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Abstract

Some results have been established on absolute index Riesz summability factor of an infinite
series. Furthermore, these kind of results can be extended by taking other parameters and an
absolute index matrix summability factor of an infinite series or some weaker conditions. In

the present paper a new result on generalized absolute index matrix summability factor of an
infinite series has been established.
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1. Introduction

Let Zan be an infinite series and {sn} be its sequence of partial sums. Let {p,} be a sequence
of non-negative numbers with P, =>"p, >, asn—wand P, =p, =0,i>1 Then, the

v=0
sequence to sequence transformation

n

1
t =— S 1
n Pn e~ pv \' ( )

defines the (N, P )-mean of the sequence {Sn} generated by the sequence of coefficients {pn }

The series Zan is said to be summable ‘N, pn‘k, k>1, if (Bor, 1985)

n=1 pn

i (EJ It —t, | < oo. @)

For a lower triangular matrix A= (a,, ), we define the matrices A=(a,, ) and A=(4,, ) as
follows:

a, =2, a, (3)

and &y =8y — 8,4, g0 = gy = 8gp, N=12,....

Clearly A and A are lower semi-matrices. For the sequence of partial sums {sn} of the series
> a, let
A(s)=> ay s (4)
k=0

Then, A, (s) defines a sequence to sequence transformation {s, ! to {A,(s)}. From (4) we have
A(s)=> a, a.
k=0

Subsequently, we get

where
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Definition 1.1.

The series Zan is said to be summable \A, Pyl ,» K =1 if (Sulaiman, 2003)

o

5 (E—J [AA,(s)" <o (5)

n=1
Definition 1.2.

If {(pn} is a sequence of positive real numbers, then, the series Zan Is said to be summable
@ —|A, p,|. k 21, if (Ozarslan and Karakas, 2015)

o k
D ot AA(s) <o 6)
n=1

and summable ¢ — |A, p,, ; 5\k, k>16>0,if
k

> oA A(s) <o )

n=1
If we take 0 =0, then ¢—|A, p, ;5| summability reduces to ¢ —\A, pn\k -summability. If we

summability reduces to |A, P,|. -summability. Also, if we take

|k |k

P
take ¢, =—", then ¢—|A, p,
P

n

a, = % then @ — |A, p,|, summability reduces to ¢ —|N, p,| summability. If we take

n

P _
@, =—"and a,, = Puthen @ —|A, P, summability reduces to |N, pn‘k-summability.

Pn P
Definition 1.3.

A sequence of positive numbers {b,} is said to be almost increasing if there exists a positive

increasing sequence {cn} and two positive constants A and B such that Ac, <b, < Bc, (Bari and
Steckin, 1956).

2. Known Results

Dealing with summability factors of infinite series, Bor (1996) has proved the following theorem.
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Theorem 2.1.
Let {pn} be a sequence of positive numbers such that
P, =0(np,), asn—>w . (8)

Let {X,} be a positive non-decreasing sequence and that there be sequences {/,} and {4,} such

that
A%, [< 5, (9)
p,—0,asn—>o, (10)
Zw: njAB| X, <o (11)
n=1
and
|4, X, =0(1), as n >0
(12)
If
Zm:&|tn|k:0(xm),as m—> oo, (13)
n=1
1 _
where t, :—12 va,, then Zan/ln is summable-‘N, pn‘k,k >1.
n+1,3

Extending the above theorem to \N, pn,5\k ,k>1,0<6<1, and taking a weaker condition almost

increasing instead of {Xn} to be a positive non-decreasing sequence, Bor (2010) has established
the following result:

Theorem 2.2.

Let {pn} be a sequence of positive numbers such that

P, =0(np,), as n— o, (14)
and

© ok

S|P =o[v—j . (15)

n= Pn pn—l pv

If {Xn} is an almost increasing sequence satisfying the conditions

|4, X, =0(1), as n — oo, (16)
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i n‘A2 A| X, < oo, 17)
n=1
Sh oo, (18)
n=1 N
m pn Sk-1 )
Zl: o t.] =0(X,),as m— oo, (19)

1 & _
where t, :—12 va,, then > a, A, is summable-|N, p,, 8] ,k>1,0<5<1/k,
n+15

Subsequently, Savas and Rhoades (2007) have extended Theorem-B to |Ay|summability factor
establishing the following theorem.

