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Abstract

The fate and transport of oil spilled in soil has long been a focus for experimental and theoretical
research in subsurface hydrology. Oil transport in the soil is affected by a large number of physical,
chemical and microbial processes; and the properties of the media. This study is a two layer prob-
lem containing horizontal oil layer overlying the subsurface topsoil region saturated with oil and
water (native fluid). To explain the method by which the convective flow in the oil region affect the
transportation of oil, modeling is carried out in two regions (oil and topsoil). The two dimensional,
transient oil flow equations for both the regions include thermal and concentration buoyancy ef-
fects. The species equations include the effects of energy flux caused by the temperature gradient
on the unsteady advective-diffusion equation. The resulting fluid flow, heat and mass transfer pro-
cesses are discussed numerically with the aid of graphs. The validity of the results obtained is
verified by comparison with available results and good agreement is found.

Keywords: Concentration of hydrocarbons; Retardation; Soret effect; Degradation

MSC 2010 No.: 76D05, 76S05

1. Introduction

When heat and mass transfer occur simultaneously in a moving fluid, the relations between the
fluxes and the driving potentials are of more intricate in nature. It has been observed that mass
fluxes can be created by temperature gradients and this embodies the thermal diffusion effect. The
thermal diffusion phenomenon, also called Soret effect, occurs in the multicomponent mixture
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where temperature gradient induces mass transfer. In most of the studies related to heat and mass
transfer processes, Soret effect is neglected on the basis that it is of a smaller order of magnitude
than the effects described by FourierÓş and FickÓş laws. But this effect is considered as second
order phenomena and may become significant in areas such as hydrology, petrology, geosciences,
etc.

Thus the study of thermal diffusion in a fluid saturated porous medium is of importance in geo-
physics, groundwater hydrology, soil science, oil extraction (Parvathy and Patil, 1989). The reason
is that the earth’s crust is a porous medium by a mixture of different types of fluids such as oil,
water, gases and molten form of ores dissolved in fluids. Thermal gradients present between the
interior and exterior of the earth’s crust may help convection to set in. The thermal gradient in
crude oil can have a strange effect on the distribution of petroleum components in an oil deposit.

Literature review of the thermal diffusion phenomenon shows that several experimental and the-
oretical studies have been carried out by several authors (Poulikakos, 1986; Chen and Lu, 1992;
Carr and Straughan, 2003; Bahadori and Rezvantalab, 2014) on the subject concerned in a system
consisting of a horizontal fluid layer over lying a porous medium saturated with that fluid. Eng-
land et al. (1987) stressed on the chemical and physical properties of petroleum gases and liquids,
particularly their phase behavior under subsurface conditions to be important factor in determin-
ing petroleum migration behavior. Their study concluded that the directions and magnitudes of
the forces acting on migrating petroleum are deduced from the combined effects of buoyancy and
water flow in compacting sediments.

Nithiarasu et al. (1998) investigated the effect of porosity on natural convection and heat transfer in
a fluid-saturated porous medium using a generalized non-Darcy model with porosity as a separate
parameter and applying the Boussinesq approximation to the momentum equation. Shukla and
Firoozabadi (1998) presented a model for prediction of the thermal diffusion coefficients in binary
fluids using the rules of thermodynamics in irreversible processes. The model was used to predict
the coefficients of thermal diffusion at various values of pressure and temperature for hydrocarbon
and non-hydrocarbon fluid mixtures.

Finite amplitude convective oscillations in a binary mixture with a Soret effect were theoretically
predicted by Shliomis and Souhar (2000). They argued that the concentration gradients sets in
slowly in colloidal mixtures with a small particle mobility. Three dimensional numerical modeling
of Soret-driven convection in a cubic cell filled with a binary mixture of water and isopropanol was
performed by Shevtsova et al. (2006). These authors analyzed the unstable density stratification
established in the binary mixture with a negative Soret effect when heated from above.

Mansour et al. (2006) conducted a numerical analysis to study the Soret effect in fluid flow as
well as heat and mass transfer due to natural convection in a square porous cavity with a cross
concentration and temperature gradients. Md. Rahman and Saghir (2010) investigated the onset
of thermo-solutal convection in a liquid layer over a porous layer in a system heated laterally.
The study of Melnikov and Shevtsova (2011) analyzed the Soret separation by thermo-diffusion of
components of a binary liquid mixture through a porous medium in presence of gravity field. They
employed a Darcy-Brinkman model to experimentally model the double-diffusive convection with
Soret effect in a system consisting of a fluid region adjacent to a porous medium saturated with
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and laterally sandwiched between the same liquid.

