Applications and Applied Mathematics: An International Journal (AAM)

On Indexed Absolute Matrix Summability of an Infinite Series

Lakshmi N. Mishra
Vellore Institute of Technology (VIT) University
P. K. Das
Biswasray Science College
P. Samanta
Berhampur University
M. Misra
S.B.R Women's College, Berhampur
U. K. Misra
National Institute of Science and Technology, Ganjam

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Numerical Analysis and Computation Commons

Recommended Citation

Mishra, Lakshmi N.; Das, P. K.; Samanta, P.; Misra, M.; and Misra, U. K. (2018). On Indexed Absolute Matrix Summability of an Infinite Series, Applications and Applied Mathematics: An International Journal (AAM), Vol. 13, Iss. 1, Article 19.
Available at: https://digitalcommons.pvamu.edu/aam/vol13/iss1/19

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

On Indexed Absolute Matrix Summability of an Infinite Series

${ }^{*}$ Lakshmi Narayan Mishra, ${ }^{2}$ P.K. Das, ${ }^{3}$ P. Samanta, ${ }^{4}$ M. Misra and ${ }^{5}$ U.K. Misra

${ }^{1}$ School of Advanced Sciences, Vellore Institute of Technology (VIT)
University, Vellore 632014
Tamil Nadu, India lakshminarayanmishra04@gmail.com
${ }^{2}$ Biswasray Science College
Patapur, Ganjam
Odisha, India
${ }^{3}$ Department of Mathematics Berhampur University
Odisha, India
dr.pns.math@ gmail.com
${ }^{5}$ National Institute of Science and Technology
Ganjam, Odisha, India
umakanta_misra@yahoo.com
*Corresponding author

Received: June17, 2017; Accepted: February 5, 2018

Abstract

Some results have been established on absolute index Riesz summability factor of an infinite series. Furthermore, these kind of results can be extended by taking other parameters and an absolute index matrix summability factor of an infinite series or some weaker conditions. In the present paper a new result on generalized absolute index matrix summability factor of an infinite series has been established.

Keywords: Riesz summability; Matrix summability; Index summability method
MSC No.: 40A05, 40D05

1. Introduction

Let $\sum a_{n}$ be an infinite series and $\left\{s_{n}\right\}$ be its sequence of partial sums. Let $\left\{p_{n}\right\}$ be a sequence of non-negative numbers with $P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$, as $n \rightarrow \infty$ and $P_{-i}=p_{-i}=0, i \geq 1$. Then, the sequence to sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1}
\end{equation*}
$$

defines the $\left(\bar{N}, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$.
The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (Bor, 1985)

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

For a lower triangular matrix $A=\left(a_{n k}\right)$, we define the matrices $\bar{A}=\left(\bar{a}_{n k}\right)$ and $\hat{A}=\left(\hat{a}_{n k}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n k}=\sum_{v=k}^{n} a_{n v} \tag{3}
\end{equation*}
$$

and $\quad \hat{a}_{n k}=\bar{a}_{n k}-\bar{a}_{n-1, k}, \hat{a}_{00}=\bar{a}_{00}=a_{00}, n=1,2, \ldots$.
Clearly \bar{A} and \hat{A} are lower semi-matrices. For the sequence of partial sums $\left\{s_{n}\right\}$ of the series $\sum a_{n}$ let

$$
\begin{equation*}
A_{n}(s)=\sum_{k=0}^{n} a_{n k} s_{k} . \tag{4}
\end{equation*}
$$

Then, $A_{n}(s)$ defines a sequence to sequence transformation $\left\{s_{n}\right\}$ to $\left\{A_{n}(s)\right\}$. From (4) we have

$$
A_{n}(s)=\sum_{k=0}^{n} \bar{a}_{n k} a_{k} .
$$

Subsequently, we get

$$
\Delta A_{n}(s)=\sum_{n=0}^{n} \hat{a}_{n k} a_{k},
$$

where

$$
\Delta A_{n}(s)=A_{n}(s)-A_{n-1}(s) .
$$

Definition 1.1.

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$ if (Sulaiman, 2003)

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{n-1}\left|\Delta A_{n}(s)\right|^{k}<\infty \tag{5}
\end{equation*}
$$

Definition 1.2.

