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Abstract 
 

This paper is concerned with batch arrival queue with an additional second optional service to a 

batch of customers with dissimilar service rate where the idea of restricted admissibility of arriving 

batch of customers is also introduced. The server may take two different vacations (i) Emergency 

vacation-during service the server may go for vacation to an emergency call and after completion 

of the vacation, the server continues the remaining service to a batch of customers. (ii) Bernoulli 

vacation-after completion of first essential or second optional service, the server may take a 

vacation or may remain in the system to serve the next unit, if any. While the server is functioning 

with first essential or second optional service, it may break off for a short period of time. As a 

result of breakdown, a batch of customers, either in first essential or second optional service is 

interrupted. The service channel will be sent to repair process immediately. The repair process 

presumed to be general distribution. Here, we assumed that the customers just being served before 

server breakdown wait for the server to complete its remaining service after the completion of the 

repair process. We derived the queue size distribution at a random epoch and at a departure epoch 

under the steady state condition. Moreover, various system performance measures, the mean 

queue size and the average waiting time in the queue have been obtained explicitly. Some 

particular cases and special cases are determined. A numerical result is also introduced.  
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1. Introduction 
 
We consider a queueing system in which the service is rendered in bulk, by using the 

supplementary variable technique. Initially bulk service queues were originated with Bailey 

(1954). Neuts (1967) studied the “General Bulk Service Rule” in which service starts only when a 

specified number of customers in the queue is available. Holman et al. (1981) have studied some 

general bulk service results by using the supplementary variable technique. Briere and Chaudhry 

(1989) have analyzed single server bulk service queues in computational aspects. Ho woo Lee et 

al. (1992) have discussed the bulk service queue with single vacation and derived the queue size 

distribution at a departure epoch. Recently, Jeyakumar and Senthilnathan (2016) have contributed 

the work on bulk service queue with multiple working vacations. Haghighi and Mishev (2016) 

discussed the stepwise explicit solution for the joint distribution of queue length of a MAP 

single-server service queueing system with splitting and varying batch size delayed-feedback. 

 

Queueing system of XM /G(a,b)/1 type in which the server may provide a second optional 

service. Such queueing models occur in day-to-day life situations, for example, in a machining 

process all the arriving customers require the first essential service and only some batch of 

customers may require the second optional service. Medhi (2002) has considered Poisson arrival 

queue with a second optional channel. Lotfi and Ke (2008) have focused on bulk quorum queue 

with a choice of service and optional re-service. Choudhury and Lotfi  (2009) investigated an 

M/G/1 queue with an additional second phase of service immediately after the completion of the 

first essential service and both the service are assumed to be a general distribution. Ayyappan and 

Shyamala (2013) discussed an XM /G/1 queue with second optional service, Bernoulli schedule 

server vacation and random breakdowns. Madan and Choudhury (2004) discussed a Bernoulli 

vacation schedule under RA-policy. Choudhury and Madan (2007) contributed the work on the 

Bernoulli vacation queue with a random setup time under the restricted admissibility policy. 

Madan (2018) discussed the server vacations in a single server queue providing two types of first 

essential service followed by two types of additional optional service. Dong-Yuh Yang and 

Yi-Hsuan Chen (2018) have contributed the work on Computation and optimization of a working 

breakdown queue with the second optional service. They used the matrix-geometric method to 

compute the stationary probability distribution of the system size and various system performance 

measures. Pavai Madheswari and Suganthi (2017) examined an M/G/1 retrial queue with second 

optional service and unreliable server under single exhaustive vacation. Aliakbar Montazer 

Haghighi and Dimitar Mishev (2013) examined the stochastic three-stage hiring model as a 

tandem queueing process with bulk arrivals and Erlang Phase-Type Selection 

 /1//1/ ][),(][ ErMMM XKkX . 

 

The classical vacation scheme has been investigated by many researchers. The server may take 

vacation makes the queueing model more natural and flexible in studying real-life situations. Most 

of the papers the server functioning under any one of the vacation policies: single vacation, 

multiple vacation, and so on. Ke et al. (2010) discussed some unreliable server queue with 

different vacation policies. Bagyam and Chandrika (2010) have studied a single service retrial 

queueing system with emergency vacation. Choudhury and Deka (2012,2015) have studied the 

concept of two phases of service under Bernoulli vacation. Rajadurai et al. (2016) analyzed single 

2
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service with working vacations and vacation interruption under Bernoulli schedule. 