A comprehensive review of the literature concerning natural convection in fluid-saturated porous
media are detailed by Ingham and Pop (1998, 2005), Nield and Bejan (2006), Vafai (2000, 2005)
and Vadasz (2008). Miyan and Pant (2015) analyzed the fluid flow in porous media modeled by
postulating a multiphase generalization of the Darcy’s law, which is based on the principle of a
linear relation between the velocity and the pressure gradient in the porous media. They stated that
the multiphase flow is a subject with important technical applications, most notably in oil recovery
from petroleum reservoirs and so on.

Motivated by these studies, a mathematical model has been developed to study the movement of oil
flow and its characteristics separately in the oil and topsoil region to analyze whether the convective
flow of oil in the oil region may affect the transportation of oil in the topsoil region. The model
in the present analysis is widened by relating two coupled non-linear partial differential equations
dependent on time. We choose this approach, rather than solving the problem in the whole domain,
because it is more conductive to explain qualitatively the processes occurring at the permeable
fluid-porous interface.

Once spilled oil is released into the subsurface system, oil will interact hydrologically, physically
and chemically with both- the native water and the granulated solid matrix. The major hydrological
and physical processes of interaction include advection, dispersion, diffusion, decay and chemical
reactions. The physical processes determine the way mass is moved from one point to another. The
chemical and biological processes redistribute the mass among different chemical forms, or into
and out of the system. Thus their mobility and persistence in the topsoil are need to be determined.

The topsoil under study is considered to be homogeneous porous medium bounded by oil formed as
a layer on the upper surface. The soil and the fluids(water and oil) are assumed to be incompressible
and the flow is transient, two dimensional. The flow equation includes thermal and concentration
buoyancy effects in both the oil and topsoil region. The species equation defined for oil particle
concentration includes adsorption, degradation and the energy flux caused by temperature gradi-
ent. The flow of oil in the topsoil is described by a non-Darcy model with porosity as a separate
parameter. The governing equations along with the boundary conditions obtained are simplified
using perturbation technique and then solved.

2. Mathematical Formulation

The considered system in this study consists of the spilled oil moving as a layer and migrating in
the topsoil. We use a rectangular coordinate system, (x, y) to model this flow, where, x and y denote
the horizontal and vertical coordinates, respectively. The specified geometry under consideration
consists of two-layer regions: region I (h ≤ y ≤ H) is the fluid region containing oil, and region II
(0 ≤ y ≤ h) is the topsoil considered to be a fluid saturated porous medium filled with water(Figure
1). We assume that the topsoil is homogeneous, isotropic and the thermo physical properties such
as thermal conductivity, heat capacity, viscosity are considered constant, with the saturated incom-
pressible oil in local thermodynamic equilibrium. Buoyancy forces resulting from the variation of
density are taken into account satisfying the linear Boussinesq approximation (Gobin and Goyeau,
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2012):
ρ = ρo [1− βT (T1 − Ta)− βc(c1 − ca)] in the oil region, and
ρ = ρo [1− βT (T2 − Tb)− βc(c2 − cb)] in the topsoil region.
For each layer, the mathematical model is developed using the Navier-Stoke’s equation, which is
one of the most used approach to describe flow in multi-domain system.

Figure 1. Physical configuration

Region I (Oil)
∂u1
∂x

+
∂v1
∂y

= 0, (1)

∂u1
∂t

+ u1
∂u1
∂x

+ v1
∂u1
∂y

=− 1

ρo

∂p1
∂x

+ νo

(
∂2u1
∂x2

+
∂2u1
∂y2

)
+ gβT (T1 − Ta)

+ gβc (c1 − ca) ,
(2)

∂v1
∂t

+ u1
∂v1
∂x

+ v1
∂v1
∂y

= − 1

ρo

∂p1
∂y

+ νo

(
∂2v1
∂x2

+
∂2v1
∂y2

)
, (3)

Region II (Topsoil)
∂u2
∂x

+
∂v2
∂y

= 0, (4)

∂u2
∂t

+ u2
∂u2
∂x

+ v2
∂u2
∂y

=− 1

ρo

∂p2
∂x

+ νeϕ

(
∂2u2
∂x2

+
∂2u2
∂y2

)
+ gϕβT (T2 − Tb)

+ gϕβc (c2 − cb)− ϕ
νo
kp
u2,

(5)

