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Abstract

The problem of resonance in a geocentric Satellite under the combined gravitational forces of the
Sun and the Earth due to Poynting-Robertson (P-R) drag has been discussed in this paper with the
assumption that all three bodies, the Earth, the Sun and the Satellite, lie in an ecliptic plane. Our
approach differs from conventional ones as we have placed evaluated velocity of the Satellite in
equations of motion. We observed five resonance points commensurable between the mean motion
of the Satellite and the average angular velocity of the Earth around the Sun, out of which two
resonances occur only due to velocity dependent terms of P-R drag. Amplitudes and time periods
are periodic with respect to the angle (angle between direction of vernal equinox and the direction
of the Sun) which have been evaluated graphically in this paper. We have also found that amplitude
as well as time-period decreases as orbital angle of the Earth around the Sun increases in the first
quadrant.
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1. Introduction

The problem of resonance in the Solar system is one of the important problem and it plays a
significant role in dynamical system. Resonance happens when any two or more frequencies are
commensurable. Out of five general types of resonances, the most obvious type in a planetary
system is mean motion resonance, which occurs when orbital periods of two Satellites or planets
are close to a ratio of small integers.

Poynting (1903); Robertson (1937) investigated that the radiation pressure, the Doppler shift of
the incident radiation and the Poynting drag are the three terms which generally constitutes the
radiation force on a particle exerted by a radiating body. Frick and Garber (1962) have studied the
in-plane perturbations of a geosynchronous Satellite under the gravitational forces of the Moon,
the Sun and the oblate Earth. They have assumed that all the three bodies (Sun, Moon, Earth)
lie in the plane of ecliptic and have also assumed that orbital plane of the Satellite and reference
plane coincide with the Earth’s equatorial plane. Brouwer (1963) has discussed the resonance
in the motion of an artificial satellite caused by Solar radiation pressure. Bhatnagar and Gupta
(1977) examined resonance in the motion of an artificial Earth’s Satellite caused by Solar-Radiation
pressure. They expanded Hamiltonian and the generating function in the power series of a small
parameter, which depends on Solar Radiation pressure. Bhatnagar and Mehra (1986) have also
discussed the motion of geosynchronous Satellite under the combined gravitational effects of Sun,
Moon and the oblate Earth with radiation pressure of the Moon. They have shown that orbital
plane of the synchronous Satellite rotates with an angular velocity lying between 0.0420 per year
and 0.0580 per year. They also observed that regression period increases as both orbital inclination
and the altitude increase. The radial deviation and the tangential deviation have been determined in
the in-plane motion of a geosynchronous Satellite under the gravitational effects of the Sun, Moon
and the oblate Earth by Bhatnagar (1990).

Ragos (1995) numerically studied the existence and stability of equilibrium points for particles
moving in the vicinity of two massive bodies which exert light radiation pressure. Ragos and Vra-
hatis (1995) have discussed the photo-gravitational circular restricted three body problem including
the P-R effect to describe the effect in the vicinity of two massive radiating bodies. A modified bi-
section method is used to compute the position of the equilibrium and thereby establishing the
stability. Liou and Zook (1995) have explored the effect of radiation pressure, P-R drag, and Solar
wind drag on the dust grains trapped in the mean motion resonances with the Sun and Jupiter in
the restricted three body problem (R3BP) with negligible dust mass. They especially examined the
evolution of dust grain in the 1:1 resonances. Kushvah (2009) investigated the effect of P-R drag on
linear stability of equilibrium points in the generalized photo gravitational Chermnykh’s problem
when a bigger primary is radiating and a smaller primary is an oblate spheroid. It was found that
when P-R effect is taken into account, these points were unstable in a linear sense.

Some results on the dynamics of the regularised R3BP with dissipation have been discussed by
Alessandra Celletti et al. (2011). They found that a large fraction of test particles with initial con-
ditions in the interior region collides with the Sun. They also found out many interesting and impor-
tant results. By taking two bodies, one luminous and another non-luminous in elliptical three-body
problem Jagdish et al. (2012) studied the motion of infinitesimal mass around seven equilibrium
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points. There exists conditional stability around triangular points. Lhotka et al. (2014) surveyed
the stability of motion to the Lagrangian equilibrium points L4 and L5 in the framework of the
spatial elliptic restricted three body problem, subject to the radial component of P-R drag. Yadav
and Aggarwal (2013a, 2013b, 2014, 2015), in the series of papers, discussed the resonances in
a geo-centric synchronous Satellite under the gravitational forces of the Moon, the Sun and the
Earth including its equatorial ellipticity. The amplitude and the time period of the oscillation was
determined by using the procedure of Brown and Shook (1933).