 

The service interruptions are happening in many real life situations. In a practical system, we 

frequently faced the case where the service station may be interrupted before its completion. 

Fiems, Maetens and Bruneel (2008) have discussed queueing systems with different types of 

server interruptions. Singh et al. (2016) examined an XM /G/1 unreliable retrial queue with option 

of additional service and Bernoulli vacation. Choudhury and Ke (2012) examined an unreliable 

single service under Bernoulli vacation schedule. Choudhury and Deka (2016) investigated 

unreliable server queue with two phases of service and Bernoulli vacation under multiple vacation 

policy. Jiang and Xin (2018)  have derived the steady state distribution by matrix-analytic method 

and spectral expansion method respectively, and also various performance measures and sojourn 

time distribution of an arbitrary customer. 

 

The rest of the paper is structured as follows. In Section 2, we give the system description of the 

model. In Section 3 deals with a mathematical description of the queueing model. In Section 4 

proposed the definitions, necessary equations and also obtain the transient solution of our model. 

In Section 5, we finding the Probability Generating Function of the stationary queue length at the 

random epoch and the corresponding stability condition has been obtained in Section 6. Also, we 

present the performance measures in the various states of the system, the mean queue size and the 

average waiting time in the queue are briefly in Section 7. In Section 8, we find the PGF of the 

stationary queue length at a departure epoch. Some particular cases are given in Section 9. Some 

special cases are discussed in Section 10. Computational results and graphs are presented in 

Section 11. At last, the conclusion and further work have been drawn in Section 12. 

 

2. Model Description 
 
In this paper, the authors‟ best of our knowledge, no works have been found in bulk service 

queueing systems with service interruptions, second optional service, Bernoulli schedule vacation 

and emergency vacation, restricted admissibility policy. Hence, to fill up to this gap, the current 

paper is framed in a very unique procedure in the sense that the concept of bulk service and second 

optional service is incorporated along with unreliable server, two different types of vacation 

policies and restricted admissibility policy. The problem is equipped with batch arrival and it is 

assumed that not all batches are allowed to join the system at all times. In bulk service the server 

starts service only if a specified minimum say „a‟ of customers have accumulated in the queue and 

he does not take more than „b‟ customers for service in one batch. Here, we consider two different 

vacation mechanisms. After the completion of First Essential Service (FES) or the Second 

Optional Service (SOS) the server may take a vacation with probability   or stay in the system 

with complementary probability )(1   is termed as the Bernoulli vacation. While the server is 

functioning with the first or second service the server may get an emergency call with service 

interruption called the emergency vacation. Similarly, when the server is functioning with the first 

or second service, the service gets interrupted and sent to repair process immediately. After the 

completion of emergency vacation or repair process the server being served before service 

interruption waits for the remaining service to complete the service.  
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3.  Mathematical description of the queueing model 
 
To describe the required queueing model, we assume the following. 

 

The arrival process:  
 

Customers arrive at the system in batches of variable size in a compound Poisson process and they 

are provided bulk service on a first come - first served basis. Let dtci   ( 1i ) be the first order 

probability that a batch of i  customers arrive at the system during a short interval of time 

],,( dttt   where 10  ic  and 1=
1=

i

i

c


 and 0>  is the mean arrival rate of batches. 

 

The service process:  
 

There is a single server providing service to a batch of customers in First Essential Service (FES). 

As soon as the FES is completed, then the batch of customers may leave the system with 

probability )(1   or may get the Second Optional Service (SOS) with probability   

1)(0   .  

 

Bernoulli vacation: After attainment of FES or not opted for SOS, the server may take a Bernoulli 

vacation with probability  , and with probability ( 1 ) it waits for serving the next batch of 

customers.  

 

Emergency vacation:  
 

The server may take an emergency vacation when the server is functioning with FES or SOS 

which is exponentially distributed with rates 1  for FES and 2  for SOS.  

 

Breakdown:  
 

While the server is functioning with FES or SOS, it may break down at any time and is assumed to 

occur according to a Poisson stream with mean breakdown rates 1  for the FES and 2  for the 

SOS. 