If $\left\{\varphi_{n}\right\}$ is a sequence of positive real numbers, then, the series $\sum a_{n}$ is said to be summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$, if (Ozarslan and Karakas, 2015)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{n-1}\left|\Delta A_{n}(s)\right|^{k}<\infty \tag{6}
\end{equation*}
$$

and summable $\varphi-\left|A, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|\Delta A_{n}(s)\right|^{k}<\infty \tag{7}
\end{equation*}
$$

If we take $\delta=0$, then $\phi-\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\varphi-\left|A, p_{n}\right|_{k}$-summability. If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\phi-\left|A, p_{n}\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$-summability. Also, if we take $a_{n k}=\frac{p_{k}}{P_{n}}$, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $\varphi-\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n k}=\frac{p_{n}}{P_{n}}$, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$-summability.

Definition 1.3.

A sequence of positive numbers $\left\{b_{n}\right\}$ is said to be almost increasing if there exists a positive increasing sequence $\left\{c_{n}\right\}$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (Bari and Steckin, 1956).

2. Known Results

Dealing with summability factors of infinite series, Bor (1996) has proved the following theorem.

Theorem 2.1.

Let $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=0\left(n p_{n}\right), \text { as } n \rightarrow \infty . \tag{8}
\end{equation*}
$$

Let $\left\{X_{n}\right\}$ be a positive non-decreasing sequence and that there be sequences $\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{9}\\
\beta_{n} \rightarrow 0, \text { as } n \rightarrow \infty, \tag{10}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{11}
\end{gather*}
$$

and

$$
\left|\lambda_{n}\right| X_{n}=0(1), \text { as } n \rightarrow \infty
$$

(12)

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \text { as } m \rightarrow \infty, \tag{13}
\end{equation*}
$$

where $t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}$, then $\sum a_{n} \lambda_{n}$ is summable- $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Extending the above theorem to $\left|\bar{N}, p_{n}, \delta\right|_{k}, k \geq 1,0 \leq \delta<1$, and taking a weaker condition almost increasing instead of $\left\{X_{n}\right\}$ to be a positive non-decreasing sequence, Bor (2010) has established the following result:

Theorem 2.2.

Let $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=0\left(n p_{n}\right), \text { as } n \rightarrow \infty \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=}^{\infty} n^{\delta k}\left|\frac{p_{n}}{P_{n} p_{n-1}}\right|=O\left(\frac{v^{\delta k}}{p_{v}}\right) \tag{15}
\end{equation*}
$$

If $\left\{X_{n}\right\}$ is an almost increasing sequence satisfying the conditions

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=0(1), \text { as } n \rightarrow \infty, \tag{16}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty, \tag{17}\\
\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n}<\infty, \tag{18}\\
\sum_{n=1}^{m}\left(\frac{p_{n}}{P_{n}}\right)^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \text { as } m \rightarrow \infty, \tag{19}
\end{gather*}
$$

where $t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}$, then $\sum a_{n} \lambda_{n}$ is summable- $\left|\bar{N}, p_{n}, \delta\right|_{k}, k \geq 1,0<\delta \leq 1 / k$.
Subsequently, Savas and Rhoades (2007) have extended Theorem-B to $\left|A_{k}\right|$ summability factor establishing the following theorem.

Theorem 2.3.

Let $A=\left(a_{n v}\right)$ be a lower triangular matrix with non-negative entries such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1,2, \ldots \tag{20}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1 \tag{21}\\
n a_{n n}=O(1) \tag{22}
\end{gather*}
$$

Further, let $\left\{\lambda_{n}\right\}$ be a sequence such that

$$
\begin{align*}
& \sum_{n=1}^{m}\left|\Delta \lambda_{n}\right|=O(1) \tag{23}\\
& \sum_{n=1}^{m} a_{n n}\left|\lambda_{n}\right|^{k}=O(1) \tag{24}
\end{align*}
$$

and $\left\{s_{n}\right\}$ be a bounded sequence. Then, $\sum a_{n} \lambda_{n}$ is summable- $|A|_{k}, k \geq 1$.
Very recently, Ozarslan and Karakas (communicated) extended Theorem-C, by establishing the following theorem.

Theorem 2.4.

Let $A=\left(a_{n v}\right)$ be a lower triangular matrix with non-zero diagonal entries such that

$$
\begin{equation*}
\bar{a}_{n 0}=1, n=0,1,2, \ldots, \tag{25}
\end{equation*}
$$

$$
\begin{gather*}
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1 \\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \\
\left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right) \tag{27}
\end{gather*}
$$

Let $\left\{X_{n}\right\}$ be an almost increasing sequence and sequence $\left\{\frac{\phi_{n} p_{n}}{P_{n}}\right\}$ non-increasing. Let $\left\{\lambda_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences satisfying (8) to (12). If, in addition the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \phi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \text { as } m \rightarrow \infty \tag{29}
\end{equation*}
$$

is satisfied, where t_{n} is as defined in Theorem 2.1., then, the series $\sum a_{n} \lambda_{n}$ is summable $\phi-\left|A, p_{n}\right|_{k}, k \geq 1$.