Jain and Aggarwal (2015) investigated the existence of non-collinear liberation points and their
stability in the circular restricted three body problem in which they considered the smaller primary
as an oblate spheroid and bigger one a point mass including the effect of dissipative forces, es-
pecially Stokes drag. Other studies regarding resonance or P-R drag may be seen in Mehra et al.
(2016), Lhotka et al. (2016) and Pushparaj and Sharma (2017).

In majority, authors have discussed only two of the three i.e. P-R drag, three-body problem or
resonance. We have taken into account all of the three above, which makes our work different from
others. This paper aims to find the resonance in the motion of geocentric Satellite under Poynting-
Robertson drag of the three-body problem. Diligent scrutinization of equations of motion in Sect.
2 of this paper unveils that there are five points Ri’s, i = 1 − 5, of resonance in the motion of the
orbiting satellite due to the presence of m and β̇ where m is the mean motion of the satellite and
β̇ the average angular velocity of the sun. Amplitudes and time periods at resonance points have
been evaluated in Sect. 3. This section also explores the variation of amplitude and time period
with respect to β and different values of q. The paper ends with the Sect. 4 where the discussions
and conclusions are presented.

2. Statement of the problem and Equations of motion

Let S represent the Sun, E the Earth and R the Satellite with their masses MS , ME and MR respec-
tively. The Satellite moves around the Earth in an ecliptic plane with angular velocity ~ω∗ and the
system is also revolving with the same angular velocity ~ω∗. Let ~r

E
, ~rs and ~r represent the vectors

from Sun and Earth, Sun and Satellite and Earth and Satellite respectively; γ be the vernal equinox
and c0 the velocity of light. Let X, Y , Z be the co-ordinate system of the Satellite with origin at the
center of the Earth with unit vectors Î, Ĵ and K̂ along the co-ordinates axes respectively. Let X0,
Y0 and Z0 be another set of co-ordinate system in the same plane, with origin at the center of the
Earth, and unit vectors Î0 ,Ĵ0 and K̂0 along the co-ordinate axes respectively (Figure 1(b)). Let ~FR
be the Poynting-Robertson drag per unit mass acting on the Satellite due to radiating body (Sun)
in the arbitrary direction as shown in Figure 1(a), given by

MR
~FR = ~f1 + ~f2 + ~f3, (Ragos, 1995)

3
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(a) Without co-ordinate axis (b) With co-ordinate axis

Figure 1. Configuration of the three body problem

where

~f1 = F
~rs
rs

(radiation pressure),

~f2 = −F (~v · ~rs)
c0

~rs
rs

(doppler shift owing to the motion),

~f3 = −F ~v

c0
,

= force due to the absorption and
re-emission of part of the incident radiation,

~v = velocity of R,
F = the measure of the radiation pressure.
α = the angle between direction of vernal equinox

and the direction of the Satellite,
β = the angle between direction of vernal equinox

and the direction of the Sun,

The relative motion of the Satellite with respect to the Earth can be obtained by

~̈r = ~̈rs − ~̈rE ,

=
~FSR + ~FER + ~F

R
~M

R

M
R

−
~FSE
ME

,

where

~FSR = −GMsMR

rs3
~rs,

~FSE = −GMsME

r3
E

~r
E
,

~FER = −GMR
ME

r3
~r,

G = Gravitational constant.
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Thus,

~̈r = −qFg
~rs
rs
− GME

r3
~r +

GMs

r3
E

~r
E
− (1− q)Fg

(
(~v · ~rs)
c0

~rs
rs
− ~v

c0

)
,

where

q = 1− F

Fg
, Fg =

GMs

r2s
, q = 1− p, p =

F

Fg
.

β̇2 =
GMs

r3E
,

also,

~r = rÎ, ~r
E

= r
E
r̂
E
, r̂

E
= cosβÎ◦ + sinβĴ◦,

~r
E

= r
E

cosβÎ◦ + r
E

sinβĴ◦.