 

Repair process:  
 

If the service gets interrupted during FES and SOS the server, enter into the repair process of the 

respective service.  

 

Restricted admissibility:  
 

We assume that 1b  be the probability that an arriving batch will be allowed to join the system 

while the server is busy or idle and 2b  be the probability that an arriving batch will be allowed to 

join the system while the server is on vacation or under repair. 

4
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Two types of service time, two different vacation time and repair time follow general distribution. 

In Table 1, we define some notations used for the Cumulative Distribution Function (CDF), the 

probability density functions (pdf), the Laplace Stieltjes Transform for two types of service time, 

two different vacation time, repair time.   

 

Table 1: Some notations for distribution function  

Time CDF   Hazard rate pdf LST 

 

First Essential 

service 

 

)(1 xB  

 

)(1 x  
dxx

v

evvb

)(
1

0
11 )(=)(






 

 

)(*

1 sb  

 

Second Optional 

service 

 

)(2 xB  

 

)(2 x  
dxx

v

evvb

)(
2

0
22 )(=)(






 

 

)(*

2 sb  

 

Bernoulli vacation 

 
)(xV  

 

)(x  dxx

t

ettv

)(

0)(=)(






 

 

)(* sv  

Emergency 

vacation on two 

types of service 

 

)(yGi  

 

)( yi  dyy
i

r

ii errg

)(

0)(=)(






 

 

)(* sg i  

 

Repair under two 

types of service 

 

)(yRi  

 

)(yi  
dyy

i

w

ii ewwr

)(

0)(=)(






 

 

)(* sri  

 

   

4.  Definitions and Equations Governing the Systems 
 
In this section, we first set up the system state equations for its stationary queue size distribution, 

by treating elapsed two types of service time, elapsed two different vacation time and the elapsed 

repair time of the server, for both types of service, as the supplementary variables. Then, we solve 

the equations and derive the PGFs of the stationary queue size distribution. Let N(t) be the queue 

size (including one batch of customers being served, if any) at time t, )(0 tBi  be the elapsed service 

time of the customer for the two types of service at time t, with i = 1, 2 denoting FES and SOS, 

respectively and )(0 tV  be the elapsed vacation time of the server. In addition, let )(0 tGi  be the 

elapsed emergency vacation time of the server for i
th

 type of service during which emergency call 

occurs in the system at time t and )(0 tRi  be the elapsed Emergency vacation time and elapsed 

repair time of the server for i
th

 type of service during which breakdown occurs in the system at time 

t, where sub-index i = 1 (respectively i = 2) denotes FES (respectively SOS). Further, we introduce 

the following random variable. 
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Thus the supplementary variable )(0 tBi , )(0 tV , )(0 tGi
 and )(0 tRi  for i=1, 2 are introduced in 

order to obtain a bivariate Markov process {N(t), Y(t)} and define the following probabilities as:  

 

,10 and 0, for0},=)(,=)({=)(  arttYrtNPdxtQr  
,0 and 00, for },)(1;=)(,=)({=),( 0

11,  nxtdxxtBxtYntNPdxtxP n  
,0 and 00, for },)(2;=)(,=)({=),( 0

22,  nxtdxxtBxtYntNPdxtxP n  
,0 and 00, for },)(3;=)(,=)({=),( 0  nxtdxxtVxtYntNPdxtxVn  

 

 0,0, for },=)(/)(4;=)(,=)({=),,( 0

1

0

11,  yxtxtBdyytGytYntNPdxtyxE n  
                                                          ,0 a n d n

 
 0,0, for },=)(/)(5;=)(,=)({=),,( 0

2

0

22,  yxtxtBdyytGytYntNPdxtyxE n  
                                                          ,0 a n d n

 
 0,0, for },=)(/)(6;=)(,=)({=),,( 0

1

0

11,  yxtxtBdyytRytYntNPdxtyxR n  
                                                          ,0 a n d n

 
 0,0, for },=)(/)(7;=)(,=)({=),,( 0

2

0

22,  yxtxtBdyytRytYntNPdxtyxR n  
                                                          .0 a n d n  
 

The Kolmogorov forward equations to govern the model; where sub index 1,2=i  denotes the  

FES and SOS respectively can be formulated as follows:  

 

