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Abstract 

In this paper, an approach to generate imputed values for count variables to incorporate missing 

data mechanism uncertainty is proposed. For multiple imputation, a distribution is considered 

in such a manner that it can reflect missing data mechanism uncertainty. For combining the 

parameter estimation of these imputed data sets the rules of nested multiple imputation are 

used. The performance of the multiple imputations is investigated using some simulation 

studies. Also, a real data set is analyzed using the proposed approach.  

Keywords: Generalized estimating equations; Longitudinal study; Missingness; Multiple 

imputation methods; Sensitivity analysis 
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1. Introduction 

A longitudinal study refers to an investigation where participant outcomes and possible 

treatments or exposures are collected at multiple follow-up times. Therefore, longitudinal 

studies generally yield multiple or repeated measurements on each subject over time. For 

example, HIV patients may be followed over time and some of their characteristics such as 

CD4 counts or viral load are collected to characterize the immune status and their disease 

burden, respectively. The repeated measurements for each subject are correlated within 

subjects and thus require special statistical techniques for valid analysis and inference. 

Longitudinal studies play a key role in epidemiology, clinical research and therapeutic 

evaluation. One of the major issues associated with the analysis of longitudinal data is the 
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existence of missing data or, more specifically, monotone missing data that arise when subjects 

dropout of the study.  

Rubin (1976) distinguished between three important missing mechanisms. When missingness 

is unrelated to the data, missingness mechanism is termed missing completely at random 

(MCAR). When missingness depends on the observed data and when given the observed data, 

it does not depend on the unobserved data, the mechanism is missing at random (MAR). A 

mechanism where missingness depends on the unobserved data perhaps in addition to the 

observed data is termed missing not at random (MNAR). In the likelihood and Bayesian 

paradigm and when mild regularity conditions are satisfied, the MCAR and MAR mechanisms 

are ignorable, in the sense that inferences can proceed by analyzing the observed data only, 

without explicitly addressing a (parametric) form of the missing data mechanism. In this 

situation, MNAR mechanisms are nonignorable.   

Ignoring the missing data mechanism may lead us to have overestimation or underestimation 

of parameters. Since a nonignorable missing data mechanism depends on unobserved data, 

there is little information available to correctly model the underlying process. A commonly 

used approach in such cases is to perform a sensitivity analysis drawing inferences based on a 

variety of assumptions regarding the missing data mechanism (Daniels and Hogan, 2008). 

There is a broad literature on sensitivity analyses for exploring unverifiable missing data 

assumptions (Ibrahim and Molenberghs, 2009). One approach begins with the specification of 

a full-data distribution, followed by examination of inferences across a range of values for one 

or more unidentified parameters (Daniels and Hogan, 2008; Molenberghs et al., 2001; Rubin, 

1977; Scharfstein et al., 1999; Vansteelandt et al., 2006). When a decision is required, a 

drawback of sensitivity analysis is that it produces a range of answers rather than a single 

answer (Scharfstein et al., 1999). Several authors have proposed model-based methods for 

obtaining a final inference. This approach involves placing an informative prior distribution on 

the unidentified parameters that characterize assumptions about the missing data mechanism. 

Then, inferences are drawn that incorporate a range of assumptions regarding the missing data 

mechanism (Daniels and Hogan, 2008; Forster and Smith, 1998; Kaciroti et al., 2006; Rubin, 

1977). An alternative approach for handling data with nonignorable missingness is the use of 

multiple imputations. Nested or two-stage imputation refers to multiple imputations conducted 

in a nested fashion. In the first stage, 𝑚 imputations are generated. In the second stage, 𝑛 

imputations are generated for each completed data set in the first stage, resulting in a total of 

𝑀 = 𝑚𝑛  multiple-imputed data sets. Then, using some combining rules which will be 

described in Section 2.4 the final inference is reported.   

Siddique et al. (2013, 2014) described a new multiple imputation approach for estimating 

parameters and their associated confidence intervals in the presence of nonignorable 

nonresponse for continuous and binary variables. Their goal was to develop a multiple 

imputation framework analogous to model-based methods such as those of Rubin (1977), 

Forster and Smith (1998) and Daniels and Hogan (2008) that incorporate a range of ignorability 

assumptions into one inference. In this paper, we develop their method for count data by using 

multiple imputation models and combining rules. In this method there is a parameter that is 

unrecognizable. We try to specify a new algorithm for approximating an estimate of this 

parameter according to the observed and imputed values under missing at random mechanism.  