Using these values in the equation of motion of the Satellite with respect to the Earth in vector
form can be written as

~̈r = −qGMs
~rs
r3s
− GME

r3
~r + β̇2r

E
(cosβÎ◦ + sinβĴ◦)

− (1− q)Fg
[

(~v · ~rs)
c0

~rs
rs

+
~v

c0

]
. (1)

In the rotating frame of reference with angular velocity ~ω∗ of the satellite about the center of the
earth, we get

~̈r =
d2r

dt2
Î + 2

dr

dt
( ~ω∗ × Î) + r

(
d ~ω∗

dt
× Î
)

+ r
[
( ~ω∗ · Î) ~ω∗ − ( ~ω∗ · ~ω∗)Î

]
, (2)

where

~ω∗ = α̇K̂.

Taking dot products of Equations (1) and (2) with Î, and Ĵ respectively, and equating the respec-
tive coefficients, we get the equations of motion of the Satellite in the synodic coordinate system
(Bhatnagar and Mehra (1986))

d2r

dt2
− rα̇2 +

GME

r2
= β̇2r

E
cos(α− β)− qGMs

~rs · Î
r3s

− (1− q)GMs

r2s

[
(~v · ~rs)
c0rs

(~rs · Î) +
(~v · Î)

c0

]
, (3)

d(r2α̇)

dt
= −β̇2r

E
r sin(α− β)− qGMsr

~rs · Ĵ
r3s

− (1− q)rGMs

r2s

[
(~v · ~rs)
c0rs

(~rs · Ĵ) +
(~v · Ĵ)

c0

]
. (4)

Equations (3) and (4) are the required equations of motion of the Satellite in polar form. These
equations are not integrable, therefore we follow the perturbation technique and replace r and α̇,
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by their steady state values r0 and α̇0, also we may take α = α̇0t and β = β̇t. Putting the steady
state values in the R.H.S of Equations (3) and (4), we get

d2r

dt2
− rα̇2 +

GME

r2
= β̇2rE cos(α̇0 − β̇)t−qGMs

~rs · Î
r3s

−(1−q)GMs

r2s

[
(~v · ~rs)(~rs · Î)

c0rs
+

(~v · Î)

c0

]
, (5)

d(r2α̇)

dt
= −β̇2rEr0 sin(α̇0 − β̇)t− qGMsr0

~rs · Ĵ
r3s

− (1− q)r0
GMs

r2s

[
(~v · ~rs)
c0rs

(~rs · Ĵ) +
(~v · Ĵ)

c0

]
. (6)

Now,

~v =
∂~rs
∂t

+ ~ω∗ × ~rs,

= r
E
β̇ sin(α̇0 − β̇)tÎ + r

E
β̇ cos(α̇0 − β̇)tĴ + α̇0r0Ĵ .

Table 1. Relation between coordinate system

I0 J0 K0

I cosα sinα 0

J − sinα cosα 0

K 0 0 1

Substituting above values in Equation (5), transformations (Table 1) and taking r2α̇= constant ,
r = 1

u we have

d2u

dα2
+ u =

GME

r40α̇0
2 −

r
E
β̇2u2 cos(α̇0 − β̇)t

α̇2
0

+
r
E
GMsqu

2 cos(α̇0 − β̇)t

r3s α̇
2
0

+
GMsqu

r3s α̇
2
0

−
GMs(1− q)ur2E(α̇0 − β̇) sin 2(α̇0 − β̇)t

2c0r3s α̇
2
0

− GMs(1− q)rE
(α̇0 − β̇) sin(α̇0 − β̇)t

c0r3s α̇
2
0

+
GMs(1− q)u2rE

β̇ sin(α̇0 − β̇)t

c0r2s α̇
2
0

. (7)

The solution of unperturbed system

d2u

dα2
+ u =

GME

r40α̇0
2 ,

is given by
l

r
= 1 + e cos(α− ω),

6
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where

r2α̇ = constant,
l = a(1− e2),
e, ω = constants of integration,

u =
1 + e cos(α− ω)

a(1− e2)
.

Let us consider

α− ω = f = α̇0t = mt(say).