),()(1=),())((),(),( ,01,0,0,0 txPbtxPxtxP
t

txP
x

iiiiiii 








  

                          ,)(),,()(),,( ,0
0

,0
0

dyytyxEdyytyxR iiii  


  (1) 

),()(1=),())((),(),( ,1,,, txPbtxPxtxP
t

txP
x

niniiiinini 








  

 + 1, ,)(),,()(),,(),( ,
0

,
0

,

1=

1  


 ndyytyxEdyytyxRtxPcb iniiniknik

n

k

  (2) 
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),,()(1=),())((),(),( 02000 txVbtxVxtxV
t

txV
x










  (3) 

1, ),,(),()(1=),())((),(),(
1=

22 








 ntxVcbtxVbtxVxtxV

t
txV

x
knk

n

k

nnnn   (4) 

),,,()(1=),,())((),,(),,( ,02,0,0,0 tyxEbtyxEytyxE
t

tyxE
y

iiiii 








  (5) 
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t

tyxE
y

niniinini 








  

                                           1, ),,,(,
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n

k

  (6) 

),,,()(1=),,())((),,(),,( ,02,0,0,0 tyxRbtyxRytyxR
t

tyxR
y

iiiii 








  (7) 

),,()(1=),,())((),,(),,( ,2,,, tyxRbtyxRytyxR
t
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y
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







  

                                             1, ),,,(,

1=

2   ntyxRcb knik

n

k

  (8) 

dxxtxPtQbtQtQ
dt

d
)(),())(1(1)()(1)(=)( 11,0

0
0100  



  

                            ,)(),()(),()(1 0
0

22,0
0

dxxtxVdxxtxP  


  (9) 

dxxtxPtQcbtQbtQtQ
dt

d
rkrk

r

k

rrr )(),())(1(1)()()(1)(=)( 11,
0

1=

11  


 

 

               1.1 ,)(),()(),()(1
0

22,
0

 


ardxxtxVdxxtxP rr   (10) 

 

To solve the equations (1) to (10), the following boundary conditions at 0=x  and 0=y  are 

considered,  

 

dxxtxPtQcbtP r

b
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kkr

a

k

b
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0

=

1
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
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k
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


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,1,2=0, ),,(=),0,( ,, intxPtxE niini   (15) 

1,2.=0, ),,(=),0,( ,, intxPtxR niini   (16) 

 

Further, it is assume that initially there are no adequate number of customers in the system and the 

server is idle. So the initial conditions are  

 

1,1   for  0=(0)1,=(0)0  arQQ r  

1,2= 0,  for  0=(0)=(0)=(0)=(0) ,,, inVERP nninini  . (17) 

 

To solve the above equations, let us introduce the following probability generating functions for 

1,2=i  and 1|| z : 
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(18) 

 
 Define the Laplace transform of a function )(tf  as  
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 Taking the Laplace transform of equations (1) to (16) and using (17), we get  
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By multiplying equations (21), (23), (25) and (27) by nz  and then taking summation over all 

possible values of n , adding to the equations (20), (22), (24) and (26) respectively, and using the 

generating functions defined in (18), we get  
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Multiplying both sides of equation (31) by nz  summing over n  from 0 to  , and use the 

equation (30), we get  
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 Similarly from equations (32), (33) (34) and (35), we get  
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 Solving the partial differential equations (36) to (39), it follows that  
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 Integrating equation (47) and (48) from 0  to   with respect to y, we get for i=1,2  

 

,
),(

)),((1
),,0,(=),,,(=),,(

0







 



sz

szG
szxEdyszyxEszxE i

iii



 (49) 

.
),(

)),((1
),,0,(=),,,(=),,(

0







 



sz

szR
szxRdyszyxRszxR i

iii



 (50) 

 

Now multiplying both sides of equations (45)  to (48)  by )(xi , )(x , )(yi , and )(yi  

respectively, and integrating, we obtain  
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Again integrating equations (45), (46), (49) and (50) by parts with respect to x and using the 

equation (41), (42), (43), (44) and (45), we get  
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 Inserting the equations (51), (52) into the equation (40), we get  
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(62)  

))((1=),( 2 zCbssz  , 

1,2=))),,(((1))),(((1))((1=),( 1 iszEszRzCbssz iiiii   ,

)),(()(1))(1(1=),(1 szVszK   , 

)),(()(1=),(2 szVszK   . 