∂v2
∂t

+ u2
∂v2
∂x

+ v2
∂v2
∂y

= − 1

ρo

∂p2
∂y

+ νeϕ

(
∂2v2
∂x2

+
∂2v2
∂y2

)
− ϕνo

kp
v2, (6)

where (u1 , v1) and (u2 , v2) are the velocities of oil in Region I and Region II, along the x and y
directions, respectively, t is the time, pi represents the pressure on Regions I and II for i = 1, 2,
respectively, T1 and c1 are the temperature and concentration of oil in Region I, respectively, T2
is the temperature distribution of the region II, c2 is the concentration of oil in water (Region II),
ϕ is the porosity, ρo is the density of oil, νo is the kinematic viscosity of oil, νe is the effective
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kinematic viscosity, g is the gravitational acceleration, βT and βc are the thermal and concentration
expansion coefficients, respectively, kp is the permeability of the medium and Ta, Tb, ca and cb are
the constants which define the initial temperature and concentration of the oil and topsoil regions,
respectively.

The energy conservation equations for both the regions are:

Region I (Oil)

∂T1
∂t

+ u1
∂T1
∂x

+ v1
∂T1
∂y

=

(
kT
ρcp

)
o

(
∂2T1
∂x2

+
∂2T1
∂y2

)
. (7)

In the topsoil, we assume that the energy equation is based on local thermal equilibrium that hy-
pothesizes that the solid and fluid phases are at the same temperature at each point in the medium
(Nield and Bejan, 2006). The thermal energy conservation equation for the matrix or solid phase
can be expressed as follows:

(1− ϕ)(ρcv)s
∂Ts
∂t

= (1− ϕ)(kT )s∇2Ts, (8)

where, Ts is the temperature of the solid matrix and Cv is the volumetric heat capacity.

For the oil mixture inside the soil, it can be expressed as:

(ρcp)o

[
ϕ
∂Tf
∂t

]
+ u.∇Tf = ϕ(kT )o∇2Tf , (9)

where, Tf is the temperature of the oil mixture. Since the velocity of the matrix is zero, and there is
no viscous dissipation and heat generation in either soil or the oil mixture, the thermal equilibrium
assumed between the solid and liquid phases occurs very quickly so that Ts = Tf = T2. By adding
Equations (8) and (9), the energy conservation equation for topsoil region can be written as follows
(Jaber, 2010):

Region II (Topsoil)

σm
∂T2
∂t

+ u2
∂T2
∂x

+ v2
∂T2
∂y

= km

(
∂2T2
∂x2

+
∂2T2
∂y2

)
, (10)

where,

σm =
(1− ϕ)(ρcv)s + ϕ(ρcp)o

(ρcp)o
,

km =
(1− ϕ)(kT )s + ϕ(KT )o

(ρcp)o
,

cp is the specific heat at constant pressure and kT is the thermal conductivity suffices and s and o
refers to solid matrix and oil, respectively.

Here, we have considered the property for the porous region fpor as the sum of corresponding
values of the solid matrix and of the liquid fpor = (1−ϕ)fsolid +ϕfliq. The effective viscosity νe is
related to the oil viscosity and we model it as: νe = νliq (1 + 2.5(1− ϕ)) (Celli Michele, 2010).
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The mass conservation equation in the oil layer and the topsoil which includes:
(i) advection which is caused by flow of oil;
(ii) retardation which is caused by adsorption;
(iii) thermal diffusion caused by temperature gradient; and
(iv) the first-order degradation,
are written as

Region I (Oil)

∂c1
∂t

+ u1
∂c1
∂x

+ v1
∂c1
∂y

=(Dm)o

(
∂2c1
∂x2

+
∂2c1
∂y2

)
+

(
DmkT
Tm

)
o

(
∂2T1
∂x2

+
∂2T1
∂y2

)
− µc (c1 − ca) ,

(11)

Region II (Topsoil)

∂c2
∂t

+
θw
θo

∂cw
∂t

+
ρb
ϕθo

∂qs
∂t

+ u2
∂c2
∂x

+ v2
∂c2
∂y

=(Dm)e

(
∂2c2
∂x2

+
∂2c2
∂y2

)
+

(Dm)ekm
Tm

(
∂2T2
∂x2

+
∂2T2
∂y2

)
− µc (c2 − cb) ,

(12)

where cw is the concentration of water in oil, qs is the weight of oil adsorbed per unit weight
of adsorbent (soil), θw is the fraction of pore space occupied by water, θo is the fraction of pore
space occupied by oil, ρb is the soil bulk density, (Dm)o is the mass diffusivity of oil, (Dm)e is the
effective mass diffusivity, Tm is the mean temperature and µc is the rate of degradation. The mass
diffusion coefficient in the porous region can be different from that in the pure liquid (Takahashi

et al., 2002); they are related as (Dm)e =
(Dm)o
τ2

, where, τ ≥ 1 is the tortuosity. The tortuosity is
not less than unity, hence the diffusion coefficient in porous material is always smaller than in the
pure liquid.