Since e < 1, we have

(1 + e cosmt)h1 ≈ 1 + h1e cosmt.

On simplifying Equation (7) we get

d2u

dt2
+m2u = P1 + P2 cosmt+ P3 cos β̇t+ P4 sin β̇t+ P5 cos(m− β̇)t

+ P6 sin(m− β̇)t+ P7 sin 2(m− β̇)t+ P8 cos(2m− β̇)t

+ P9 sin(2m− β̇)t+ P10 sin(m− 2β̇)t+ P11 sin(3m− 2β̇)t. (8)

The solution of Equation (8) is given by

u = A cos(mt− ξ) +
P1

m2
+
P2t sinmt

2m
+

P3 cos β̇t

m2 − (β̇)2

+
P4 sin β̇t

m2 − (β̇)2
+
P5 cos(m− β̇)t

m2 − (m− β̇)2
+
P6 sin(m− β̇)t

m2 − (m− β̇)2

+
P7 cos(2m− 2β̇)t

m2 − (2m− 2β̇)2
+
P8 cos(2m− β̇)t

m2 − (2m− β̇)2

+
P9 sin(2m− β̇)t

m2 − (2m− β̇)2
+
P10 sin(m− 2β̇)t

m2 − (m− 2β̇)2

+
P11 sin(3m− 2β̇)t

m2 − (3m− 2β̇)2
, (9)

where Pi’s are are given in the Appendix A. It is clear that the motion becomes indeterminate if any
one of the denominator vanishes in equation (9), which are the points at which resonance occurs.
It is found that resonance occurs at five points m = β̇, m = 2β̇, 3m = β̇, 2m = β̇, 3m = 2β̇. The
2:1 resonance repeated twice, 1:1 resonance occurs thrice while other resonances occur only once.
Out of all resonances, the 3:2 and 1:2 resonances occurs only due to P-R drag. We have also found
out the amplitude and time period at these resonance points.

3. Time period and amplitude atm = β̇

In our problem, the solution of Equation (8) is periodic and known which is a condition of Brown
and Shook (1933). So we follow the same to determine time periods and amplitudes at n = β̇. It is

7
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recommended to obtain the solution of Equation (8) when that of

d2u

dt2
+m2u = 0, (10)

is periodic and is known. The solution of Equation (10) is

u = v cos p,

where

p = mt+ ε̄,

m =
v1
v

= function of v; (11)

v, v1 and ε̄ are arbitrary constants. As we are probing the resonance in the motion of the Satellite
at the point m = β̇, the resulting Equation (9) can be written as

d2u

dt2
+m2u = LĀ cosmt = Lψ′,

where

L =
(1− q)GMser

2
E

(m− β̇)

4car3s(1− e2)
= constant,

Ā = −1,

ψ′ =
∂ψ

∂u
= Ā cosm′t, ψ = uĀ cosmt,

ψ =
vĀ

2
{cos(m′t+ p) + cos(m′t− p)}. (12)

Then,

dv

dt
=
L

V

∂u

∂p
ψ′ =

L

V

∂ψ

∂p
, (13)

dp

dt
= m− L

V

∂u

∂v
ψ′ = m− L

V

∂ψ

∂v
, (14)

where

V =
∂

∂v

(
m
∂u

∂p

)
∂u

∂p
−m∂2u

∂p2
∂u

∂v
(15)

= a function of v only.

Since m and V are functions of v only, we can put Equations (13) and (14) into canonical form
with new variables defined by,

dv1 = V dv, (16)

dB1 = −mdv1 = −mV dv, (17)

Equations (16) and (17) can be put in the form

dv1
dt

=
∂

∂v
(B1 + Lψ),

dp

dt
= − ∂

∂v
(B1 + Lψ). (18)

8
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Differentiating Equation (14) with respect to t and substituting the expression for dp
dt and dv

dt , we
have

d2v

dt2
=
L

V

(
∂m

∂v

∂ψ

∂p
−m ∂2ψ

∂p∂v
− ∂2ψ

∂v∂t

)
+
L2

V 2

(
∂2ψ

∂p∂v

∂ψ

∂v
− V ∂

∂v

(
1

V

∂ψ

∂v

)
∂ψ

∂p

)
. (19)

Since the last expression of Equation (19) has the factor L2 it may, in general, be neglected in a
first approximation. In Equation (12) we find p and t are present in ψ as sum of the periodic terms
with argument

p′ = p−mt.