This paper is organized as follows: nested multiple imputations for analyzing count data are 

described in the next section. This section contains three subsections with each subsection to 

be a part of the nested multiple imputation. In section 3, some simulation studies are performed 
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for investigating the performance of the proposed approach and in section 4 the missing values 

of a real data set using the proposed approach are imputed and then a real data set is analyzed. 

The last section includes some conclusions.  

2. Nested Multiple Imputation for Analyzing Count Data 

The approach proceeds in four steps as follows (Siddique et al., 2013):  

 

1. Specification of a distribution of imputation model. In this step, after specification of 

the model, 𝑀 model is drawn from this distribution of model.  

2. Conducting nested multiple imputations which lead to 𝑁 imputation for each model. 

In the end of this step 𝑀 × 𝑁 complete data sets are obtained.  

3. Estimating parameters for each complete data set.  

4. The use of nested multiple imputation rules for combining parameter estimation and 

standard errors of them. This step yields the final results for inference.  

In what follows, these steps are discussed.  

2.1. Specification of a distribution of imputation model 

The first step of this approach is to identify the distribution for imputation. In fact, a good 

choice for this distribution is based on subjective information about association between 

missing values and observed data. The best information about this association can be gathered 

by experts and the persons who collected the data.  

For continuous and binary data sets Siddiqe et al. (2013, 2014) proposed some approaches 

based on the ideas of Rubin (1987) for multiple imputations, assuming non-ignorability. Based 

on Rubin (1987, p. 203), there is a simple transformation for generating non-ignorable missing 

values from ignorable imputed values for continuous variable as follows:  

 

 (non − ignorable imputed 𝑌𝑖) = k × (ignorable imputed 𝑌𝑖), (1) 

 

where 𝑌𝑖 is a continuous variable for the 𝑖𝑡ℎ individual, 𝑖 = 1,2, . . . , 𝑛, and 𝑘 is a constant 

multiplier. As an example from Rubin (1987) consider 𝑘 = 1.2, this value shows that non-

ignorable imputed values are 20% larger than those of ignorable imputed values or observed 

values. Based on this idea Siddique et al. (2013) proposed considering some distributions for 

𝑘  and drawing some values from this distribution to address missing data mechanism 

uncertainty. The proposed distribution of 𝑘  is dependent on the imputer’s belief about 

association of non-ignorable and ignorable missing values. For example, if the imputer believes 

that missing values tend to be larger than observed values, a proposal distribution for 𝑘 might 

be 𝑈(1,3) or 𝑁(1.5,1). It is clear that this approach is appropriate for use, if in analyzing 

continuous variable and for other type of data, Equation (1) may generate implausible values. 

For binary data sets Siddique et al. (2014) proposed the following relationship for generating 

non-ignorable imputed values using ignorable values  

 
�̂�𝑛𝑜𝑛−𝑖𝑔𝑛𝑜𝑟/(1 − �̂�𝑛𝑜𝑛−𝑖𝑔𝑛𝑜𝑟)

�̂�𝑖𝑔𝑛𝑜𝑟/(1 − �̂�𝑖𝑔𝑛𝑜𝑟)
= 𝑘, 

 

where �̂�non−ignor and �̂�ignor are the probability of the event under non-ignorability and the 

probability of the event under ignorability, respectively. Also, 𝑘 is a constant multiplier which 
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shows the odds of the event for subjects with non-ignorable missing data as compared with 

ignorable missing data.  

 

None of these approaches can be used for imputation of non-ignorable count missing values. 

We, instead, propose another approach. Let 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠(𝜆) and let 𝜆non−ignor and 𝜆ignor be 

the mean parameter of non-ignorable missing values and ignorable missing values, 

respectively. Also, let log ( 𝜆non−ignor) = 𝜇non−ignor and log ( 𝜆ignor) = 𝜇ignor. Then, 

  

 𝜆non−ignor = 𝑘∗ × 𝜆ignor, (2) 

 

where 𝑘∗ is a constant multiplier. Taking the logarithm of both sides, we obtain  

 

 𝜇non−ignor = 𝑘 + 𝜇ignor, (3) 

 

where log ( 𝑘∗) = 𝑘.  