Sorption between oil and the soil results in the development of retardation factor. Accounting for
equilibrium in linear sorption process, Langmuir model (Dada et al., 2012) describing the adsorp-

tion of fluid molecules onto solid adsorbents such as soil defined by qs =
q ks−o c2

1 + ks−oc2
simplifies the

retardation factor R = 1 + θw
θo
kw−o +

ρb
ϕθo

qks−o, where q is the maximum adsorption capacity of the

soil, kw−o, ks−o are adsorption coefficients (partition coefficient between water and oil, soil solids
and oil, respectively) and cw = kw−oc2, reduces Equation (12) to

R
∂c2
∂t

+ u2
∂c2
∂x

+ v2
∂c2
∂y

=(Dm)e

(
∂2c2
∂x2

+
∂2c2
∂y2

)
+

(Dm)ekm
Tm

(
∂2T2
∂x2

+
∂2T2
∂y2

)
− µc (c2 − cb) .

(13)

In order to obtain a well-posed problem, the initial and boundary conditions must be formulated
in an appropriate manner. As the interface region between the oil and the topsoil was permeable
to allow the oil to move between layers, the porous/fluid interface boundary conditions has been
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imposed for velocity and temperature (Beavers and Joseph, 1967; Huang and Vafai, 1993). The
appropriate conditions are:

Initial conditions:

u1 = 0 , v1 = 0 , T1 = Ta , c1 = ca at h < y < H, t ≤ 0 ;

u2 = 0 , v2 = 0 , T2 = Tb , c2 = cb at 0 < y < h, t ≤ 0.

}
(14)

Boundary conditions:

u1 = v0(1 + εei(αx+ωt)), v1 = 0, T1 = Ta, c1 = ca at y = H , t > 0 ;

∂u2
∂y

=
αp√
kp

(u2 − u1) , p1 = p2 , µo

(
∂u1
∂y

+
∂v1
∂x

)
=
µe
ϕ

(
∂u2
∂y

+
∂v2
∂x

)
,

v1 = v2 , T1 = T2 ,
∂T2
∂y

=
(kT )o
(kT )s

∂T1
∂y

, c1 = ca + c10e
−µct(1 + εei(αx+ωt)) ,

c2 = cb + c20e
−µct(1 + εei(αx+ωt)) at y = h, t > 0 ;

u2 = 0 , v2 = 0, T2 = T0, c2 = c0 at y = 0, t > 0,



(15)

where αp is the slip parameter, α is the stream-wise wave number with its dimension as inverse of
space variable x, ω is the frequency parameter with its dimension as inverse of time t, c10, c20, T0
and c0 are constants, ε is the perturbation parameter and i represents the imaginary part.

The non-dimensional quantities which transform the governing equations and conditions into di-
mensionless form are:

(x∗, y∗) =
v0
νo

(x, y), t∗ =
tv20
νo
, (u∗i , v

∗
i ) =

1

v0
(ui, vi), p∗i =

pi
ρov20

, (i = 1, 2)

T ∗1 =
T1 − Ta

∆T1
, C∗1 =

c1 − ca
∆c1

, T ∗2 =
T2 − Tb

∆T2
, C∗2 =

c2 − cb
∆c2

,

where the temperature and concentration differences are scaled by ∆T1 = T0 − Ta , ∆T2 =

T0 − Tb , ∆c1 = c0 − ca ,∆c2 = c0 − cb and v0 is the characteristic velocity.

Neglecting the ‘*’ symbol, the dimensionless form of Equations (1) to (7), (10), (11) and (13) take
the form

Region I

∂u1
∂x

+
∂v1
∂y

= 0, (16)

∂u1
∂t

+ u1
∂u1
∂x

+ v1
∂u1
∂y

= −∂p1
∂x

+
∂2u1
∂x2

+
∂2u1
∂y2

+Gr1T1 +Gc1 C1, (17)
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∂v1
∂t

+ u1
∂v1
∂x

+ v1
∂v1
∂y

= −∂p1
∂y

+
∂2v1
∂x2

+
∂2v1
∂y2

, (18)