In our case, the affected term is

ψ =
vĀ cos p′

2
. (20)

Equation (19) for p′ is then

d2p′

dt2
+ (m−m′)2 L

V

∂

∂v

(
1

m−m′
∂ψ

∂p′

)
= 0

or
d2p′

dt2
− (m−m′)2 L

2V

∂

∂v

(
vĀ

m−m′

)
sin p′ = 0. (21)

At first approximation, we put

v = v0, m = m0, V = V0.

Then Equation (21) can be written as

d2p′

dt2
− (m−m′)2 L

2V

∂

∂v

(
vĀ

m−m′

)
sin p′ = 0. (22)

If the oscillations are small, then Equation (22) may be put in the form

d2p′

dt2
− (m−m′)2 L

2V

∂

∂v

(
vĀ

m−m′

)
p′ = 0,

or
d2p′

dt2
+ c21p

′ = 0, (23)

where

c1 =

√
(1− q)GMserE(m0 − β̇)

8car3s(1− e2)

√√
v1

V0v0
, (24)

V0 = (V )0 =

{
∂

∂v
(m

∂y

∂p
)
∂y

∂p
−m∂2y

∂p2
∂y

∂v

}
0

,

= (
√
v1 cos2(mt+ ε̄)0),

=
√
v1 cos2(β̇0t+ ε̄0).

=
√
v1 cos2(βt+ ε̄0),

p′ = A sin(c1t+ λ0) (25)

9
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is a solution of (23), where

A =

√
v2
c1

,

v2, λ0 = contants of integration,
v′ = v −m′t.

The equation for v gives

v = m′t+A sin(c1t+ λ). (26)

Using Equations (13), (20) and (25) the equation for v gives

v = v0 + LĀ
( q
V

)
0

A

c1
cos(c1t+ λ), (27)

where v0 is determined from m0 = m′. Since m0 is a known function of v0, the amplitude A and
the time period T are given by

A =

√
v2
c1

, T =
2π

c1
,

where c2 is an arbitrary constant,

c1 =

√
(1− q)GMsem0r2E(m0 − β̇)√

8car3s(1− e2) cos(β + ε̄0)
.

Using Equation (10), v0 may be written as

v0 =

√
v1
m0

,

we may choose the constants of integration v1 = 1, v2 = 1, ε0 = 0. (Yadav and Aggarwal (2013)).

The amplitude ’A’ and time period ’T ’ are given by

A =
2
√

2car3s(1− e2)√
(1− q)GMsem0r2E(m0 − β̇)

cosβ,

T =
4π
√

2car3s(1− e2)√
(1− q)GMsem0r2E(m0 − β̇)

cosβ.

In the same manner we have calculated amplitudes and time periods at other points. Thereafter two
cases arise:

Case 1 If we take only Solar radiation pressure as perturbing force, then there are only three points
R1(m = β̇), R2(3m = β̇), R3(2m = β̇) at which resonance occurs. At critical point m = β̇ we get
amplitude A3 and time-period T3. Corresponding amplitudes and time-periods of our findings are
given in table 2 below.

Case 2 In addition to the above, if we consider velocity dependent terms of P-R drag, then five
points R1(m = β̇), R2(3m = β̇), R3(2m = β̇), R4(3m = 2β̇), R5(m = 2β̇) of resonance occur where
three points of resonance are same as in case 1, and 1 : 2 and 3 : 2 resonances occur only due to

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 12

https://digitalcommons.pvamu.edu/aam/vol13/iss1/12



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 183

velocity dependent terms of P-R drag. But amplitudes and time-periods at all resonance points are
not same as in the case of Solar radiation pressure. Corresponding amplitudes and time-periods of
the above are given in table 3, where Ai’s and Ti’s are are given in the Appendix A and Appendix
B respectively.