3. Main result

In the present paper we generalize the above theorems to $\varphi-\left|A, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$ summability by proving Theorem 3.1.

Theorem 3.1.

Let $A=\left(a_{n v}\right)$ be a lower triangular matrix with non-zero diagonal entries such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1,2, \ldots \tag{30}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1 \tag{31}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{32}\\
\left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right) \tag{33}
\end{gather*}
$$

Let $\left\{X_{n}\right\}$ be an almost increasing sequence and sequences $\left\{\phi_{n}^{\delta k+k-1}\right\}$ and $\left\{\frac{p_{n}}{P_{n}}\right\}$ non-increasing. Let, also $\left\{\lambda_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences satisfying (8) to (12). If, in addition, the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \text { as } m \rightarrow \infty \tag{34}
\end{equation*}
$$

is satisfied, the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|A, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, where t_{n} is as defined in Theorem 2.1.

For the proof of the theorem, we require the following lemma.
Lemma 3.1. (Mazhar, 1997)
If $\left\{X_{n}\right\}$ is an almost increasing sequence satisfying conditions (10) and (11), then we have

$$
\begin{equation*}
n X_{n} \beta_{n}=O(1) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty . \tag{36}
\end{equation*}
$$

Proof of the theorem

Let $\left\{T_{n}\right\}$ be the $A=\left(a_{n v}\right)$ transform of the series $\sum a_{n} \lambda_{n}$. Then, using (4), we have

$$
\begin{aligned}
\Delta T_{n} & =\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} \\
& =\sum_{v=1}^{n} \frac{\left(\hat{a}_{n v} \lambda_{v}\right)}{v}\left(v a_{v}\right) \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right)(v+1) t_{v}+\frac{a_{n n} \lambda_{n}}{n}(n+1) t_{n}
\end{aligned}
$$

(using Abel's partial summation)
$=\left(\frac{n+1}{n}\right) a_{n n} t_{n}+\sum_{v=1}^{n-1}\left(\frac{v+1}{v}\right)\left(\Delta_{v} \hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1}\left(\frac{v+1}{v}\right) \hat{a}_{n, v+1}\left(\Delta \lambda_{v}\right) t_{v}$
$+\sum_{v=1}^{n-1} \frac{1}{v} \hat{a}_{n, v+1} \lambda_{v+1} t_{v}$
$=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}$, say.

Using (7) and Minkowski's inequality, in order to complete the proof of the theorem, it is enough to show that

$$
\sum_{n=1}^{\infty} \phi_{n}^{\delta k+n-1}\left|T_{n, i}\right|^{k}<\infty, \text { for } i=1,2,3,4
$$

We have

$$
\begin{aligned}
\sum_{n=1}^{m} \phi_{n}^{\delta k+k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m} \phi_{n}^{\delta k+k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \phi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k} .
\end{aligned}
$$

Using Abel's partial summation

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}, \text { using (34) } \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{n}, \text { using (9) } \\
& =O(1), \text { as } m \rightarrow \infty, \text { using (36) and (12) }
\end{aligned}
$$

Next,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta n+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

using Holder's inequality with indices $k \& k^{\prime}$ with $\frac{1}{k}+\frac{1}{k^{\prime}}=1, k>1$

$$
=O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right)
$$

$$
\begin{aligned}
&=O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta n+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right), \text { using (32) } \\
&= O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \phi_{n}^{\delta n+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&= O(1) \sum_{v=1}^{m} \phi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} a_{v v} \\
&=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta v+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|^{n}\left|t_{v}\right|^{k}, \text { using (32) } \\
&=O(1), \text { as above. }
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta n+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|t_{v}\right|\right)^{k}, \operatorname{using}(9) \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{k-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\right)^{k-1},
\end{aligned}
$$