∂T1
∂t

+ u1
∂T1
∂x

+ v1
∂T1
∂y

=
1

Pro

(
∂2T1
∂x2

+
∂2T1
∂y2

)
, (19)

∂C1

∂t
+ u1

∂C1

∂x
+ v1

∂C1

∂y
=

1

Sco

(
∂2C1

∂x2
+
∂2C1

∂y2

)
+ Soo

(
∂2T1
∂x2

+
∂2T1
∂y2

)
− µdC1, (20)

Region II

∂u2
∂x

+
∂v2
∂y

= 0, (21)

∂u2
∂t

+ u2
∂u2
∂x

+ v2
∂u2
∂y

=− ∂p2
∂x

+ ϕRν

(
∂2u2
∂x2

+
∂2u2
∂y2

)
+ ϕGr2T2

+ ϕGc2 C2 − ϕσ2u2,
(22)

∂v2
∂t

+ u2
∂v2
∂x

+ v2
∂v2
∂y

= −∂p2
∂y

+ ϕRν

(
∂2v2
∂x2

+
∂2v2
∂y2

)
− ϕσ2v2, (23)

σm
∂T2
∂t

+ u2
∂T2
∂x

+ v2
∂T2
∂y

=
1

Pre

(
∂2T2
∂x2

+
∂2T2
∂y2

)
, (24)

R
∂C2

∂t
+ u2

∂C2

∂x
+ v2

∂C2

∂y
=

1

Sce

(
∂2C

∂x2
+
∂2C2

∂y2

)
+ Soe

(
∂2T2
∂x2

+
∂2T2
∂y2

)
− µdC2, (25)

where,

σ =
νo

v0
√
kp

is the porous parameter,

Rν =
νe
νo

is the kinematic viscosity ratio,

µd =
µcνo
v20

is the dimensionless degradation rate parameter,
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Gri =
νogβT (∆Ti)

v30
is the thermal Grashof number in the oil and topsoil region, respectively for

i = 1, 2,

Gci =
νogβc(∆ci)

v30
is the mass Grashof number in the oil and topsoil region, respectively for i = 1, 2,

Pro =

(
ρcpν

kT

)
o

is the Prandtl number in the oil region,

Pre =
νo
km

is the effective Prandtl number in the topsoil region,

Sco =
νo

(Dm)o
is the Schmidt number in the oil region,

Sce =
νo
Dme

is the effective Schmidt number in the topsoil region,

Soo =

(
DmkT
Tmν

)
o

∆T1
∆c1

is the Soret number in the oil region and,

Soe =
(Dm)ekm
Tmνo

∆T2
∆c2

is the effective Soret number in the topsoil region.

The initial and boundary conditions (14) and (15) in non-dimensional form are:

u1 = 0 , v1 = 0 , T1 = 0 , C1 = 0 at h < y < H, t ≤ 0 ;

u2 = 0 , v2 = 0 , T2 = 0 , C1 = 0 at 0 < y < h, t ≤ 0

}
(26)

and

u1 = 1 + εei(αx+ωt), v1 = 0, T1 = 0, C1 = 0 at y = H , t > 0 ;

∂u2
∂y

= αpσ(u2 − u1) , p1 = p2 ,
∂u1
∂y

+
∂v1
∂x

=
Rµ
ϕ

(
∂u2
∂y

+
∂v2
∂x

)
,

v1 = v2 , T1 = T2 ,
∂T1
∂y

= RkT
∂T2
∂y

, C1 = cao
e−µdt(1 + εei(αx+ωt)) ,

C2 = cboe
−µdt(1 + εei(αx+ωt)) at y = h, t > 0 ;

u2 = 0 , v2 = 0, T2 = 1, C2 = 1 at y = 0, t > 0,



(27)

where,

Rµ =
µe
µo

is the dynamic viscosity ratio,

RkT =
(kT )s
(kT )o

is the thermal conductivity ratio,

cao
and cbo are constants.
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3. Method of Solution

We decompose the flow, thermal and the concentration variables into steady base state quantities
(designated by upper-case letters) and two-dimensional linear perturbations (designated by a hat)
as

(ui, vi, pi, Ti, Ci) =(UBi
(y), 0, PBi

(x), TBi
(y), CBi

(y))

+ (ûi, v̂i, p̂i, T̂i, ĉi)(y) ε ei(αx+ωt) + o(ε2),
(28)

for i = 1, 2. Substituting (28) into Equations (16) to (25) and the boundary conditions (27), neglect-
ing the higher order of (ε2) and equating the zeroth and first order terms we obtain the following
set of ordinary differential equations and their boundary conditions.