Table 2. Resonance Points with only radiation pressure as perturbing force

Resonance Amplitude(Ai) Time Period(Ti)
1 m = β̇ A3 T3

2 2m = β̇ A7 T7

3 3m = β̇ A6 T6

Table 3. Resonance Points for velocity dependent terms of P-R drag

Resonance Amplitude (Ai) Time Period (Ti)
1 m = β̇ A1, A2 T1, T2

2 2m = β̇ A8, A9 T8, T9

3 3m = β̇ A5 T5

4 m = 2β̇ A4 T4

5 3m = 2β̇ A10 T10

4. Discussions and Conclusions

-4 -2 2 4
β

-0.00010

-0.00005

0.00005

0.00010

Amplitude

-4 -2 2 4
β

-0.0005

0.0005

Time-period

(a) (b)
Figure 2. (a) Variation in Amplitudes for 0 < β < 900 at q1 = 0.25(Red), q2 = 0.45(Green), q3 = 0.65(Blue), (b)

Variation of Time-periods for 0 < β < 900 at q1 = 0.25(Red), q2 = 0.45(Green), q3 = 0.65(Blue)

In the present study the resonance in the motion of the Satellite in the Sun-Earth-Satellite system
have been studied under the influence of P-R drag effect by using the method of Brown and Shook
(1933). Firstly, we have derived the equations of motion of the geocentric Satellite in vector form
and further this equation is converted to polar form to obtain two system of equations, so that we
can apply the well known method discussed by Brown and Shook. Next, it is found that there
are five points R1(m = β̇), R2(3m = β̇), R3(2m = β̇), R4(3m = 2β̇), R5(m = 2β̇) at which
resonances occur where m ≈ α̇0 is average angular velocity of a Satellite and β̇ is average angular
velocity of the Earth. The 2:1 resonance occurs twice, 1:1 resonance occurs thrice while 1:2, 3:1
and 3:2 resonances occur only once. There are two resonance points 3:2 and 1:2 occur only due
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Figure 3. (a) Variation in Amplitude ’A’ with respect to β, −900 < β < 900 and q (0 < q < 1) at resonance 1:1,

(b) Time-period ’T’ for −900 < β < 900 and q (0 < q < 1) at resonance 1:1
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Figure 4. (a) Variation in Amplitude ’A’ with respect to β, −10 < β < 10 and q (0 < q < 1)at resonance 1:1, (b)

Time-period ’T’ for −10 < β < 10 and q (0 < q < 1) at resonance 1:1
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Figure 5. (a) Variation in Amplitude ’A’ with respect to β, −900 < β < 900 and q (0 < q < 1) at resonance 1:2,

(b) Time-period ’T’ for −900 < β < 900 and q (0 < q < 1) at resonance 1:2
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to velocity dependent terms of P-R drag. If we ignore perturbing force then resonance will occur
only at three points in the equation of motion of a Satellite. We have shown the effect of P-R drag
on amplitudes and time-periods. Further, we have evaluated the amplitudes and time periods of
the Satellite numerically by using, data mentioned in Appendix A. From Figure 2, we observe
that amplitude and time-period increases when q increases and it is maximum at β = 0. p is the
factor of velocity dependent terms of P-R drag, when q increases p decreases and hence when
P-R decreases then amplitude as well as time-period increases. Figure 3 explains the variation in
A1 and time-period T1 respectively for −900 < β < 900 and 0 < q < 1, at resonance 1 : 1 with
P-R drag. Above graphs show that amplitude and time-period decreases as β increases. Figure 4
also explains the amplitude and time period with respect to β. In this case it can be observed that
amplitude becomes very high of greater range of β but it is not in the case of velocity dependent
terms of P-R drag. Similarly, Figure 5 explains the variation in amplitude for −900 < β < 900

and 0 < q < 1 at resonance 1 : 2. Graphs show that amplitude is periodic with respect to β and it
increases (decreases) when q increases (decreases).

REFERENCES

Bhatnagar, K. B. and Gupta, B. (1977). Resonance in the restricted problem caused by solar radi-
ation pressure, Proc. of the Indian National Science Academy, Vol. 43, pp. 303–313.

Bhatnagar K.B. and Mehra, M. (1986). The motion of a geosynchronous satellite-I., Indian J. Pure
Appl. Math., Vol. 17, pp. 1438–1452.

Bhatnagar, K.B. and Kaur, M. (1990). The in-plane motion of a geosynchronous satellite under the
gravitational attraction of the Sun, the Moon and the oblate Earth, J. Astrophys. Astr., Vol. 11,
pp. 1–10.