Using different values of 𝑘, which is generated by its assumed distribution, you would generate 

data from a model with 𝜆 values equal to 𝜆 values of an ignorable model multiplied by the 

value of the generated 𝑘.  

2.2. Nested multiple imputation 

After specification of the distribution of the models in the previous steps, imputation proceeds 

in two stages. First, 𝑀 models are drawn from the distribution of the model. Then, 𝑁 multiple 

imputations for each missing value are generated for each of the 𝑀 models. Therefore, there 

are 𝑀 × 𝑁 complete data sets (Harel, 2007; Shen, 2000).  

Let 𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠) be a partition of the responses. In the first step, the imputation model 𝜓 

is drawn from its predictive distribution 𝜓𝑚 ∼ 𝑝(𝜓),  𝑚 = 1,2, . . . , 𝑀. In the next stage for 

each model 𝜓𝑚, 𝑁 independent imputations conditional on 𝜓𝑚, that is, 𝑌𝑚,𝑛
𝑚𝑖𝑠 ∼ 𝑝(𝑌𝑚𝑖𝑠|𝜓𝑚), 

𝑛 = 1,2, . . . , 𝑁 are drawn.  

This kind of imputation is nested multiple imputation because the 𝑀 × 𝑁 observations are not 

independently drawn from the same posterior distribution. Therefore, the nested multiple 

imputation rules have to be used to take into account the variability due to the multiple models.  

2.3. Estimating parameters for each complete data set using Generalized estimating 

equations  

The method of Generalized Estimating Equations (GEE, Zeger et al., 1988) is a powerful 

approach for analyzing longitudinal data especially for longitudinal count, binary and ordinal 

responses. The regression coefficients and variance components in this method are estimated 

by the two first moments of asymptotic distribution of population and this method does not 

require the marginal distribution or likelihood function. Therefore, it is a widely used approach 

in medical and clinical data analysis. In this perspective, association among repeated 

measurements is considered by different structures of correlation matrix. A correct choice of 

the specification of the structure of correlation matrix is an approach for improving efficiency 

of regression coefficients.  
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Let 𝑌𝑖 = (𝑌𝑖1, . . . , 𝑌𝑖𝑇)′ be a 𝑇-dimensional vector of the response variable and 𝑋𝑖 is a 𝑇 × 𝑝-

dimensional matrix of the explanatory variables for the 𝑖𝑡ℎ  individual, 𝑖 = 1,2, . . . , 𝑛 . In 

modeling count data using GEE, we assume that 𝐸(𝑌𝑖𝑗) = 𝜆𝑖𝑗 , 𝑙𝑜𝑔(𝜆𝑖𝑗) = 𝑋𝑖𝑗𝛽 = 𝜇𝑖𝑗  and 

𝑣𝑎𝑟(𝑌𝑖𝑗) = 𝜙𝜇𝑖𝑗. In this structure 𝑋𝑖𝑗 is a p-dimensional vector of explanatory variable, 𝛽 is 

a p-dimensional vector of regression coefficients and the logarithmic link function is used for 

modeling. Let 𝑅𝑖(𝛼) be a 𝑇 × 𝑇 correlation matrix. The covariance matrix is given by 𝑉𝑖 =

𝜙𝐴𝑖
1/2

𝑅𝑖(𝛼)𝐴𝑖
1/2

 where 𝐴𝑖 = 𝑑𝑖𝑎𝑔(𝑉(𝜇𝑖𝑗)) is a diagonal matrix with components 𝑉(𝜇𝑖𝑗). 

Estimates of the method of GEE for 𝛽 (�̂�) in a marginal equation is given by solving the 

following equation (Liang and Zeger, 1986):  

 

 ∑ 𝐷𝑖
′

𝐼

𝑖=1

𝑉𝑖
−1(𝑌𝑖 − 𝜇𝑖(𝛽)) = 0, (4) 

 

where 𝐷𝑖 =
𝜕𝜇𝑖

𝜕𝛽
. Note that, when the specification of the model is correct, �̂� is a consistent 

estimate for 𝛽. Also, 𝑛1/2(�̂� − 𝛽) is asymptotically multivariate normal distribution as 𝑛 ⟶
∞ with mean vector 0 and covariance matrix  

 

(∑
𝜕𝜇𝑖

′

𝜕𝛽

𝑛

𝑖=1

𝑉𝑖
−1

𝜕𝜇𝑖

𝜕𝛽′
)

−1

(∑
𝜕𝜇𝑖

′

𝜕𝛽

𝑛

𝑖=1

𝑉𝑖
−1 var ( 𝑌𝑖)𝑉𝑖

−1
𝜕𝜇𝑖

𝜕𝛽′
) (∑

𝜕𝜇𝑖
′

𝜕𝛽

𝑛

𝑖=1

𝑉𝑖
−1

𝜕𝜇𝑖

𝜕𝛽′
)

−1

. 