 

Substituting the equation (62) into the equations (55), (56), (57), (58), (59), (60), and (61) and 

taking the inverse laplace transform of these equations, we get the probability generating fuctions 

of various states of the system are determined under transient state.  

 

5.  The steady state results 
 
In this section, we shall derive the steady state probability distribution for our queueing model. By 
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applying the well-known Tauberian property,  

 

).(lim=)(lim
0

tfsfs
ts 

 (63) 

 

The PGF of the server‟s state queue size distribution under the steady state conditions are given by  
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5.1.  Queue size distribution at a random epoch 

 
By adding (64), (65), (66), (67), (68), (69) and (70) with idle term, we get the PGF of the queue 

size distribution at a random epoch. 
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dxxxPdxxxPP rrr )()()(1)()())(1(1= 22,
0

11,
0

 


 , 
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

)()(=
0

 . 

  

 

6 .  Stability condition 
 
The probability generating function has to satisfy P(1)=1. In order to satisfy this condition, apply 

L‟Hospital‟s rules and equating the expression to 1,we get  
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))]()()()(([= 22112 BETBETVEbIEb   . 

 

Next, we calculate the unknown probabilities, rW ,  10,1,2,...,= br  and then these are related 

to the idle-server probabilities, rQ ,  10,1,2,...,= ar , then the left hand side of the above 

expression must be positive. Thus P(1)=1 is satisfied if 

 

  0]))(())(()())(()([ 22112111  zBzBzKzBzKzb  .  

 

1<    then     
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
b

BETBETVEbIE 
 (74) 

 

is the condition to be satisfied for the existence of steady state for the model under consideration. 

Equation (72) has b+a unknowns. Using the following result, we can express rW  in terms of rQ  

in such a way that numerator have only „b‟ constants. Now equation (72) gives the PGF of the 

number of customers involving „b‟ unknowns. By Rouche‟s theorem, the expression 

 ]))(())(()())(()([ 22112111 zBzBzKzBzKzb    has 1b  zeros inside and one on the unit 

circle 1|=| z . Since P(z) is analytic within and on the unit circle, the numerator must vanish at 

these points, which gives „b‟ equations in „b‟ unknowns. These equations can be solved by any 

suitable numerical technique. 

 

6.1. Result: Let rW  can be expressed in terms of rQ  as  

 

k

ra

k

r

a

r

r

a

r

r

a

r

cQbQbW 



1

1=

1

0=

1

1

0=

1

1
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, 

 

 where, rW  is the probabilities of the „r‟ customers in the queue during idle period and 1X , 1T , 

2T , )(IE  are given in Section 7. 

 

7.  Performance measures 
 
In this section, we derive some system state probabilities, the mean number of customers in the 

queue ( qL ) and the average time a customer spends in the queue ( qW ). From (74) we have 1< , 

which is stability condition.  

 

7.1.  System state probabilities 

 
From equation (64) to (70), by setting 1z  and applying L‟Hospital‟s rule whenever necessary, 

we get the following results   
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 • Let (1)qP  be the steady state probability that the server is busy  
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 • Let qV (1) be the steady state probability that the server is on Bernoulli vacation. 
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 • Let qE (1) be the steady state probability that the server is on Emergency vacation.  
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 • Let qR (1) be the steady state probability that the server is under repair  

 

  
.

))]()()()(([

)()()()((1)(1)=(1)

22112

222111121

BETBETVEbIEb

REBEREBEXRRRq











 

   

7.2.  Mean queue size 

   

The mean number of customers in the queue ( qL ) under steady state condition is obtained by   

  differentiating (72) with respect to z and evaluating at 1=z .  

  

  )(lim=
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d
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where  
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The average time a customer spends in the queue ( qW ) are found by using the Little‟s formula, 

)(
=

IE

L
W

q

q


. 

 

8 .  Queue size distribution at a departure epoch 
 
In this section, we derive the probability generating function of the queue size distribution at a 

departure epoch of this model is given in the proof of Theorem 1.  

 

 

Theorem 8.1. 

 

Under the steady-state condition, the PGF of the queue size distribution at a departure epoch of this 

model is given by  
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 (75)  

Proof:  
 

Following the argument of PASTA (See Wolf (1982)). We state that a departing customer will see 

„j‟ customer in the queue just after a departure if and only if there were „j‟ customer in the queue 

just before the departure. 