Brouwer, D.(1963). Analytical study of resonance caused by solar Radiation Pressure, Dynamics
of Satelite symposium Paris. pp. 28–30.

Brown, E.W. and Shook, C.A. (1933). Planetary Theory. Cambridge University Press, Cambridge.
Celleti, A., Stefanelli, L., Lega, E. and Froeschle, C. (2011). Some results on the global dynamics

of the regularised R3BP with dissipation, Celest Mech Dyn Astr., Vol. 109, pp. 265–284.
Frick, R.H. and Garber, T.B. (1962). Perturbation of a synchronous satellite, The RAND Corpora-

tion R-399-NASA.
Jain, M. and Aggarwal, R. (2015). A study of non-collinear libration points in restricted three body

problem with stokes drag effect when smaller primary is an oblate spheroid, Asrophysics
Space Sci., Vol. 51, pp. 358.

Kushvah, B. S. (2009). Poynting-Robertson effect on the linear stability of equilibrium points in the
generalized photogravitational Chermnykh’s problem, Research in Astron. Astrophys, Vol. 9,
pp. 1049–1060.

Lhotka, C. and Celletti, A. (2015). The effect of Poynting-Robertson drag on the triangular La-
grangian points, Astrophys. Space Sci., Vol. 250, pp. 249–261.

Lhotka C., Celletti, A. and Gale, C. (2016). Poynting-Robertson drag and solar wind in the space
debris problem, The Monthly Notices of the Royal Astronomical Society, Vol. 460, pp. 802–

13

Kaur et al.: Resonance in the Motion of a Geocentric Satellite

Published by Digital Commons @PVAMU, 2018



186 Charanpreet Kaur et al.

815.
Liou, J. C. and Zook, H. A. (1995). Radiation Pressure, Poynting-Robertson Drag and solar wind

drag in the restricted three-body problem, ICARUS, Vol. 116, pp. 186–201.
Mishra, V.K., Sharma J.P. and Ishwar B. (2016). Stability of triangular equilibrium points in the

Photogravitational elliptic restricted three body problem with Poynting-Robertson drag, Inter-
national Journal of Advanced Astronomy, Vol. 4, No. 1, 33–38.

Poynting, J. H. (1903). Radiation in the Solar Systems, Its Effect on Temperature and Its Pressure
on Small Bodies, Philosophical Transactions of the Royal Society of London A., Vol. 202, pp.
525–552.

Pushparaj, N. and Sharma, R.K. (2007). Interior Resonance Periodic Orbits in Photogravitational
Restricted Three-body Problem, Advances in Astrophysics, Vol. 2, pp. 263–272.

Ragos, O. and Zafiropoulos, F. A. (1994). A numerical study of influence of the Poynting Robert-
son effect on the equilibrium points of the photo gravitational restricted three body problem,
Astron. Astrophys., Vol. 300, pp. 568–578.

Ragos, O., Zafiropoulos, F. A. and Vrahatis, M. N. (1995). A numerical study of influence of the
Poynting Robertson effect on the equilibrium points of the photo gravitational restricted three
body problem (out of plane case), Astron. Astrophys., Vol. 300, pp. 579–590.

Robertson, H. (1937). Dynamical effects of Radiation in the solar system, Monthly Notices of the
royal Astronomical society, Vol. 97, pp. 423–437.

Rubincam, D.P. (2013). The Solor Poyntying-Robertson effect on particles orbiting Solar System
bodies: Circular Orbits, Icarus, Vol. 226, pp. 1618–1623.

Singh, J. and Umar, A. (2012). Motion in the photogravitational elliptic restricted three-body prob-
lem under an oblate primary, The American astronomical society, Vol. 143.

Yadav, S. and Aggarwal, R. (2013a). Resonance in a geo-centric synchronous satellite under the
gravitational forces of the Sun, the Moon and the Earth including it’s equatorial ellipticity,
Astrophysics Space Sci., Vol. 347, pp. 249–259.

Yadav, S. and Aggarwal, R. (2013b). Resonance in the earth-moon system around the sun including
earth’s equatorial ellipticity, Astrophysics Space Sci., Vol. 348, pp. 367–375.

