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Abstract    

 

Some results have been established on absolute index Riesz summability factor of an infinite 

series. Furthermore, these kind of results can be extended by taking other parameters and an 

absolute  index  matrix summability factor of  an  infinite series or some weaker conditions.  In 

the present paper a new result on generalized absolute index  matrix  summability factor    of  an 

infinite series has been established. 
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1. Introduction  

        

Let  na  be an infinite series and  ns   be its sequence of partial sums. Let  np  be a sequence 

of non-negative numbers with 
0

, as  and 0, 1.
n

n v i i

v

P p n P p i 



      Then, the 

sequence to sequence transformation 

                                                                       
0

1 n

n v v

vn

t p s
P 

                                                        (1)

  
 

defines the  npN , -mean of the sequence ns  generated by the sequence of coefficients  np .  

 

The series  na  is said to be summable ,1,, kpN
kn  if (Bor, 1985) 
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                                                      (2) 

 

For a lower triangular matrix  nkaA  , we define the matrices  nkaA   and  nkaA ˆˆ   as 

follows: 

                                                                                   
n

nk nv

v k

a a


                                     (3) 

 

and   ,...2,1,ˆ,ˆ 000000,1   naaaaaa knnknk . 

 

Clearly ˆandA A  are lower semi-matrices. For the sequence of partial sums  ns  of the series 

na  let 

                                                                 
0

.
n

n nk k

k

A s a s


                                                          (4)

             

Then,  sAn  defines a sequence to sequence transformation   ns  to   nA s . From (4) we have 

                                           
0

n

n nk k

k

A s a a


  . 

Subsequently, we get 

                                                                
0

ˆ ,
n

n nk k

n

A s a a


   

where 

                                                                1n n nA s A s A s   . 
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Definition 1.1. 

 

The series  na  is said to be summable 1,, kpA
kn  if (Sulaiman, 2003) 

                     .                                                           (5) 

Definition 1.2. 

 

If  n  is a sequence of positive real numbers, then, the series  na  is said to be summable 

1,,  kpA
kn , if  (Ozarslan and Karakas, 2015) 

                             






k

n

n
n
n sA

1

1                                                                   (6) 

 

and summable 0,1,;,   kpA
kn , if  

                    






k

n

n
kk

n sA
1

1 .                                                               (7) 

 

If we take 0 , then , ;n k
A p   summability reduces to 

knpA, -summability. If we 

take 

n

n
n

p

P
 , then , n k

A p   summability reduces to 
knpA, -summability. Also, if we take 

n

k
nk

P

p
a  , then 

knpA,  summability reduces to 
knpN ,  summability. If we take 

n

n
n

p

P
  and 

n

n
nk

P

p
a  , then 

knpA,  summability reduces to 
knpN , -summability. 

 

Definition 1.3. 

 

A sequence of positive numbers
  nb  is said to be almost increasing if there exists a positive 

increasing sequence  nc  and two positive constants A and B such that n n nAc b Bc  (Bari and 

Steckin, 1956). 

 

2.    Known Results 

 

Dealing with summability factors of infinite series,  Bor (1996) has proved the following theorem. 
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Theorem 2.1. 

 

Let  np  be a sequence of positive numbers such that 

 

                                                               0 , asn nP np n  .                                                    (8)  

 

Let  nX  be a positive non-decreasing sequence and that there be sequences    andn n   such 

that 

                                                                         n n                                                             (9) 

 

                                                                  0, asn n    ,                                                      (10)  

 

                                                             
1

n n

n

n X




                                                              (11)                          

and 

                                                         0(1), asn nX n   .                                                     

(12)                             

If 

                                                     
1

, as
m

kn
n m

n n

p
t O X m

P

  ,                                            (13) 

where 



n

v

vn av
n

t
11

1
,  then  nna   is summable- 1,, kpN

kn . 

 

Extending the above theorem to , , , 1,0 1n k
N p k    , and taking a weaker condition almost 

increasing instead of   nX  to be  a positive non-decreasing sequence, Bor (2010) has established 

the following result: 

 

Theorem 2.2.  

 

Let  np  be a sequence of positive numbers such that 

 

                                                      0 , as ,n nP np n                                                    (14) 

and 

                                                    
1

k
k n

n n n

p
n O

P p p








 

 
  

 
  .                                                        (15) 

 

If  nX  is an almost increasing sequence satisfying the conditions 

 

                                                       
0(1), as ,n nX n                                                          (16) 
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where 



n

v

vn av
n

t
11

1
,  then  nna   is summable- , , , 1,0 1/ .n k

N p k k     

      

Subsequently, Savas and Rhoades (2007) have extended Theorem-B to kA summability factor 

establishing the following theorem. 

