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Abstract 
 

Flow maximization is a fundamental problem in mathematics; there are several algorithms 

available to solve this problem, but these algorithms have some limitations. This paper 

presents the flow maximization problem as a Linear Programming Problem (L.P.P.). The 

solution given by L.P.P. formulation of the problem and provided by Ford Fulkerson 

algorithm is same.  This paper also compares the single path flow and k-splitting of the flow 

and suggests that k-splitting of flow is better than single path flow. 
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1. Introduction 
 

Flow Network and Maximization Problem: A flow network is a graph G (V, E) a connected 

weighted digraph, the weight of each edge is a positive integer, which gives the capacity of 

the edge. There are two special vertexes S and D known as source and sink, the in the degree 

of the source is zero and the out degree of the sink is zero. 

 

The maximization flow problem is to determine the maximum amount of flow flowing per 

unit of time from source S to sink D in a given flow network. 
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The best example of flow network is sending water from one reservoir to other using 

different paths, the sending reservoir is source S and receiving reservoir is destination D. 

Each path is made of pipe lines of different diameters (capacity), here assumption is that the 

source generates infinite amount of water. Now the problem is how to send the maximum 

amount of water from source S to destination D per unit of time. 

 

Here, there is no intermediate storage, so flow conservation principle will follow; that is, at 

any intermediate node flow in is equal to flow out. In addition, flow in a pipe is either less or 

equal to its capacity (capacity constraints) (Cormen et al., 2001; Ford and Fulkerson, 1958; 

Evin, 1979). 

 

There is famous theorem Max Flow –Min Cut theorem, which states that the amount of 

maximum flow from source S to destination D is equal to the capacity of minimum cut. 

 

There are many algorithms of different complexities are available to solve the flow 

maximization problem. These are Ford – Fulkerson algorithm, Edmonds, Dinic's blocking 

flow algorithm, General push-relabel maximum flow algorithm etc. 

 

The most popular algorithm is Ford – Fulkerson algorithm which first constructs the residual 

network for the given flow network. The residual network for the flow network is constructed 

by assuming the flow 0 in each edge and then the residual network is constructed and then 

augmented paths are selected, and a flow of capacity of the augmented path has been 

assigned to the path, and again algorithm construct the residual network. This process 

continues until no augmented path remains in the residual network. (Ford and Fulkerson, 

1958; Gal, 1959; Kleinberg et al., 1996). 

 

2. Ford-Fulkerson Algorithm 
 

A flow in the network is an integer-valued function f defined on the edges of G satisfying  

 

0  f(i, j)  c(i, j), for every edge (i, j) in E. 

 

Conservation Condition 

For every vertex j in V, where j is not the source S or the destination D, the sum of the flow 

into j equals the sum of the flow out of j. 

 

A flow that satisfies the conservation condition is called a feasible flow. 

 

Let f  be a feasible flow in a network G. The flow of the network, denoted by f(G) is the sum 

of flows coming out of the source S. 

 

The Ford-Fulkerson algorithm is a popular method to find the solution of maximization 

problem. It simply follows these steps: 

 

If an augmenting path exists in the residual network, 

 

 Assign the flow of amount equal to the capacity of augmenting path to the 

augmenting path. 

 Again, construct the residual network and repeat the same process until no 

augmenting path remains. 
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 The algorithm finds the augmenting path by using graph traversal methods like DFS 

or BFS on the flow network. 

 

It is quite difficult to compute the actual time complexity of Ford –Fulkerson algorithm since 

it is not possible to determine exactly that how many augmenting paths exist in the arbitrary 

flow network. In the worst case of the algorithm, the search for an augmenting path takes 

time O(|E|) time, where |E| is the number of edges flow network G(V, E). So worst-case, the 

complexity of the algorithm is O(|f|| E|)., where |f| is the amount of maximal flow in the 

network. (Cormen et al., 2001; Ford and Fulkerson, 1958; Ahuja et.al. 1993). 