Yadav, S. and Aggarwal, R. (2014). Resonance in a geo-centric satellite Earth’s equatorial elliptic-
ity, Astrophysics Space Sci., Vol. 349, pp. 727–743.

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 12

https://digitalcommons.pvamu.edu/aam/vol13/iss1/12



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 187

Appendix A

Using the following data of a Satellite,

a = 6921000m,

e = 0.0065,

m0 = 0.0628766
deg

sec
,

β̇ = 0.0000114077
deg

sec
,

rs = 149599× 106m,

r
E

= 149.6× 109m,

c = 3× 108
m

sec
.

We make the above quantities dimensionless by taking

ME +Ms = 1unit,
G = 1unit,
rs = distance between the Earth and the Sun

= 1 unit.

P1 = −
(

GMsq

r3sa(1− e2)
− GME

r04

)
,

P2 = − GMsqe

r3sa(1− e2)
,

P3 = −rE
e(β̇2r3s −GMsq)

r3sa
2(1− e2)2

= P8,

P4 = −rE
eβ̇GMs(1− q)

r2sc0a
2(1− e2)2

= P9,

P5 = −rE
(β̇2r3s −GMsq)

r3sa
2(1− e2)2

,

P6 = −

(
a2(1− e2)2(m− β̇)− rsβ̇

)
r
E
GMs(1− q)

c0r3sa
2(1− e2)2

,

P7 = −
(m− β̇)r2

E
GMs(1− q)

2r3sc0a(1− e2)
,

P10 = −
r2
E
e(m− β̇)GMs(1− q)

4r3sc0a(1− e2)
= P11.
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Appendix B

A1 =
2
√

2ca(1− e2)r3s√
(1− q)GMsm0er2E(m0 − β̇)

cosβ,

A2 =
rsa(1− e2)

√
2c√

(1− q)GMsem0rE
β̇

cosβ,

A3 =
a(1− e2)

√
2rs3√

m0rE
e(β̇2r3s −GMsq)

cosβ,

A4 =
2
√
ca(1− e2)r3s√

(1− q)GMsm0r2E(m0 − β̇)
cos 2β,

A5 =
rsa(1− e2)

√
2c√

(1− q)GMsem0rE
β̇

cos
β

3
,

A6 =
a(1− e2)

√
2r3s√

m0rE
e(β̇2r3s −GMsq)

cos
β

3
,

A7 =
a(1− e2)

√
2r3s√

m0rE
(β̇2r3s −GMsq)

cos
β

2
,

A8 =
a(1− e2)

√
2cr3s cos β2√

(1− q)GMsm0rE
((m0 − β̇)(1− e2)2a2 − β̇rs)

,

A9 =
2
√

2ca(1− e2)r3s√
(1− q)GMsem0r2E(m0 − β̇)

cos
β

2
,

A10 =
2
√
ca(1− e2)r3s√

(1− q)GMsm0r2E(m0 − β̇)
cos

2β

3
.

T1 =
4π
√
ca(1− e2)2r3s√

(1− q)GMsm0er2E(m0 − β̇)
cosβ,

T2 =
2πrsa(1− e2)

√
2c√

(1− q)GMsm0erE
β̇

cosβ,

T3 =
2πa(1− e2)

√
2r3s√

m0rE
e(β̇2r3s −GMsq)

cosβ,

T4 =
4π
√
ca(1− e2)r3s√

(1− q)GMsm0r2E(m0 − β̇)
cos 2β,

T5 =
2πrsa(1− e2)

√
2c√

(1− q)GMsem0rE
β̇

cos
β

3
,
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T6 =
2πa(1− e2)

√
2r3s√

m0rE
(β̇2r3s −GMsq)

cos
β

3
,

T7 =
2πa(1− e2)

√
2r3s√

m0rE
(β̇2r3s −GMsq)

cos
β

2
,

T8 =
2πa(1− e2)

√
2cr3s cos β2√

(1− q)GMsm0rE
((m0 − β̇)(1− e2)2a2 − β̇rs)

,

T9 =
4π
√
ca(1− e2)2r3s√

(1− q)GMsm0er2E(m0 − β̇)
cos

β

2
,

T10 =
4π
√
ca(1− e2)r3s√

(1− q)GMsm0r2E(m0 − β̇)
cos

2β

3
.
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