 

The parameter estimations and standard errors in using GEE approach for the resulting 𝑀 × 𝑁 

complete data of our multiple models multiple imputation approach are computed in this stage.  

2.4. Combining rules for final inference 

Let 𝛽  be the regression coefficient and let �̂�𝑚,𝑛,  𝑚 = 1,2, . . . , 𝑀;  𝑛 = 1,2, . . . , 𝑁,  be the 

estimated values from the resulting 𝑀 × 𝑁  complete data. Based on the large sample 

statement we have �̂�𝑚,𝑛 − 𝛽 ∼ 𝑁(0, Σ𝑚,𝑛),  𝑚 = 1,2, . . . , 𝑀;  𝑛 = 1,2, . . . , 𝑁.  Note that the 

subscript 𝑚, 𝑛  represents the 𝑛𝑡ℎ  imputed data set under 𝑚𝑡ℎ  model. In describing the 

following rules, we use notation that follows closely to that of Shen (2000).  

Let �̄̂� be the overall average for 𝑀 × 𝑁 estimation of 𝛽. It is given by  

 

�̄̂� =
1

𝑁𝑀
∑ ∑ �̂�𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

, 

 

Also, let the average of 𝛽s in the 𝑚𝑡ℎ model is given by:  

 

�̂�𝑚 =
1

𝑁
∑ �̂�𝑚,𝑛

𝑁

𝑛=1

,  𝑚 = 1,2, . . . , 𝑀. 

 

Three sources of variation contribute to the uncertainty in 𝛽: between model variance, within 

model variance, and the overall average of the variance estimates. They are given by 

  

 between model variance: 
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𝐵 =
1

𝑀 − 1
∑ (�̂�𝑚 − �̄̂�)2

𝑀

𝑚=1

, 

 

 within model variance:  

 

𝑊 =
1

𝑀(𝑁 − 1)
∑ ∑(�̂�𝑚,𝑛 − �̂�𝑚)2

𝑁

𝑛=1

𝑀

𝑚=1

, 

 

 overall average of the variance estimates:  

 

Σ̄ =
1

𝑁𝑀
∑ ∑ Σ𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

. 

 

The total variance is given by:  

 

𝑇 = Σ̄ + (1 +
1

𝑀
)𝐵 + (1 −

1

𝑁
)𝑊. 

 

Note that, the interval estimation and other asymptotic evaluation about 𝛽  are based on t 

distribution with 𝜈 degrees of freedom such that  

 

𝑇−1/2(�̄̂� − 𝛽) ∼ 𝑡𝜈 , 
where 

  

𝜈−1 =
1

𝑀 − 1
(

(1 + 1/𝑀)𝐵

𝑇
)

2

+
1

𝑀(𝑁 − 1)
(

(1 − 1/𝑁)𝑊

𝑇
)

2

. 

 
2.5. Specification of distribution of multiplier k  

For specification of imputation models, one needs to determine distribution of multiplier 𝑘. In 

this Section, we describe an empirical approach for specification of this distribution. The 

parameter 𝑘 is a sensitivity and non-identifiable parameter. Therefore, the specification of its 

distribution should be performed by researcher’s subjective belief and available information.  

 

When a normal distribution is considered for the distribution of 𝑘, we can choose lower and 

upper limits of 𝑘 and then compute the mean and standard error as follows:  

 

𝜇𝑘 =
𝑘𝑙𝑜𝑤𝑒𝑟 + 𝑘𝑢𝑝𝑝𝑒𝑟

2
, 𝜎𝑘 =

𝑘𝑢𝑝𝑝𝑒𝑟 − 𝑘𝑙𝑜𝑤𝑒𝑟

4
. 

 

Another empirical approach for approximating the distribution of 𝑘 is the use of the following 

algorithm which is based on the information extracted from observed and the imputed values 

under missing at random mechanism, and it is useful for monotone missingness.  