3.1. Base State

By assuming a steady, parallel, fully developed flow, the base state equations obtained are:

d2UB1

dy2
=
dPB1

dx
−Gr1TB1

−Gc1CB1
, (29)

d2UB2

dy2
− σ2

Rν
UB2

=
1

Rν

(
ϕ
dPB2

dx
−Gr2TB2

−Gc2CB2

)
, (30)

d2TB1

dy2
= 0, (31)

d2TB2

dy2
= 0, (32)

d2CB1

dy2
− µdScoCB1

= 0, (33)

d2CB2

dy2
− µdSceCB2

= 0, (34)

subject to the boundary conditions,

UB1
= 1, TB1

= 0, CB1
= 0 at y = H ;

dUB2

dy
= αpσ(UB2

− UB1
) , PB1

= PB2
,
dUB1

dy
=
Rµ
ϕ

dUB2

dy
,

TB1
= TB2

,
dTB1

dy
= RkT

dTB2

dy
,

CB1
= caO

e−µdt , CB2
= cbOe

−µdt at y = h ;

UB2
= 0 , TB2

= 1 , CB2
= 1 at y = 0.



(35)
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Solving the above Equations (29) to (34), the base state velocities, temperature and concentration
using the boundary conditions (35) are

UB1
=
g3y

2

2
− Gr1g6RKT

6
(y3 − 3Hy2)− Gc1g7

g1

(
e
√
g1 y − e2

√
g1 He−

√
g1 y
)

+ g11(y −H) +

(
1− g3H

2

2
− Gr1g6RKT

H3

3

)
,

(36)

UB2
= g14(e

√
g5 y − e−

√
g5 y) +

(
g4
g5
− Gr2
Rνg5

+
Gc2

Rν(g2 − g5)

)
e−
√
g5 y − g4

g5

+
Gr2(g6y + 1)

Rνg5
− Gc2(g8e

√
g2 y + (1− g8) e−

√
g2 y)

Rν(g2 − g5)
,

(37)

TB1
= RkT g6(y −H) (38)

TB2
= g6y + 1, (39)

CB1
= g7

(
e
√
g1 y − e2

√
g1 He−

√
g1 y
)
, (40)

CB2
= g8e

√
g2 y + (1− g8) e−

√
g2 y, (41)

where the constants gi for i = 1 to 14 are given in the Appendix.

Assuming uniform pressure(p1 = p2) in both the regions, the dimensionless pressure gradient is
determined numerically satisfying the condition

∫ h
0 UB2

dy +
∫ H
h UB1

dy = 1.

3.2. Perturbed Part

The stream function is a useful mathematical model that is used to solve the continuity and
momentum equations directly for a single variable. Restricting our attention to the real parts
of the solutions for the perturbed quantities, re-expressing them in terms of the stream-function
(ûi, v̂i) = (φ̂iy,−φ̂ix)(i = 1, 2) and eliminating the pressure perturbations yields the following set
of equations(after suppressing hat (ˆ) symbols):

φ1
′v

+
[
(ω + αUB1

) tan(αx+ ωt) + α2 tan2(αx+ ωt)− α2
]
φ1

′′

+
[
α2 (ω + αUB1

) tan3(αx+ ωt)− α4 tan2(αx+ ωt)− α tan(αx+ ωt)U
′′

B1

]
φ1

+Gr1T
′

1 +Gc1c
′

1 = 0,

(42)

φ2
′v

+

[
1

ϕRν
(ω + αUB2

) tan(αx+ ωt) + α2 tan2(αx+ ωt)− σ2

Rν
− α2

]
φ2

′′

+

[(
ϕRν (ω + αUB2

) tan(αx+ ωt)− σ2

Rν
− α2

)
α2 tan2(αx+ ωt)

− 1

ϕRν
α tan(αx+ ωt)U

′′

B2

]
φ2 +

Gr2
Rν

T
′

2 +
Gc2
Rν

c
′

2 = 0,

(43)
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T
′′

1 +
[
Pro (ω + αUB1

) tan(αx+ ωt)− α2
]
T1 = Pro α tan(αx+ ωt)T

′

B1
φ1, (44)

T
′′

2 +
[
Pre (ωσm + αUB2

) tan(αx+ ωt)− α2
]
T2 = Pre α tan(αx+ ωt)T

′

B2
φ2, (45)

c
′′

1 +
[
Sco (ω + αUB1

) tan(αx+ ωt)− µdSco − α2
]
c1 = Sco α tan(αx+ ωt)C

′

B1
φ1

− Sco Soo
(
T

′′

1 − α2T1

)
,

(46)

c
′′

2 +
[
Sce (ωR+ αUB2

) tan(αx+ ωt)− µdSce − α2
]
c2 = Sce α tan(αx+ ωt)C

′

B2
φ2

− Sce Soe
(
T

′′

2 − α2T2

)
,

(47)

where the prime ( ′ ) denotes differentiation with respect to y.