Theorem 2.3.

Let A= (anv) be a lower triangular matrix with non-negative entries such that

a,=1n=012,.. (20)
a,,, 2a,, fornzv+1 (21)
na,, =0(1) (22)
Further, let {4, } be a sequence such that
nZE,IMnI =0(1), (23)
a4l =0 24)
=

and {s,} be a bounded sequence. Then, D a, A, is summable-|A| ,k >1.

Very recently, Ozarslan and Karakas (communicated) extended Theorem-C, by establishing the
following theorem.

Theorem 2.4.

Let A= (anv) be a lower triangular matrix with non-zero diagonal entries such that

a,=1n=012.., (25)

Published by Digital Commons @PVAMU, 2018
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a,,, 2a,, fornzv+1, (26)
o -o[2).
Pﬂ
(27)
én,v+1‘ = O(V‘Av (énv X) (28)

Let {Xn} be an almost increasing sequence and sequence {%} non-increasing. Let {ﬂﬂ} and

n

{ﬂn} be sequences satisfying (8) to (12). If, in addition the condition

i(é:_l{%] |tn|k =0(X,),a3m— o (29)

n=1

is satisfied, where t  is as defined in Theorem 2.1., then, the series Zanln is summable
—|A P, |, k=1.

3. Main result

In the present paper we generalize the above theorems to g0—|A, pn;§|k, k>16>0
summability by proving Theorem 3.1.

Theorem 3.1.

Let A= (am,) be a lower triangular matrix with non-zero diagonal entries such that

a,=1Ln=012,.., (30)

a, ., 2a,, fornzv+1, (31)
_o| P

ann _O( Pn ] ' (32)

81| =002, (8,,)). (33)
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n

Let {Xn} be an almost increasing sequence and sequences {¢5k+k‘1} and {&} non-increasing.
n

Let, also {ﬂﬂ} and { n} be sequences satisfying (8) to (12). If, in addition, the condition

k
Z¢fk+kl(%] |tn|k =0(X,), am-w (34)

n=1

is satisfied, the series Zanﬂ.n is summable gp—‘A, P, ;5‘k, k>1,6>0, where t, is as
defined in Theorem 2.1.

For the proof of the theorem, we require the following lemma.
Lemma 3.1. (Mazhar, 1997)

If {Xn} is an almost increasing sequence satisfying conditions (10) and (11), then we have

an ﬂn =O(l) (35)

and

o0

> B X, <., (36)

n=1
Proof of the theorem

Let {T } bethe A=(a,,) transform of the series Zan A, . Then, using (4), we have

n
ATn :Zé'nvavﬂv
1

Vzi;(énv/%)(vav)

\'

n-1 A
_ AV(%)(vu)tﬁaLfn(nu)tn,

v=l

(using Abel’s partial summation)

= (n—_'_lj anntn +2 (VTH-j[AV énvj j‘\/tv + 2 (Vvilj a’:”v‘”'l (Aﬂv)t"

n v=1 v=1

n-1

1,
+ Z;an,wl 2\/+l tv

V=

=T+ Tn]2 + Tn,3 + Tn‘4, say.
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Using (7) and Minkowski’s inequality, in order to complete the proof of the theorem, it is enough
to show that

i g2 T | <00, for i=1,2,3,4.
n=1
We have
igbfkw& T, = i¢5"+kl K |ﬂ,| |t|
n=1 n=1

k
~00 % g B 1o o)
m k
—o0) 3ot B a1

n

—O(l)z A|ﬂ, | z ¢Vék+k l( j |t| +O(l)|ﬂ« |Z¢ék+k l[pn] |t |

Using Abel’s partial summation
m-1
=0@) Y. [A4,| X, + O@) [4,| X, using (34)
n=1
=0(@) Ei L. X, +0@Q) |/1m| X, using (9)
n=1