Let 𝑑𝑖  be the dropout location of subject 𝑖 . Then, 𝑑𝑖 ∈ {2, . . . , 𝐽 + 1} . Also, let 𝑦𝑜𝑏𝑠  be 

6
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observed data and 𝑦𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟 be the imputed values under missing at random mechanism. For 

specifying mean of multiplier 𝑘 at time 𝑗, 𝜇𝑘𝑗
, consider subjects with 𝑑𝑖 ≠ 𝐽 + 1 (that is 

subjects with complete data are not considered).  

 

Let 𝑗 = 2, for finding 𝜇𝑘2
, let �̄�𝑜𝑏𝑠,2 be the mean of the observed responses for subjects with 

𝑑𝑖 > 2 and �̄�𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟,2 be the mean of imputed data with missing at random mechanism for 

subjects with 𝑑𝑖 = 2. Therefore, an empirical estimate for 𝜇𝑘2
 is given by  

 

𝜇𝑘2
=

�̄�𝑜𝑏𝑠,2

�̄�𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟,2
. 

 

Generally, for time 𝑗 the mean of the multiplier 𝑘 is given as follows: 

  

 𝜇𝑘𝑗
=

�̄�𝑜𝑏𝑠,𝑗

�̄�𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟,𝐽
,  𝑗 = 2, . . . , 𝐽 − 1 (5) 

 

In the last time, all of the subjects with 𝑑𝑖 ≠ 𝐽 + 1 are dropout and mean of observed response 

for these subjects are not available. We compute multiplier 𝑘 for the last time by:  

 

𝜇𝑘𝐽
=

�̄�𝑜𝑏𝑠,(𝐽−1) + (�̄�𝑜𝑏𝑠,(𝐽−1) − �̄�𝑜𝑏𝑠,(𝐽−2))

�̄�𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟,𝐽
. 

 

3. Simulation Study 

 

In this section, the performance of the proposed approach is investigated using some simulation 

studies. At first we generated a longitudinal count data with non-ignorable missing values. We 

generate a data set with sample size 𝐼 = 500 and with 𝐽 = 5 repeated measurements. Let 

𝑌𝑖 = (𝑌𝑖1, . . . , 𝑌𝑖𝐽) and 𝑌𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠(𝜆𝑖𝑗),  𝑖 = 1,2, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽, where  

 

 
𝑙𝑜𝑔(𝜆𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑗 + 𝛽2𝑇𝑟𝑡𝑖 + 𝛽3(𝑇𝑟𝑡𝑖 × 𝑇𝑖𝑚𝑒𝑗)

+ 𝛽4(𝐷𝑟𝑜𝑝𝑖 × 𝑇𝑖𝑚𝑒𝑗) + 𝑏𝑖, 
(6) 

 

where 𝑇𝑖𝑚𝑒𝑗 = 0,1,2, . . . ,4, 𝑇𝑟𝑡𝑖  is equal to one for treatment group and zero for control 

group such that each group has 250 individuals and 𝐷𝑟𝑜𝑝𝑖  is an indicator variable for 

missingness 𝛽0 = 4, 𝛽1 = −0.4, 𝛽2 = 0.5, 𝛽3 = −0.4, and 𝛽4 = −0.8. The random effects 

𝑏𝑖  has a normal distribution with zero mean and variance 𝜎2 = 0.25.  For generating 

nonignorable missing values on 𝑦𝑖𝑗 at time points 1, 2, 3 and 4, subjects who have 𝐷𝑟𝑜𝑝 = 1 

are dropped out with probabilities 0.25, 0.50, 0.75, 1, respectively.  

For imputation of missing values according to the Equation (1) we first generated 200 

imputations of each missing value by using predictive mean matching (PMM) method (Little 

and Rubin, 2002) which assumes the missing data are MAR. Therefore �̂�𝑖𝑔𝑛𝑜𝑟  can be 

computed. Using the methods described in previous sections, the imputed values by PMM 

method (which assume an ignorable missingness) is transformed to imputed values under 

nonignorable misssingness.  
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Table 1.  Result of imputation under two different assumptions about missing data mechanism 
    MNAR-mechanism data 

generation 
MAR-mechanism data 

generation 

Rate of missingness Criterion MAR MNAR MAR MNAR 

1/4 Σei2 1537.07 858.87 190.42 230.66 

  percent of bias 15.7 4.1 0.1 3.6 

1/2 Σei2 1752.36 926.15 162.40 172.45 

  percent of bias 16.2 0.8 0.8 3.2 

3/4 Σei2 2271.02 1016.11 209.83 243.16 

  percent of bias 16.8 1.2 0.3 3.3 

2/3 Σei2 1431.7 814.73 197.46 232.97 

  percent of bias 14.5 3.7 0.1 3.4 

 

 

Table 2.  The results of simulation study of multiple imputation of longitudinal count data using multiple 

models. 