 

2.1. For a Single Shortest Path Flow 

 

 
 

Figure 1. A capacitated flow network 

 

The single path flow or unsplittable flow from source S to destination D in a flow network 

uses a single path from source S to destination D. One of the single paths from source S to 

destination D is shown in Figure 1 with green color. The capacity of the path p in flow 

network is equal to min{ ,eC where e p } where Ce  is the capacity of edge e. 

 

Of course, per unit of time maximum flow in single path flow is equal to the capacity of the 

path. For Figure 1, the capacity of path S-A-B-D = min{5, 4, 4} = 4 (Sharma, 2004; 

Kleinberg, 1996). 
 

2.2. k-Splittable Flow 

 

A k- splittable flow is a generalization of unsplittable flow problem in which to send the data 

from source S to destination D by using at most k paths, these paths may or may not be 

distinct. Splitting the flow along many paths leads towards flow maximization and better 

usages of networks. But, it is difficult to deal with so many paths, especially when we need 

flow in a particular order (Baier et al., 2002; Martens and Skutella, 2006; Skutella, 2000). 

 

3. Formulation of Flow Maximization Problem as an L.P.P. 
 

Let S is the source and D is the target in the directed or undirected graph G = (V, E) and the 

path under consideration for flow between S and D are k, these paths are not necessarily all 

disjointed. 
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P1, P2, P3…, Pk are the paths between S and D and flow along these paths are F1, F2, F3, …, 

Fk, respectively. 

 

It is possible to transform the flow maximization problem in to a linear programming 

problem with the objective of maximization of total flow between S and D with the restriction 

of the edges capacities that is the flow value in an edge cannot exceed the capacity of the 

edge and the total flow cost cannot be higher than the given budget. (Dinitz et al, 1999; Dimri 

and Pant, 2008; Horowitz et al., 1997; Kalavathy, 2013) 

 

The problem as L.P.P. can be formulated as 

 

                                                   1 2 3 ... kMax Z F F F F     ,                                   (1)
   

 

subject to 

 

 ,    

1, , , 

   ,i e i

i k

wherF u e E G e e P
 

    , 

                                       the capacity constraint, where ue is the capacity of edge e.            (2) 

 

The constraints indicate that the sum of flow on an edge e must be bounded by ue (capacity of 

edge e), Sharma (2004) and Dimri and Pant (2008). 

 

3.1. Numerical Problem Example 
 

Maximization of splittable flow under above mentioned constraints where the flow is splitted 

along 3 paths (Figure 2). 

 

 

 
Figure 2. A capacitated flow network 
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Paths considered between S and D are 

 
1

2

3

 –   –  ,

 –   –   –  

 –   

,

 – ,

P S A D

P S B A D

P S B D







 

| E (G) | = 5, 

 

F1 flow along P1, 

F2 flow along P2, 

F3 flow along P3, 

and max flow with k = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A capacitated flow network with possible paths 

 

The flow constraints are 

 

 (1) 1  3,F      

 (2) 1 2 4 F F  ,    

 (3) 2 3 5,F F      

 (4) 2     4,F      

 (5) 3    5.F      

 

The L.P.P. for the given flow networks is 

 

1 2 3     Max Z F F F   ,
 

 

subject to flow constraints 1, 2, 3, 4 and 5. 

 

Using slack variables F4, F5, F6, F7, F8, the L.P.P. is 
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1 2 3 4 5 6 7 8

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 8

 0 0 0 0 0

 

0 0 1 4 0 0 0 0   3,

                        0 0 1 0 0 0   4,

                       0 0 0 1 0 7 0   5,

                  

,max Z F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

       

      

       

     



 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8  

     0 0 0 0 0 1 0 4,

                       0 0 0 0 0 0   5,

where ,  ,  ,  ,  ,  ,  ,  0.