The above Equations (42) to (47) are solved numerically subject to the boundary conditions out-
lined below using Mathematica 8.0.

φ
′

1 = 1, φ1 = 0, T1 = 0, c1 = 0 at y = H ;

φ
′′

2 = αpσ(φ
′

2 − φ
′

1), φ
′′

1 − α2 tan2(αx+ ωt)φ1 =
Rµ
ϕ

(
φ

′′

2 − α2 tan2(αx+ ωt)φ2
)
,

φ1 = φ2, φ
′′′

1 +
[
(ω + αUB1

) tan(αx+ ωt)− α2
]
φ

′

1 − α tan(αx+ ωt)U
′

B1
φ1

+Gr1T1 +Gc1c1 = ϕRν

[
φ

′′′

2 +

(
1

ϕRν
(ω + αUB2

) tan(αx+ ωt)− σ2

Rν
− α2

)
φ

′

2

−α tan(αx+ ωt)U
′

B2
φ2 +

Gr2
Rν

T2 +
Gc2
Rν

c2

]
,

T1 = T2, T
′

1 = RkTT
′

2, c1 = ca0
e−µdt, c2 = cb0e

−µdt at y = h ;

φ
′

2 = 0, φ2 = 0, T2 = 0, c2 = 0 at y = 0.



(48)

Differentiating the solutions of φ1 and φ2 with respect to y gives the perturbed axial velocity, u1
and u2 of oil on the oil and topsoil region, respectively. The base part solutions given by Equa-
tions (36) to (41) along with the obtained numerical solutions gives the velocity, temperature and
concentration distributions on both the regions.

4. Results and Discussion

Some numerical calculations have been carried out for the non-dimensional velocity, temperature
and concentration distributions for the flow under consideration and their behavior have been dis-
cussed in both the oil (Region I) and topsoil (Region II) regions for variations in the governing
parameters such as thermal and mass Grashof number, porosity, Prandtl number and Soret num-
ber. The values of other physical parameters are fixed as real constants (Melnikov and Shevtsova,
2011).
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Figure 2. Effect of thermal Grashof on axial velocity in both the oil and topsoil regions
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Figure 3. Effect of mass Grashof number on axial velocity in both the oil and topsoil regions
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Figure 4. Effect of porosity on axial velocity in both the oil and topsoil regions

The axial velocity profile for different thermal and mass Grashof numbers, porosity values in both
the oil and topsoil regions are exhibited in Figures 2, 3 and 4, respectively. Natural convection effect
is presented in terms of the thermal and mass Grashof numbers. From Figures 2 and 3, we observe
that increasing these parameter values enhances velocity profile. This is due to the advancement in
the buoyancy ratio that tends to accelerate the fluid flow. Porosity, also known as the void fraction,
is the measure of the empty space in a material defined by the ratio of the volume of voids to the
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Figure 5. Effect of Prandtl number on temperature distribution in both the oil and topsoil regions

Figure 6. Effect of porosity on temperature distribution in both the oil and topsoil regions
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Figure 7. Effect of Soret number on concentration distribution in both the oil and topsoil regions

total volume. Figure 4 depicts that the velocity magnitudes are larger for higher porosity values in
the topsoil.

Figures 2, 3 and 4 show that the velocity variations are very small in the oil region. Also, we see
that the velocity of oil decreases with depth in the topsoil. This agrees with the similar results
of Miyan and Pant (2015) which states that NAPL contaminants such as hydrocarbons travel at a
speed that continually decreases with depth and time rather than traveling at a constant speed in the
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Figure 8. Effect of porosity on concentration distribution in both the oil and topsoil regions

Figure 9. Spatio-temporal (x, t) evolution for the concentration distribution in the topsoil region

Figure 10. Temporal evolution for the concentration distribution in the topsoil region along depth height

subsurface. They applied Darcy’s equation whereas our analysis includes two phase flow, related
to two coupled non-linear partial differential equations dependent on time.