Ignor assump.  Uncertainty  Model Bias RMSE Σei2 Width of CI 
 

MAR None N(0,0) 0.087 0.121 4456.85 0.08 0.008 
 

Mild N(0,0.1) 0.090 0.123 4284.46 0.083 0.046 
 

Moderate N(0,0.2) 0.093 0.125 4211.09 0.086 0.143 

  Ample N(0,0.3) 0.096 0.127 4157.77 0.090 0.229 

MNAR None N(μk,0) 0.062 0.081 1493.41 0.097 0.200 
 

Mild N(μk,0.1) 0.062 0.081 1550.42 0.110 0.397 
 

Moderate N(μk,0.2) 0.062 0.082 1618.34 0.124 0.527 
 

Ample N(μk,0.3) 0.061 0.082 1702.98 0.143 0.637 

Specifically, we simulated 100 values of 𝑘 from normal distribution with mean based on the 

above explained method. We used 𝑀 = 100  imputation models and 𝑁 = 3  imputations 

within each model so that the degrees of freedom for the within-model variance is 𝑀(𝑁 − 1) 

and the degrees of freedom for the between-model variance is 𝑀 − 1.  This allows us to 

estimate within and between-model variance with equal precision, which is necessary for stable 

measurements of the rates of missing information (Harel, 2007).  

We explored the effect of imputing under two different ignorability assumptions which we 

refer to as MAR and MNAR. In addition to generating imputations using the above ignorability 

assumptions, we also generated imputations based on four different assumptions regarding how 

certain we were about the correctness of our models. When there is no mechanism uncertainty, 

all imputations are generated from the same model. When there is mechanism uncertainty, then 

multiple models are used. All models are centered on one of the ignorability assumptions. The 

four different uncertainty assumptions used to generate multiple models were as follows: no 

uncertainty, mild uncertainty, moderate uncertainty and ample uncertainty.  

Table 1 shows the results of imputation under MAR and MNAR mechanism with four different 

rates of missingness for generating data under missing at random and missing not at random 

mechanism. For comparison of the results, the values of sum of square errors (SSE) of imputed 

values and percent of bias for estimating regression coefficient for treatment parameter in 

Equation (6), are reported. This table shows that the values of MSEs and percent of bias under 

MNAR are smaller to those under MAR mechanism.  

𝛾 ̂ 
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We then analyzed the 200 imputed data sets using the described model of Equation (6) after 

removing dropout as an explanatory variable and estimating the regression coefficient of the 

treatment group for imputed values.  

 

The results of this simulation are summarized in Table 2. We evaluated the bias, Σ𝑒𝑖
2 and root 

of MSE (RMSE) of the treatment slope as well as width of its nominal 95% interval estimate. 

Also, missing data information is calculated. The missing data information for nested multiple 

imputations will be obtained according to the amount of missing information due to the 

uncertainty in the model and missing data. Let �̄� be the mean of 𝑀 × 𝑁 point estimates of 

parameter, �̄� be the mean of estimated variances, 𝐵 be between model variance and 𝑊 be 

within model variance. Then, an estimate of missing data information, 𝛾, will be equal to  

 

𝛾 =
𝐵+(1−

1

𝑁
)𝑊

�̄�+𝐵+(1−
1

𝑁
)𝑊

. 

 

Table 2 presents the results of our imputations under the 8 different ignorability/uncertainty 

scenarios using PMM imputation and the methods described for the slope of the treatment 

group. The first row shows the results of assuming MAR with no mechanism uncertainty, 

where the results are highly biased. Also, in this status missing data information, 𝛾, is too small 

and Σ𝑒𝑖
2 is very large. The results show that with increasing mechanism uncertainty both the 

percentage of bias and RMSE approximately are the same as those under no uncertainty, but 

coverage and missing data information are increased with increasing uncertainty in the 

imputation models. Also, the results show that the values of percent of bias and RMSE under 

MNAR are smaller than those under MAR.  

