       

     

     

0 0
1 0

1 01
0 0 2 1

2 2 1
1 1 2

3 3 2
2 2 3

: , , ,0 ,

: , , ,0 0,

: , ,0 0,

: , ,0 0,
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m m
k
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m m
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u
p v x t u x f x

t

uu
p L u u v x t u x

t t

u u
p L u u u x

t t

u u
p L u u u x

t t














 




    

 

 
   

 

 
   

 

 

 

At the end of the solution steps, we approximate the solution as:  

 

   
0

, , .n

n

u x t u x t





 

 

4.  Reduced differential transform method in conformable sense 
 

Now we need some basic definitions and properties of RDTM with conformable-type 

derivation. Throughout the study, we represent the original function with the lowercase 

 ,u x t  and the fractional reduced differential transformed function with the uppercase 

 hU x  in conformable sense.  
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Definition 4.1. 

 

We consider the analytic and differentiated continuously function  ,u x t  with respect to time 

t  and space variable .x  Then, the fractional reduced differential transformed function of 

 ,u x t  is defined as Acan et al. (2017) 

 

 
0

( )1
( ) ,

!

h

h th t t
U x u

h









  
 

 
 

where  , 0 1    is the fractional parameter of the conformable-type operator,  

 and the t  dimensional spectrum function ( )hU x
 shows the CFRD transformed function.  

 

Definition 4.2. 

 

 Let  hU x  be the transformed function of   , .u x t  Then, the inverse transformed function of 

 hU x  is defined as 

 

      
0

( )

0 0

0 0

1
,

!

h hh

h th t t
h h

u x t U x t t u t t
h

 




 

 
 

        .

 
 

In addition, transformed functions of the initial conditions are defined as 

 

 
 

where n  is the order of conformable PDE. 

 

Now we consider the following general linear fractional differential equation: 

 

      , , , ,tu x t Lu x t v x t

     (10) 

 

with the initial condition 

 

    ,0 .u x f x   (11) 

 

According to the CRDTM, we can construct the following result: 

 

       11 .h h hh U x LU x V x       (12) 

   
 

1
, , ,

0, 1, 2, , 1 ,h !
0

0, ,

h

u x t if h n
h

U x for hth t t

if h
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By using the initial condition  (11), we get 

 

0 ( ) ( ).U x f x                     (13) 

 

Substituting (13) into (12) and by straightforward iterative calculations, we have the 

following ( )hU x
 functions for values 0,1,2,3, , .h n  Then, the inverse transformed 

function of the  
0

( )
n

h h
U x


  gives the approximate solution as: 

0

( , ) ( ) ,h

n h

h

u x t U x t 




  

 

where n  shows the order of approximate solution. Moreover, the exact solution of equation 

(10) is given by: 

 

( , ) lim ( , ).n
n

u x t u x t


  

 

 

 

The main transformations of CFRDT that are used extensively and that can be derived from 

Definition 4.1 and Definition 4.2 are listed in Table 1. 

 

Table 1. Transformations of some original functions. 

Original Function Transformed Function 

 ,u x t     
0

( )1

!

h

h th t t
U x u

h









  
   

     , , ,u x t av x t bw x t        h h hU x aV x bW x     

     , , ,u x t v x t w x t       
0

h

h r h r

r

U x V x W x  





  

   , ,tu x t v x t

        11h hU x h V x     

   0,
nmu x t x t t    

1, ,

,

0, .

m

h

n
if h

n n
U x x h h

n
if h

 
 

 




   

       
     



 

 

 

5. Solution of the fractional cable equation 
 

In this section of the study, we apply the suggested methods in Section 3 and Section 4 to the 

fractional cable equation (4) with its initial condition (5) and its boundary conditions (6), 

which is one of the most important equations in the biology literature in modeling of neuronal 

dynamics. 

 

5.1. Solution by MHPM defined with the conformable-type derivation 
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Firstly, we solve the fractional cable equation by using CMHPM. 

 

Let 1

tL t
t t


 

 





 
   

 
 be a linear operator and  1

1

0

1
.

t

L d 







   be inverse of the 

linear operator. Then if we apply the operator 
1

t



  to both sides of equation (4), we get  

 

  
 

   
2

1

2

,
, , , .t t t

u x t
u x t u x t f x t

x

   

  


   


  (14) 

 

Now, applying the operator t



  to both sides of equation (14), we obtain 

        
 

   
2

1

2

,
, , , .t t

u x t
u x t u x t f x t

x

  

 


    


      (15) 

 

Considering the initial condition (5) and according to the homotopy (8) and where  1 , 0v x t  , 

   2 , ,v x t v x t  are taken, we can write the iterations of the perturbation series as:  

 

 

   

 

0
0

2
10 01

0 0 12

2

2 1 1
1 1 22

0, ,0 0,

, , ,0 0,

, ,0 0,

t t

t

u
u x

t

u uu
u u f x t u x

t t x

u u u
u u u x

t t x

 





 




 



 
      

  

  
    

  

         (16) 

 

By solving the equations in (16) according to 0 1 2, ,u u u  and 3,u  the first several components 

of the CMHPM solution for equation (4), are given by: 

 

 

   
 

0

3 3
2

1

, 0,

, 2sin 1 ,
3 3 2

u x t

t t
u x t x



 
 





 
       

 

   
 

 
  

 
 

 
   

3 3
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2

4 4
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2
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3 3 2

2 1 sin 1
4 3 4 3 2
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5 2 5
2 2