F F F F F F F F

F F F F F F F F

F F F F F F F F

       

     



 

 
 

The initial simplex table for the problem is 

 

  Cj 1 1 1 0 0 0 0 0 

CB XB B F1 F2 F3 F4 F5 F6 F7 F8 

0 F4 3 1 0 0 1 0 0 0 0 

0 F5 4 1 1 0 0 1 0 0 0 

0 F6 5 0 1 1 0 0 1 0 0 

0 F7 4 0 1 0 0 0 0 1 0 

0 F8 5 0 0 1 0 0 0 0 1 

 j  -1 
-1 

-1 0 0 0 0 0 

CB XB B F1 F2 F3 F4 F5 F6 F7 F8 

1 F1 3 1 0 0 1 0 0 0 0 

0 F5 1 0 1 0 -1 1 0 0 0 

0 F6 5 0 1 1 0 0 1 0 0 

0 F7 4 0 1 0 0 0 0 1 0 

0 F8 5 0 0 1 0 0 0 0 1 

 j  0 
-1 

-1 1 0 0 0 0 

           

 Cj  1 1 1 0 0 0 0 0 

1 F1 3 1 0 0 1 0 0 0 0 

1 F2 1 0 1 0 -1 1 0 0 0 

0 F6 4 0 0 1 1 -1 1 0 0 

0 F7 3 0 0 0 1 -1 0 1 0 

0 F8 5 0 0 1 0 0 0 0 1 

 j  0 0 
-1 

0 1 0 0 0 

 Cj  1 1 1 0 0 0 0 0 

1 F1 3 1 0 0 1 0 0 0 0 

1 F2 1 0 1 0 -1 1 0 0 0 

0 F3 4 0 0 1 1 -1 1 0 0 

0 F7 3 0 0 0 1 -1 0 1 0 

0 F8 1 0 0 0 -1 1 -1 0 1 

 j  0 0 0 1 0 1 0 0 
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Since all j  0, the optimality condition satisfied. Hence, the optimal flow value 

components are given by 

 

F1=3,   F2=1,    F3=4, total flow = 8(max flow) 

 

F(max) = 8(maximum flow). 

 

4. Ford Fulkerson Algorithm (G, S, D) 
 

For every edge (u, v) of E (G): 

 

Assign the flow     f [u, v]:= 0 to edge (u,v) 

 

Also reverse flow in edge (v, u) i.e. f[ v, u] : = 0. 

 

While there exists an augmenting path in residual network Gf  

 

from source S and destination D do 

 

Cf(p):= min {Cf(u, v): (u, v ) is in p} 

 

For each edge (u, v) in p 

 

do:           f(u, v)  :=  f(u, v)  +  Cf (p) 

 

            f(v, u)  :=   -   f(u,v) 

 

The while loop repeatedly identifies an augmenting path p in residual network Gf and add 

flow f along p with residual capacity Cf(p). When no augmenting path remains, the flow f is 

maximum flow. 

 

4.1. Applying the Ford Fulkerson Algorithm on Given Flow Network 

 

Scanning the residual network for augmenting paths of flow network shown Figure 3, the 

first augmenting path in the residual network is S-B-D with capacity 3unit, so 3 unit of flow 

can be assigned to path S-B-D. 

 

With this assignment edge (S-B) saturates. 

 

Again, the next augmenting path in the residual network is S-A-D with capacity 5. Now 

sending a flow of 5 units along this path, with this edge S-A saturates and then after this no 

augmenting path remaining and so the max flow in the network is 3+5 = 8 units. 

 

4.2.  Comparison between Ford Fulkerson Algorithm and L.P.P. of Flow Maximization 

Problem 

 

Ford Fulkerson algorithm only maximize the flow from source S to destination D subject to 

capacity constraints only while the L.P.P. formulation of flow maximization problem can 

deal with many constraints like cost, budget, capacity constraints etc. 
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In L.P.P. formulation though the calculation is expensive but this method can deal with many 

constraints like budget, cost except the edge constraints and the result given by L.P.P. is same 

as given by Ford Fulkerson algorithm. 

 

5. Conclusion 
 

This paper presents the flow maximization problem as a linear programming problem and the 

solution given by L.P.P. is same as it is given by Ford-Fulkerson algorithm. Important is that 

the flow maximization problem solutions algorithms are only limited to the maximization of 

flow with capacity constraints, while the L.P.P. formulation of flow maximization problem 

can deal with many types of constraints like time and cost budget constraints. Further 

splitting of the flow in to k-paths is a good approach to reduce the delay, to maximize the 

amount of flow and for optimum network resource utilization. 
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