Table 3. Results of imputation missing values in AIDS data 
Ignor assump. Uncertainty Model Estimate SE Width of CI p-value 

 

MAR None N(0,0) 12.10 13.22 27.75 0.18 0.02  
Mild N(0,0.1) 12.10 17.18 58.13 0.33 0.09  
Moderate N(0,0.2) 12.12 19.03 70.01 0.41 0.12 

  Ample N(0,0.3) 12.13 30.94 106.11 0.52 0.18 

MNAR None N(μk,0) 8.10 11.41 30.71 0.23 0.01  
Mild N(μk,0.1) 8.12 15.29 41.99 0.29 0.07  
Moderate N(μk,0.2) 8.11 19.04 32.40 0.36 0.13  
Ample N(μk,0.3) 8.09 24.54 99.12 0.57 0.20 

 

 

4. Application 

 

In this section, descriptive and inferential (modeling approach) methods are used for analyzing 

data sets of a longitudinal HIV study. The study contains 467 HIV infected patients who had 

failed or were intolerant of zidovudine (AZT) therapy. The data had been analyzed before by 

Ganjali and Baghfalaki (2014). The aim of their study was to compare the efficacy and safety 

of two alternative antiretroviral drugs, namely didanosine (ddI) and zalcitabine (ddC). Patients 

were randomly assigned to receive either ddI or ddC, and CD4 cell counts were recorded at 

study entry, where randomization took place, as well as 2, 6, 12, and 18 months thereafter. In 

order to impute missing values, we use PMM approach and two imputations are considered. 

These imputations are under missing at random assumption. For converting imputed values to 

some values under not missing at random, 100 values from distribution 𝑁(𝜇𝑘, 𝜎𝑘
2)  are 

𝛾 ̂ 
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generated and replace 𝑘 and �̂�𝑖𝑔𝑛𝑜𝑟 in Equation (2) and create 2 imputations nested within 

100 models; that is, 200 imputed data sets are generated. Like simulation study find 𝜇𝑘 by 

Equation (5). Again we consider four different amounts (0, 0.1, 0.2, 0.3) for 𝜎𝑘
2. The location 

parameter of GEE equation considered as follow:  

 

 
𝜇𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑗 + 𝛽2𝑇𝑟𝑡𝑖 + 𝛽3𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽4Prevoi𝑖

+ 𝛽5Stratum + 𝛽6(𝑇𝑖𝑚𝑒𝑗 × 𝑇𝑟𝑡𝑖) 
(7) 

where 𝑇𝑖𝑚𝑒𝑗 = 0, 2, 6, 12, 18, 𝐺𝑒𝑛𝑑𝑒𝑟𝑖 is a gender indicator for the individual (0 = female, 1 

= male) and the other three explanatory variables are: Trt (0 = ddC, 1 = ddI), Prevoi, previous 

opportunistic infection (1 = AIDS diagnosis, 0 = no AIDS diagnosis), and Stratum (1 = AZT 

failure, 0 = AZT intolerance).  

For comparing the results under different missingness mechanism and uncertainty mechanism, 

this model is fitted and the regression coefficient of treatment group are estimated and reported 

in Table 3. The results show that with increasing uncertainty in imputation process, similar to 

that of simulation study, there is not much change in the parameter estimates but standard 

errors, width of confidence intervals, p-values and 𝛾 are increased. 

 

Table 4. Results of estimation regression coefficients in AIDS data set under two different missingness 

mechanism 
Ignor 
assump.  

Uncertainty  Model Parameters Estimate SE Width of CI p-value 
 

MAR None N(0,0) Intercept 58.19 6.91 21.37 0.03 0.29 
   

Time -1.21 0.25 1.10 0.05 0.76 
   

Trt 12.10 13.22 27.75 0.18 0.02 
   

Gender 19.42 26.60 101.49 0.77 0.10    
Prevoi -31.32 9.30 37.70 0.06 0.77    
Stratum 1.80 7.27 18.68 0.92 0.08 

      Time×Trt -3.14 1.16 2.26 0.03 0.44 

MNAR Moderate N(μk,0.2) Intercept 123.42 16.08 61.48 0.01 0.31 
   

Time -1.11 0.19 0.86 0.04 0.83    
Trt 8.12 15.29 41.99 0.29 0.07    
Gender -12.36 20.39 83.32 0.64 0.11 