 

Theorem 2.3.  

 

Let  nvaA   be a lower triangular matrix with non-negative entries such that 

                                                                  0 1, 0,1,2,...na n                                              (20)  

                            

                                                              
1, , for 1n v nva a n v                                                       (21)

                           

                                                                           1nnn a O                                                         (22)  

Further, let  n be a sequence such that  

                                                                        
1

1
m

n

n

O


  ,                                                     (23) 

 

                                                                       
1

1
m

k

nn n

n

a O


                                                   (24) 

 

and  ns  be a bounded sequence. Then,   nna   is summable- , 1.
k

A k   

 

Very recently, Ozarslan and Karakas (communicated) extended Theorem-C, by establishing the 

following theorem. 

 

Theorem 2.4.  

 

 Let  nvaA   be a lower triangular matrix with non-zero diagonal entries such that 

 

                                                                     0 1, 0,1,2,... ,na n                                             (25)       
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1, , 1 ,n v nva a for n v                                   (26)

                           

                                                                                    ,n
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p
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P

 
  

 
                                                       

(27)           

                                                  nvvvn avOa ˆˆ 1,  .                                                   (28) 

 

Let  nX  be an almost increasing sequence and sequence  n n

n

p

P

 
 
 

 non-increasing. Let  n  and 

 n  be sequences satisfying (8) to (12). If, in addition the condition 

 

                                                1

1

, as

k
m

kk n
n n m

n n

p
t O X m

P
 



 
  

 
                                         (29)

                

is satisfied, where nt  is as defined in Theorem 2.1., then, the series nna   is summable 

, , 1n k
A p k   . 

 

3.     Main result 

 

In the present paper we generalize the above theorems to  0,1,;,   kpA
kn  

summability by proving Theorem 3.1. 

 

Theorem 3.1. 

 

Let  nvaA   be a lower triangular matrix with non-zero diagonal entries such that 

 

                                                                          0 1, 0,1,2,... ,na n                                              (30) 

                         

                                                                       
1, , for 1 ,n v nva a n v                                    (31)   

                 

                                                                            ,n
nn

n

p
a O

P

 
  

 
                                            (32)   

                        

                                                               nvvvn avOa ˆˆ 1,  .                                      (33) 
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Let  nX  be an almost increasing sequence and sequences  1k k

n

    and 









n

n

P

p
  non-increasing. 

Let, also  n  and  n  be sequences satisfying (8) to (12). If, in addition, the condition 

                                                        1

1

, as

k
m

kk k n
n n m

n n

p
t O X m

P

  



 
  

 
                     (34)                    

 

is satisfied, the series nna   is summable 0,1,;,   kpA
kn , where nt  is as 

defined in Theorem 2.1. 

 

For the proof of the theorem, we require the following lemma. 

 

Lemma 3.1. (Mazhar, 1997) 

 

If  nX  is an almost increasing sequence satisfying conditions (10) and (11), then we have 

 

                                                                                       1n nn X O                   
               (35)

 

and 

                                                                                       
1

.n n

n

X




 .                                         (36)

                        

 Proof of the theorem 

 

Let  nT  be the  nvaA   transform of the series  nna   . Then, using (4), we have 

       



n
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,  

                     (using Abel’s partial summation) 

             
 

1 1

, 1
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            4,3,2,1, nnnn TTTT  , say. 
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Using (7) and Minkowski’s inequality, in order to complete the proof of the theorem, it is enough 

to show that 

          1
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  for 1,2,3,4.i    

We have 
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Using Abel’s partial summation  
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This completes the proof of the theorem. 

 

4.   Conclusion 
 

If a series is absolute summable, then it is summable by the same summability method. Similarly, 

if a series is summable by some indexed summability method, then it is absolutely summable by 

the same method. Different authors established many results on indexed summability of different 

summability methods of infinite series as well as Fourier series. Some authors established certain 

results on indexed summability of factored series. The present paper is one of them. We have 

established a result on generalized matrix  indexed summability of a factored series by extending 

the results of Bor, Savas and Rhoades, as well as  Ozarslan and Karakas. For 0  , Theorem 2.4. 

is coming as a particular case of our theorem. By taking and 0n
n

n

P

p
   , Theorem 2.3 is 

coming as a particular case of our theorem. Furthermore, by taking , ,n v
n nv

n n

P p
a

p P
    Theorem 

2.2 is coming as a particular case of our theorem and taking  nX  as a positive non-decreasing 

sequence, , and 0n v
n nv

n n

P p
a

p P
    , Theorem 2.1. follows from our theorem. The theorem can 

be studied for , ; ,n k
A p   summability of a factor series. This can be further studied by 

relaxing the conditions placed on np . 
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