using Holder's inequality with $\frac{1}{k}+\frac{1}{k^{\prime}}=1, k>1$,

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n, v}\right)\right| \beta_{v}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{k-1} v\left|\Delta_{v}\left(\hat{a}_{n, v}\right)\right| \beta_{v}\right)^{k-1} \\
& \quad \quad \operatorname{using}(33) \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1} \sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n, v}\right)\right| \beta_{v}\left|t_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n, v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{t}\left(\hat{a}_{n, v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} v \beta_{v}\left|t_{v}\right|^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k} v \beta_{v}\left|t_{v}\right|^{k} \\
& =O(1)\left\{\sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{i=1}^{v} \varphi_{i}^{\delta k+k-1}\left(\frac{p_{i}}{P_{i}}\right)^{k}\left|t_{i}\right|^{k}+m \beta_{m} \sum_{i=1}^{m} \varphi_{i}^{\delta k+k-1}\left(\frac{p_{i}}{P_{i}}\right)^{k}\left|t_{i}\right|^{k}\right\} \\
& =O(1)\left\{\sum_{v=1}^{m} \Delta\left(v \beta_{v}\right) X_{v}+m p_{m} X_{m}\right\} \\
& =O(1)\left\{\sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+\sum_{v=1}^{m-1} \beta_{v} X_{v}+m \beta_{m} X_{m}\right\} \\
& =O(1), \operatorname{using}(11),(35), \text { and (36). }
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n, v}\right)\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|\right)^{k}, \operatorname{using}(334) \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1},
\end{aligned}
$$

using Holder's inequality

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1} k_{a_{n n}} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1} \sum_{v=1}^{n+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \phi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} \phi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} a_{n v} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k+k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1), \text { as above. }
\end{aligned}
$$

This completes the proof of the theorem.

4. Conclusion

If a series is absolute summable, then it is summable by the same summability method. Similarly, if a series is summable by some indexed summability method, then it is absolutely summable by the same method. Different authors established many results on indexed summability of different summability methods of infinite series as well as Fourier series. Some authors established certain results on indexed summability of factored series. The present paper is one of them. We have established a result on generalized matrix indexed summability of a factored series by extending the results of Bor, Savas and Rhoades, as well as Ozarslan and Karakas. For $\delta=0$, Theorem 2.4. is coming as a particular case of our theorem. By taking $\phi_{n}=\frac{P_{n}}{p_{n}}$ and $\delta=0$, Theorem 2.3 is coming as a particular case of our theorem. Furthermore, by taking $\phi_{n}=\frac{P_{n}}{p_{n}}, a_{n v}=\frac{p_{v}}{P_{n}}$, Theorem 2.2 is coming as a particular case of our theorem and taking $\left\{X_{n}\right\}$ as a positive non-decreasing sequence, $\phi_{n}=\frac{P_{n}}{p_{n}}, a_{n v}=\frac{p_{v}}{P_{n}}$ and $\delta=0$, Theorem 2.1. follows from our theorem. The theorem can be studied for $\phi-\left|A, p_{n} ; \delta, \mu\right|_{k}$ summability of a factor series. This can be further studied by relaxing the conditions placed on p_{n}.

Acknowledgement

The authors are thankful to the reviewers for their valuable suggestions for the improvement of the paper.

REFERENCES

Bari, N.K. and Steckin, S.B. (1956). Best approximations and differential properties of two conjugate functions, Trudy Moskov, Mat. Obsc.5, pp. 483-522 (in Russian).

Bor, H. (1985). On two summability methods, Math. Proc. Camb. Philos. Soc., 97, pp. 147-149.
Bor, H. (1996). On $\left|\bar{N}, p_{n}\right|_{k}$-summability factors, Kuwait J. Sci. eng., 23, pp. 1-5.
Bor, H (2010). On an application of almost increasing sequence, Math Common, vol.15, no.1, pp. 57-64.
Bor, H (2010). On an application of almost increasing sequence, Math Common, vol.15, no.1, pp. 57-64.
Mazhar, S.M. (1997). A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica, 25, pp 233-242.
Ozarslan, H.S and Karakas, A. (2015). A new application of almost increasing sequences, An.Stint.Univ. At.I. Cuza.Lasi. Mat. (N.S), 61, pp. 153-160.
Ozarslan, H.S and Karakas, A. (2017), A new theorem on $\phi-\left|A, p_{n}\right|_{k}$ summability method, under communication.
Savas, E and Rhoades, B.E (2007). A note on $|A|_{k}$ - summability factors, Non-linear analysis, 66, 1879-1883.
Sulaiman, W.T (2003). Inclusion theorems for absolute matrix summability methods of an infinite series, IV, Indian J. Pure. Appl. Math. 34(11), pp 1547-1557.