5 2 5
2 2

2 1 sin 1
5 2 4 2 5 4 2

2 1 sin 1
5 2 3 3 5 2
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t t
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5 3 5 2
22sin 1 ,

5 3 5 2 2

t t
x

 

 
  

  
           

 

continuing in this way, the remaining steps of the homotopy can be obtained. Then the 

numerical solution of equation (4) is presented by  

 

         

 
 

 
  

 
 

 
   

 
   

 
 

0 1 2 3

2
2 4 2 43 3

2

2 3
2 4 2 5 2 54 2
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3 1 3 13 3
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t tt

  

 

  

      

 

    

  

 

  
  

       

 
   
      


 

 

Then, the exact solution of the equation (4) with its initial condition (5) and its boundary 

conditions (6) for special case of 1,   is obtained with CMHPM as   2, sin .u x t t x  

 

5.2. Solution by RDTM defined with the conformable-type derivation 

 

Secondly, we apply the proposed method to the fractional cable equation. Considering the 

equation with the conformable operator, we get 
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2

1

2

,
, , , .t

u x t
u x t u x t t f x t

x

 




   

  
 

By taking the transformed function in Definition 4.1, it can be obtained that 

 

   
 

   
2

1

1 2
1 , ,

h

h h

U x
h U x U x t f x t
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2

2

1 2

2

2
1 2sin 1 ,

2

h

h h

h
U x

h U x U x x h
x



 


 

   
 



  
              

    
 
 

 

 

where the t  dimensional spectrum function  hU x  is the conformable reduced differential 

transform function. From the initial condition (5) we have  0 0.U x   Moreover, we obtain 

the following  hU x  functions as follows:  

 

 

 

 
   

 

 
 

  

 
   

1

2

2 2

3

2 2
2 2

4

0,

sin ,

1 2 1
sin sin ,

2 3

1 2 1
sin sin ,

2 2 2 2 2 3

U x

U x x

U x x x

U x x x











 
 

 

 
 

   





 
  

  

 
 

    

 

 

Then, the inverse transformation of the set of values   
0

n

h h
U x


 allows the following 

approximate solution  

 

   

   
 

0

2 2

2 2 2

,

1 2 1
sin sin sin .

2 3

h

n h

h

u x t U x t

t x t x t x

 

 
 

  
 





 



 
   

  


 

 

Finally, for 1  , the exact solution is given by 2( , ) sin .u x t t x  

 

In Figure 1, we demonstrate the solution functions of the fractional cable equation according 

to the mentioned methods and the comparison with the exact solution. In Figure 2, we 

represent the comparison of the solutions obtained with conformable reduced differential 

transform method and conformable modified homotopy perturbation method. In Table 1, we 

show the  ,u x t  solutions for various values of   and .x  Figure 1, Figure 2 and Table 1 say 

that the CRDTM gives better results than the CMHPM in the solution of the fractional cable 

equation. 
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Figure 1. CMHPM, CRDTM and exact solutions for values      , 0,1 0,1x t  

 
 

 

 
Figure 2. Comparison of the solutions obtained with CMHPM and CRDTM 

 

 

Table 2.  ,u x t  solutions for various values of   and x  

 0.30   0.70   0.95   1   

x  CMHPM CRDTM CMHPM CRDTM CMHPM CRDTM CMHPM CRDTM Exact 

0.1 0.021064 0.125279 0.014491 0.016421 0.013502 0.012678 0.014477 0.012360 0.012360 

0.2 0.040066 0.238295 0.027564 0.031236 0.025684 0.024115 0.027537 0.023511 0.023511 

0.3 0.055147 0.327986 0.037938 0.042992 0.035351 0.033192 0.037901 0.032360 0.032360 

0.4 0.064829 0.385570 0.044599 0.050541 0.041557 0.039020 0.044556 0.038042 0.038042 

0.5 0.068165 0.405413 0.046895 0.053142 0.043696 0.041028 0.046849 0.040000 0.040000 

0.6 0.064829 0.385570 0.044599 0.050541 0.041557 0.039020 0.044556 0.038042 0.038042 

0.7 0.055147 0.327986 0.037938 0.042992 0.035351 0.033192 0.037901 0.032360 0.032360 

0.8 0.040066 0.238295 0.027564 0.031236 0.025684 0.024115 0.027537 0.023511 0.023511 

0.9 0.021064 0.125279 0.014491 0.016421 0.013502 0.012678 0.014477 0.012360 0.012360 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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6.   Conclusion 
 

This study deals with the solutions of the time-fractional cable equation by using two 

approximate-analytical solution methods based on the conformable-type derivative operator. 

In the present work, firstly, we have redefined MHPM and RDTM by using conformable 

derivative operator. This derivative definition is a convenient definition in the exact solution 

procedure of fractional differential equations. Conformable derivatives are easier to apply to 

fractional differential equations, as its derivative definition does not include any integral 

terms. Then we have demonstrated the efficiencies and accuracies of the recommended 

methods by applying them to the fractional cable equation which is a special equation models 

the neuronal dynamics. The successful applications of the suggested methods prove that these 

solution methods are in complete settlement with the corresponding exact solutions. In 

conclusion, a table and some figures which compare the numerical and analytical solutions 

are provided to show that the CRDTM and CMHPM are the powerful and efficient techniques 

in finding the numerical solution of the conformable time fractional cable equation. 

Especially, it is clear that the CRDTM gives better results than the CMHPM in the solution of 

the fractional cable equation. 
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