 

Let 
j

j

j

zpzP 

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=)(  be the probability that there are „j‟ customers in the queue at a departure 

epoch, we may write 
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where 0K  is the normalizing constant. 

 

By multiplying both sides of the equation (76) by jz  summation over j from 0  to  , and use 

the equations (51) and (52) (after applying the Tauberian property), we get on simplification  
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 From 1=(1)P , we get              ,
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Inserting equation (78) into (77) we get the PGF of the queue size distribution at a departure epoch 

of this model. 

 

Next the mean queue size of this model is given in corollary 1. 

 

Corollary 8.2.  

 

Under the stability conditions, the mean number of customers in the queue at a departure epoch 

dL  is given by  
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Proof:  
 

The result follows directly by differentiating  (75) with respect to z and then taking limit 1z  

by using the L‟Hospital‟s rule, where 2121 ,,, TTXX , )(IE , 1))(( IIE  are given in section 7. 

 

9. Particular cases 
 
Case 1:  
 

If single arrival, single service, no second optional service, no emergency vacation, no restricted 

admissibility is considered, then equation (72) reduces to  
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These expressions are exactly matched with the results by Choudhury and Deka (2012) by taking 

single phase of service. 
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Case 2:  
 

If single arrival, single service, no two types of vacation, no restricted admissibility is considered, 

then equation (72), (77) and (79) reduces to 
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These expressions agree with the results by Gautam Choudhury and Lotfi Tadj (2009) by without 

taking delay time to repair.  

 

10.  Special cases 
 
Case 1:  
 

Consider that the service time distribution of both services are follows exponential with 

parameters 1 , 2  then the LST of 1B , 2B  are given by 
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This is, the PGF of the stationary queue size distribution of )/1,(/][ baMM x  queue with unreliable 

server, second optional service, two different vacations policy, restricted admissibility policy. 

 

Case 2:  
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1 , 2  then the LST of 1B , 2B  are given by 

 

i

i

i

i
i BE

s
sB



 1
=)(     and   

2

2
=)(

2













.

 

.   
)(

=))(( 










 z
zB

ii

i

ii





 

 

1,2=))),(((1)))(((1))((1=)(   where 1 izEzRzCbz iiiii   .

   

     

22

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 2, Art. 3

https://digitalcommons.pvamu.edu/aam/vol13/iss2/3



622 G. Ayyappan and R. Supraja 

 

 

.

)()()()])(2))(2())((2

))(2(())((2))([(2

)()()()()])(2))(2())((2

))(2(())((2))([(2

)))]((](1)(2))([(2))(2(

)))((](1)(2))([(2))()(2(

)))((](1)(2))([(2))(2(

)))((](1)(2))([(2))()(2(

)))(((1)(2))(2()(

)))(((1))((2))(2()()(1

])(2))([(2))(2()())((2

])(2))()[(2()([])(

)())(([

=)(

21

2

2

2

12

2

22

2

11

2

22

2

11

21

2

2

2

12

2

22

2

11

2

22

2

11

2

2

2

2

22

2

112

1

2

1

2

11

2

2221

2

2

2

2

22

2

112

1

2

1

2

11

2

2221

2

2

2

121

2

22

2

121

2

2

2

22

2

11

2

22

2

1

2

112

1

0=

1

1=

1

0=

1

1

0=

1

zzzzKz

zKzzz

zQzzzzKz

zKzzz

zRzz

zRzzz

zEzz

zEzzz

zVzz

zVzzz

zzzz

zzzWzz

zzQcbzzzCQb

zP
b

b

r

rb
b

r

rnb

rn

rb

n

a

r

br

r

a

r













































































































 

b

TT
VEbIE )])()(([

=    where 2

2

1

1
2












,  

 

This is the PGF of the stationary queue size distribution of )/1,(/ 2

][ baEM x  queue with unreliable 

server, second optional service, two different vacations policy, restricted admissibility policy.  

 

11.  Numerical results 
 
In this section, we present some numerical results using MATLAB in order to illustrate the effect 

of various parameters in the system performance measures of our system.   