=0(), as m— oo, using (36) and (12).
Next,

(aw)

n,2

nZ:; ¢n§k+k—1 T — Z ¢6n+k 1( |/’i\/| |t\,|J

V=

;

A, (&)

=0W X ¢ ( |, (@, A Itvlk][ )

using Holder’s inequality with indices K & k" with % + % =1k>1

n-1

A, (&)

_O(l) z ¢ék+k—1 k -1 ( |ﬂ\,|k |tv|kj

v=1
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m+1 k-1 n-1
=0 > ¢:‘“+k-1[%J (Z A, (&) |4]" |tv|kj, using (32)
n=2 n v=1
k-1
C k k & on+k-1 p A
o0 LAl 1 X 2| s, ()
v=1 n=v+1 n
—o(1) i gt ( pv] |A«/| |t é
v=1 v n=v+1

k—
—0(1)2 ‘**“( ] A1 a,

_O(l)z otk 1( J ‘ﬂv‘ ‘t‘ using (32)

=0(1) , as above.
Also,

m+1

. K
S o o S g 1[2 o \wmkj
v=1

ol (e K
- O(l) Z ®n i ( n v+1‘ﬂv ‘t , using (9)

v=l
] k-1
an,v+1‘ :Bv !

1

=~

n-1
-0 3 g [ 4l ) [

v=1

<
Il

using Holder’s inequality with % + % =1 k>1,

o o (S (S e

using (33)
=0(1) Z g talt Z viA, (8,) B, )"
=0() Z ¢(§—J Z (@) A S
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A, (&)

:O(l) ivﬂv |tv|k z ¢5k+k 1[ pn]

n=v+l

00 v I ¢(%} > &)

n n=v+1

k-1
00 3 (2] uanl a,
v=l

V'

=0() Zm: (pf”kl[PJ v, |t|

v=l Vv

0(1){iA( V)X, +mop, xm}

-1

3

Avﬂ Z ¢)6k+k 1( ) |1'| +m B, i ¢iék+k—l (%J Mk}

I
oL

:O(l){mz A B X, +Zﬁ X, +mpg. X }
= 0O(), using (11), (35), and (36).
Finally,
= t,
S et —ow S, e (z L ']
—o) Y g (Z A, (&) e |tv|j , using (334)

-0t ¥, ¢( INCR o MH_ (anv)j ,

using Holder’s inequality

~00 3 1S o @)l )
m+1 -
~ow $} [E,—] [, (8 ) At

A, (&)

m m+1 k=L
~om St 3 e (2]
v=1

n=v+1l n
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A, (&)

m ) k=1 m+1
o0 (2] it ¥
v=1 v

n=v+l

k-1

o0 3 (2] i)
v=1 IV,

k
-0 3 a2 ek
v=l Vv
=0(), as above.

This completes the proof of the theorem.

4. Conclusion

If a series is absolute summable, then it is summable by the same summability method. Similarly,
if a series is summable by some indexed summability method, then it is absolutely summable by
the same method. Different authors established many results on indexed summability of different
summability methods of infinite series as well as Fourier series. Some authors established certain
results on indexed summability of factored series. The present paper is one of them. We have
established a result on generalized matrix indexed summability of a factored series by extending
the results of Bor, Savas and Rhoades, as well as Ozarslan and Karakas. For 6 =0, Theorem 2.4.

. : . _ P .
is coming as a particular case of our theorem. By taking ¢, = p—” and 6=0 Theorem 2.3 is

n

. . . P
coming as a particular case of our theorem. Furthermore, by taking ¢, = —, a,, = B , Theorem
p

n n
2.2 is coming as a particular case of our theorem and taking {Xn} as a positive non-decreasing
P
sequence, ¢, = —, a,, = B
P

n n

and 6 =0, Theorem 2.1. follows from our theorem. The theorem can

be studied for ¢— |A, P, ;5,,u|k summability of a factor series. This can be further studied by
relaxing the conditions placed on p, .
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