Figure 5 show the numerical result of Prandtl number on the dimensionless temperature profile in
both the oil and topsoil regions. Here, we see that the temperature increases along the depth of the
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Figure 11. Spacial evolution for the concentration distribution in the topsoil region

topsoil and obviously the figure shows neglecting effect on varying Prandtl number values. As the
convection in porous media is at least thousand times weaker and the mass transport is controlled
by diffusion the effect of porosity is very smaller but not negligible in heat transfer. This can be
viewed from Figure 6 which represents the temperature distribution for different porosity values.

The concentration distribution of oil for different Soret numbers and porosity values in both the
oil and topsoil regions are discussed through Figures 7 and 8, respectively. These figures show that
the concentration of oil increases with the depth of soil, in general.

Figure 7 depicts the concentration distribution of oil for different Soret numbers. From this figure,
it is noticed that the fluctuations raises with increasing Soret number values. It is found that the
Soret effect affect the heat and mass transfer in the subsurface topsoil region in small variations,
and it can improve or impair the mass transfer, depending on the flow structure. As a result of
the buoyant convection, the concentration field in pure oil region is uniform creating pronounced
boundary layers at the border.

Figure 8 display the effect of porosity on concentration distribution. The fluctuations in the curve
shows the presence of trigonometric function existing in the solution.

The temporal and spatial evolution of concentration of oil in the topsoil region (C2) are depicted
in Figures 9, 10 and 11. The migration of oil together with its vapor and dissolved components
through the topsoil is a highly complex combination of processes which occur at different spatial
and temporal scales. This plot is used to explore the potential relationship between the predictor
variables (x, y and t) and the response variable (C2). Figure 9 represents the temporal evolution
of concentration of oil along the axial distance. Here we observe that the streamwise coordinate
enhances the concentration distribution with increasing time. Figures 10 and 11 pictures the con-
centration distribution for depth height with respect to time and axial distance. It is found that the
concentration increases with increasing depth of the topsoil with respect to time t and the axial dis-
tance x, respectively. The waviness in the surface plots involved indicates the periodic fluctuations.
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5. Conclusion

The analysis of the obtained results shows that the velocity of oil decreases with depth in the topsoil
due to the block of oil in soil pores. This agrees with the results of Miyan and Pant (2015) which
states that NAPL contaminants such as hydrocarbons travel at a speed that continually decreases
with depth and time rather than traveling at a constant speed in the subsurface. It is also observed
that the concentration of oil increases along the depth of the topsoil and decreases monotonously
with increasing time. It is found that the Soret effect affect the heat and mass transfer in both
regions with small variations and it can improve or impair the mass transfer depending on the flow
structure.
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Appendix

g1 = µdScf

g2 = µdSce

g3 =
dPB1

dx

g4 =
ϕ

Rν

dPB2

dx

g5 =
σ2

Rν

g6 =
1

RKT
(h−H)− h

g7 =
ca0
e−µdt

e
√
g1 h − e2

√
g1 He−

√
g1 h

g8 =
cb0e

−µdt − e−
√
g2 h

e
√
g2 h − e−

√
g2 h

g9 = g3h−
Gr1g6RKT

6
(3h2 − 6Hh)− Gc1g7√

g1
(e
√
g1 h + e2

√
g1 He−

√
g1 h)

g10 =

(
g4
g5
− Gr2
Rνg5

+
Gc2

Rν(g2 − g5)

)
(−√g5e−

√
g5 h) +

Gr2g6h

Rνg5
−
Gc2
√
g2(g8e

√
g2 h − (1− g8) e−

√
g2 h)

Rν(g2 − g5)

g11 =

Rµ
ϕ

[
g14
√
g5(e

√
g5h + e−

√
g5h) + g10

]
− g9

(h−H)

g12 =

(
g4
g5
− Gr2
Rνg5

+
Gc2

Rν(g2 − g5)

)
e−
√
g5 h − g4

g5
+
Gr2(g6h+ 1)

Rνg5
− Gc2(g8e

√
g2 h + (1− g8) e−

√
g2 h)

Rν(g2 − g5)

g13 =
g3h

2

2
− Gr1g6RKT

6
(h3 − 3Hh2)− Gc1g7

g1
(e
√
g1 h − e2

√
g1He−

√
g1h +

Rµ
ϕ
g10

− g9 +

(
1− g3H

2

2
− Gr1g6RKT

H3

3

)

g14 =
αpσ(g12 − g13)− g10

√
g5(e

√
g5 h + e−

√
g5 h)(1 +

αpσRµ
ϕ

)− αpσ(e
√
g5 h − e−

√
g5 h)
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