   
Prevoi -70.75 21.11 53.78 0.05 0.63 

   
Stratum -1.14 6.45 16.35 0.84 0.09 

   
Time×Trt -0.01 0.75 2.44 0.96 0.06 

 

Table 4 lists the results of the estimated regression coefficients in Equation (7) for two models, 

one under MAR mechanism without uncertainty and the other under MNAR mechanism with 

mild uncertainty. The results show that there is considerable difference between the regression 

coefficients under the missingness assumptions. Also, Figure 1 shows longitudinal profiles for 

observed values of the response variables for each individual over time with black color and 

those with imputation values with red color. Panel (a) of this figure is under MAR mechanism 

without uncertainty and in panel (b) it is for under MNAR mechanism with mild uncertainty. 

The results show that considering MAR mechanism for imputation data in last time, a sharp 

decrease in the amount of imputation occurred that seems unreasonable but by changing 

ignorability mechanism to MNAR this problem is solved.  

  

𝛾 ̂ 
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Figure 1. Profiles of CD4 measurements over time for observed values (black color) an imputed values (red 

color). Panel a: under missing at random assumption without uncertainty, panel b: under missing not 

at random assumption with mild uncertainty. 

 

5. Conclusions and Discussion 

In this paper we have developed the proposed approach of Siddiaqe et al. (2013, 2014) for 

generating multiple imputations for longitudinal count data with missing values. In this 

approach using multiple models and multiple imputations we have taken into account the 

uncertainty about the missing data mechanism in imputation process.   

The full data distribution can be factored into an extrapolation model and an observed data 

model,  

𝑝(𝑦, 𝑟|𝜔) = 𝑝(𝑦𝑚𝑖𝑠|𝑦𝑜𝑏𝑠, 𝑟, 𝜔𝑚𝑖𝑠)𝑝(𝑦𝑜𝑏𝑠, 𝑟|𝜔𝑜𝑏𝑠) 

 

where 𝜔𝑚𝑖𝑠  and 𝜔𝑜𝑏𝑠  denote parameters indexing the missing and observed data models, 

respectively. The observed data distribution is identified and can be estimated non-

parametrically but the missing data distribution cannot be identified without modeling 

assumptions or constraints on the parameter space. To formalize this notion, we define a class 

of parameters for full-data models that can be used for sensitivity analysis or incorporation of 

informative prior information. Generally, they are not identifiable from observed data, but 

when their values are fixed, the remainder of the full-data model is identified, and we call them 

sensitivity parameter. Our use of the term sensitivity analysis refers to assessment of sensitivity 

of model-based inferences and to assumptions that cannot be verified or checked with data. 

Without assumptions such as a parametric model for the full-data response, or constraints such 

as MAR for the missing data mechanism, the observed data provide no information about the 

missing data distribution. The general strategy here is to work with the subset of sensitivity 

parameters (like multiplier 𝑘 in this paper). The sensitivity parameters are then used to encode 

prior beliefs about the missing data mechanisms, either by fixing their values at some constant, 

examining inferences across a range of constants, or by assigning an appropriate prior 

distribution, Daniels and Hogan (2008).   
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As seen in both the simulation studies and the application, post-imputation inferences can be 

highly sensitive to the choice of the imputation model. When choosing a distribution for the 

multiplier 𝑘  in 𝜆non−ignor = 𝑘∗ × 𝜆ignor  we described a method for the determination of 

distribution’s parameter by 𝜇𝑘𝑗
=

�̄�𝑜𝑏𝑠,𝑗

�̄�𝑖𝑚𝑝−𝑖𝑔𝑛𝑜𝑟,𝑗
. As a future study, the observations may be 

classified by their covariates and the distribution’s parameter for multiplier 𝑘 may be defined 

in each category. For example subjects in the same treatment group or with the same gender 

have more similarities; therefore, 𝜇𝑘𝑗
 in Equation (5) can be calculated for each category, 

separately. Also, for responses in exponential family one may use the same approach 

considering the canonical parameter of the distribution as a link. This would be an extension 

of all forms presented in this paper.   

 

Some other approaches for generating multiple-model multiple imputations that can be 

incorporated into our framework include mixture model imputation (Rubin, 1987, van Buuren, 

Boshuizen and Knook, 1999), imputation based on a multivariate t-distribution with varying 

degrees of freedom (Liu, 1995) and pattern-mixture model imputation (Demirtas and Schafer, 

2003, Thijs et al., 2002).  
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