 

 1.  Batch size distribution of the arrival is geometric with mean 2.  

 2.  Service time of essential and optional service follows Erlang-2 distribution.  

 3.  Bernoulli vacation time, emergency vacation time, both repair time follow exponential    

     distribution.  

 

Let us fix the parameters 2=a , 5=b , 0.4= , 0.3=1b , 0.4=2b , 0.3= , 1= , 9=1 , 

14=2 , 8= , 1=1 , 1.05=2 , 1.15=1 , 1.20=2 , 1.16=1 , 1.18=2 , 1.20=1 , 

1.22=2 , such that the stability condition is satisfied.  

Tables 2 to 4 gives computed values of the utilization factor(  ), the mean queue size( qL ), mean 

waiting time in the queue( qW ) for our queueing model. 
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Table 2 clearly shows that the arrival rate ( ) increases, the utilization factor (  ), the mean queue 

size ( qL ) and the mean waiting time in the queue ( qW ) are also increases.   

Table  2: The effect of arrival rate ( ) on  , qL , qW    

         qL    qW   

1.00 0.0629 4.4458 2.2229 

1.25 0.0786 5.5684 2.2274 

1.50 0.0943 6.8848 2.2949 

1.75 0.1100 8.4115 2.4033 

2.00 0.1257 10.1666 2.5416 

2.25 0.1414 12.1705 2.7045 

2.50 0.1572 14.4457 2.8891 

2.75 0.1729 17.0175 3.0941 

3.00 0.1886 19.9429 3.3238 

 

Table 3 shows that the first essential service rate ( 1 ) increases , the utilization factor (  ), the 

mean queue size ( qL ) and the mean waiting time in the queue ( qW ) are decreases.  

 

Table 3:  The effect of service rate ( 1 ) on  , qL , qW   

 1   
     qL    qW   

3 0.1548 12.0056 6.0028 

4 0.1203 8.6014 4.3007 

5 0.0996 6.9081 3.4541 

6 0.0859 5.9068 2.9534 

7 0.0760 5.2499 2.6250 

8 0.0686 4.7878 2.3939 

9 0.0629 4.4458 2.2229 

10 0.0583 4.1830 2.0915 

11 0.0545 3.9749 1.9875 

12 0.0514 3.8063 1.9031 

 

Table 4 shows that the second optional service rate ( 2 ) increases, the utilization factor (  ), the 

mean queue size ( qL ) and the mean waiting time in the queue ( qW ) are decreases. 

 

Table  4:  The effect of service rate ( 2 ) on  , qL , qW   

2   
     qL    qW   

2 0.1047 8.7618 4.3909 

3 0.0840 6.3195 3.1598 

4 0.0736 5.3537 2.6768 

5 0.0674 4.8505 2.4253 

6 0.0632 4.5458 2.2729 

7 0.0603 4.3429 2.1715 

8 0.0580 4.1987 2.0994 

9 0.0563 4.0912 2.0456 

10 0.0549 4.0081 2.0041 

11 0.0538 3.9421 1.9710 
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In Figure 1 shows that the utilization factor (  ), the average queue length ( qL ) and average 

waiting time in the queue ( qW ) increases for the increasing values of the arrival rate  .  

              
   

Figure 1:  , qL , qW  versus Arrival rate ( ) 

 

Similarly, In Figure 2 and 3 shows that the utilization factor (  ), the average queue length ( qL ) 

and average waiting time in the queue( qW ) decreases for the increasing value of service rates 1  

and .2   

   
Figure 2:  , qL , qW  versus First essential Service rate ( 1 ) 
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                 Figure 3:  , qL , qW  versus Second Optional Service rate ( 2 ) 

 

12 . Conclusion and further work 
 

In this paper, we have studied an XM /G(a,b)/1 queueing system with second optional service 

subject to server breakdown and two different types of vacation under restricted admissibility. We 

derive the probability generating function of the number of customers in the queue at a random 

epoch in transient and steady state conditions and also we obtained the queue size distribution at a 

departure epoch under the steady state conditions. The performance measures of the system state 

probabilities, the mean queue size and the average waiting time in the queue are determined under 

steady state condition. Some particular cases are discussed. The results are validated with the help 

of numerical illustrations. To this end, we can extend this model to J additional options for service 

under Bernoulli schedule vacaion. 
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